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Abstract

We consider random perturbations of a given domain. The characteristic amplitude of these
perturbations is assumed small. We are interested in quantities of interest depending on the random
domain through a boundary value problem. We provide asymptotic expansions of the first moments
of the distribution of this output function. When the random perturbation has a small rank
spectral representation, we give an simple and efficient method to compute the coefficients of these
expansions and provide numerical illustrations in order to compare our expansions with Monte
Carlo simulations.
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1 Introduction

Many pratical problems in engineering lead to boundary value problem for an unknown function that
is necessary to compute to obtain a real quantity of interest. In structural mechanics, the equations
of elasticity are usually considered and solved to compute the leading mode of a structure or its
compliance. Usually, the input parameters of the model like the geometry or the physical coefficients
(typically the value of the Young modulus or Poisson ratio) are not known perfectly. It is therefore
important to take these uncertainties into account.

In this work, we consider uncertainties on the geometric definition of the domain motivated by
tolerances in the fabrication processes or in a damaged boundary during the life of a mechanical device.
Manufactured devices are close to a nominal geometry but differ of course from its mathematical
definition. Since we are motivated by tolerances, we can make the crucial assumption of the smallness
of the random perturbations. Identifying domains with their boundary, domains close to the nominal
domain D0 can be seen as a normal perturbation of the nominal boundary ∂D. In that case, the
random domain D(ω) can be defined thanks to a real valued random field X over ∂D according to

∂D(ω) = {x+X(x, ω)n(x); x ∈ ∂D0}.

In order to take the question of uncertain geometrical definition into account in numerical simulations,
we have to incorporate the randomness of the computational domain to the underlying model equa-
tions. Thus, the quantities of engineering interest are also random. We address the following question:
given a complete probabilistic description of the random perturbation of the nominal boundary, compute
as much information as possible to the distribution of the quantity of interest.

The most common approach to study boundary value problems with stochastic inputs is the Monte-
Carlo method. Often this approach is easy to implement and generates a sufficiently large number
of samples. In our case, each sample is a realization of the random domain. On these samples, one
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has to solve a boundary value problem and then to compute the quantity of interest. Therefore, the
Monte-Carlo method is extremely costly. This work is a contribution to the development of cheap and
deterministic numerical methods to recover statistical informations on the distribution of the output
quantity of interest.

The smallness assumption formalized in the sequel allows us to use a sensitivity analysis with respect
to geometrical perturbations of the boundary. We apply shape calculus to perform this sensitivity
analysis of order two and compute asymptotic expansions of the moments of the output quantity
distribution with respect to the smallness parameter ε of the random perturbations. In particular, we
obtain in this work an expansion at order three for the expectation and an expansion of order four for
the variance. It turns out that the leading coefficients of these asymptotic expansions do only depend
on the autocovariance of the random field defining the random perturbations. We therefore use the
associated integral operator to derive a low-rank approximation of the random field of the type

X(x, ω) =
N∑
ℵ=1

αℵ(ω)fℵ(x).

For such a random field, we derive an analytic expression of the coefficients of the previous asymptotic
expansions that are very cheap to compute: only N + 1 boundary values problems are to be solved on
the nominal geometry D in the examples we present in this work. Note that when the derivative are
evaluated thanks to an adjoint state, then 2N + 2 problems are needed.

We mention that random shape functionals have also been considered in [7] by means of a first
order perturbation analysis. A rather general framework of the first order perturbation analysis for
functionals with random input parameters, particularly random domains, has been presented [1].
Nevertheless, the present paper is based on a second order perturbation analysis of the random shape
functional under consideration. Thus, the shape Hessian will enter the asymptotic expansions which
makes the computations much harder. However, the shape Hessian is meanwhile well understood
and has been considered for example in [2, 3, 5, 8, 13, 15]. In comparison to [7], we derive here a
more precise expansion of the random shape functional. This fact is also verified by our numerical
experiments.

This work is organized as follows. In Section 2, we introduce our main theoretical tool: the shape
calculus of order two. We define the shape derivative, present their structure theorem and their
expressions in the case of two model objectives which we will focus on in this work: the first eigenvalue
of the Dirichlet Laplace operator and the Dirichlet energy. Then, in Section 3, we detail our random
model and explain how one can obtain in general asymptotic expansions of the moments of the
quantity of interest distribution. In Section 4, we emphasize the role of the autocovariance of the field
X to compute the previously derived asymptotic expansions and explain how to obtain a low-rank
approximation of the field X itself. In Section 5, we make explicit the expansions of Section 3 and
obtain expressions directly workable for computations. Finally, we validate our theoretical findings in
Section 6 by comparing our results with Monte-Carlo simulations.

2 Second order shape calculus

2.1 Definitions and structure theorem

Shape calculus was founded by Hadamard a century ago but was really developed from the seventies
on with the works of Murat and Simon as well as Sokolowski and Zolesio. It’s objective is to provide
a differential calculus for functions depending on the geometry of a domain D. It is achieved through
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the action of a family of diffeomorphisms acting on a model domain. We refer readers interested in
the precise definitions and useful properties to modern books on the subject such as [4, 8].

It is well-known since Hadamard’s work that the shape gradient is a distribution supported on the
moving boundary and acting on the normal component of the deformation field. The second order
shape derivative also has a specific structure as stated by Pierre and Novruzi in [13]. We quote their
result.

Theorem 2.1 (Struture theorem of first and second shape derivatives) Let k ≥ 1 be an in-
teger and J a real valuated shape function defined Ok the open bounded domains of Rd with a Ck
boundary. Let us define the function J on Ck,∞(Rd,Rd) by

J (θ) = J((I + θ)(D).

(i) If D ∈ Ok+1 and J is differentiable at 0, then there exists a continuous linear form L on Ck(∂D)
such that:

DJ (0)ξ = L(ξ · n) for all ξ ∈ Ck,∞(Rd,Rd).

(ii) If D ∈ Ok+2 and J is twice differentiable at 0, then there exists a continuous symmetric bilinear
form B on Ck(∂D)× Ck(∂D) such that for all (ξ, ζ) ∈ Ck,∞(Rd,Rd)2

D2J (0)(ξ, ζ) = B(ξ · n, ζ · n) + L((Dτnζτ ) · ξτ −∇τ (ζ · n) · ξτ −∇τ (ξ · n) · ζτ ),

where ∇τ is the tangential gradient and ξτ and ζτ stands for the tangential componants of ξ
and ζ.

The so-called shape derivative are then the shape gradient, usually noted DJ(D) := DJ (0), and
the shape Hessian, usually noted D2J(D) := D2J (0). With respect to this work, it is important to
notice that the shape Hessian is reduced to B for normal deformations fields.

Following the structure theorem, let us consider a C4 domain D0 and consider a C3 neighborhood
O of D and a twice differentiable shape function J . If the size of the neighborhood is small enough,
the local inversion theorem shows that the boundary ∂D of any domain D in O can be represented
as a graph over ∂D0 of the form: there is a real valuted function ϕ defined on ∂D0 such that

∂D = {x+ ϕ(x)n(x); x ∈ ∂D0}.

In particular, one can restrict themself to normal perturbations of amplitude ϕ, and for a given
function ϕ defined on ∂D0, define a domain Dϕ as the interior of the set {x+ ϕ(x)n(x); x ∈ ∂D0}.
Then one obtains the Taylor formula

J(Dϕ) = J(D0) + L[J ](D0)ϕ+
1
2
B[J ](D0)(ϕ,ϕ) +R2(ϕ), (1)

where the reminder R2 is uniformly in ϕ negligeable with respect to ‖ϕ‖2.

2.2 Examples of shapes derivatives.

We need to precise some geometrical definitions. The mean curvature (understood as the sum of the
principal curvatures of ∂D) is denoted by H. For a domain D ⊂ Rd, we consider its Dirichlet energy
E(D) defined as

E(D) = −
1
2

∫
∂D
|∇uD|2,

where uD is the solution of −∆u = 1 in H1
0(D) and λ1 the first eigenvalue of the Dirichlet Laplace

operator. The shape derivatives of these functionals are well-known (see [8, Section 5.9.6]).
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Lemma 2.2 (Expressions of shape derivatives) If D is C2, one has

L[E](D).ϕ = −
1
2

∫
∂D

(∂nu)2ϕ; (2a)

B[E](D).(ϕ,ϕ) = 〈−∂nu ϕ,Λ(−∂nu ϕ)〉H1/2×H−1/2 +
∫
∂D

[
∂nu+

1
2
H(∂nu)2

]
ϕ2; (2b)

L[λ1](D).ϕ = −
∫
∂D

(∂nv)2ϕ; (2c)

B[λ1](D).(ϕ,ϕ) =
∫
∂D

2w(ϕ) ∂nw(ϕ) +H(∂nv)2ϕ2; (2d)

where Λ : H1/2(∂D) → H−1/2(∂D) is the Dirichlet-to-Neumann map for the domain D defined as
Λ(ϕ) = −∂nV (ϕ) with V (ϕ) being the solution of

−∆V (ϕ) = 0 in D, V (ϕ) = −ϕ on ∂D, (3)

and v is the associated normalized eigenfunction solution in H1
0(D) of −∆v = λ1v with v > 0 in D

and w(ϕ) is the solution of 

−∆w(ϕ) = λ1w(ϕ)− v
∫
∂D

(∂nv)2ϕ in D,

w(ϕ) = −ϕ∂nv on ∂D,∫
D
v w(ϕ) = 0.

(4)

As consequence of these examples and being the general case to the best of our knowledge, there is a
function ` defined on ∂D so that the shape gradient can be written as

L(D).ϕ =
∫
∂D

`ϕ. (5)

This property to be an integral operator with a nice kernel is not true in general for the second order
derivative.

3 Asymptotic expansions of the moments

3.1 The stochastic model: random graphs over a fixed domain’s boundary.

For modeling the stochastic perturbations D(.) of D0, we introduce a probability space (Ω,F ,P)
and consider stochastic functions X : ∂D0 × Ω → R that define D(ω) as the interior of the graph
x+X(x, ω)n∂D0(x). In order to keep a pertinent geometrical description of sets, this of course requires
that the domains D(ω) remain close to D0 at least in the L∞ sense. In fact, to use the expansion (1),
we need closeness in the C2 sense. Introducing a small parameter ε > 0 and plugging perturbations of
the form x+ εX(x, ω)n∂D0(x) into (1), we obtain

J(D(ω)) = J(D0) + εL(X(ω)) +
ε2

2
B(X(ω), X(ω)) +R2(εX(ω)). (6)

We make the assumption that X is uniformly (in ω) bounded in the norm in the spatial variable where
shape differentiability holds at the second order (typically here the C2 norm), i.e., X is a member of
the Bochner space L∞(Ω, C2(∂D0)). Then, there exists C > 0 such that |R2(εX(ω))| ≤ Cε3.
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3.2 General preliminary results.

In view of (6), we derive the asymptotic expansions of the expectation and variance of J(D(ω)) as
our first result.

Proposition 3.1 The expectation and variance of J(D(ω)) admit the asymptotic expansions

E(J(D)) = J(D0) + εE(L(X)) +
ε2

2
E(B(X,X)) +O(ε3) (7)

and

var(J(D)) = ε2E
(

[L(X)− E(L(X))]2
)

+ ε3E ([L(X)− E(L(X))] [B(X,X)− E(B(X,X))]) +O(ε4). (8)

Proof of Proposition 3.1. It suffices to integrate over the space of probability the pointwise Taylor
expansion (6) thanks to the uniform estimate of the reminder. One thus immediately obtains for the
expectation

E(J(D)) = J(D0) + εE(L(X)) +
ε2

2
E(B(X,X)) + E(R2(εX))

= J(D0) + εE(L(X)) +
ε2

2
E(B(X,X)) +O(ε3).

Likewise, for the variance, one has

var(J(D)) = E
(

[J(D)− E(J(D))]2
)

= E

[ε(L(X)− E(L(X))) +
ε2

2
(B(X,X)− E(B(X,X))) +O(ε3)

]2


= ε2E
(

[L(X)− E(L(X))]2
)

+ ε3E ([L(X)− E(L(X))] [B(X,X)− E(B(X,X))]) +O(ε4).

�

Remark 3.2 Let us notice that it follows E(L(X)) = L(E(X)) = 0 if X is centered, i.e., if E(X) = 0.

In the same spirit as above, we can also compute asymptotic expansions of higher moments. For
example, the centered, normalized moments (as Skewness and Kurtosis) could be obtained in the
following way.

Proposition 3.3 For all k ≥ 2, the centered normalized moment of J(D(ω)) admits the asymptotic
expansion

Mk(J(D)) := E

(
[J(D)− E(J(D))]k√

var(J(D))
k

)
= ak + bkε+O(ε2), (9)

where the deterministic coefficients ak and bk are

ak = γkE
(

[L(X)− E(L(X))]k
)

E
(
[L(X)− E(L(X))]2

)
, (10)

bk = γk

{
E
(
[L(X)− E(L(X))]k−1[B(X,X)− E(B(X,X))]

)
E
(
[L(X)− E(L(X))]2

)
−E ([L(X)− E(L(X))][B(X,X)− E(B(X,X))]) E

(
[L(X)− E(L(X))]k

)}
,

(11)
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and the normalization constant γk is

γk = E
(
[L(X)− E(L(X))]2

)−1−k/2
. (12)

Proof of Proposition 3.3. We have

1
√
x+ h

k
=

1
√
x
k
− hk

2
√
x
k+2

+O(h2).

Inserting the expansion of the variance (8), we find

1√
var(J(D))

k
=

1
εk

{
E
(
[L(X)− E(L(X))]2

)−k/2
− εk

2
E
(
[L(X)− E(L(X)]2

)−1−k/2 E ([L(X)− E(L(X))][B(X,X)− E(B(X,X))])

+O(ε2)
}
.

On the other hand, using the expansion of the expectation (7), we have

E
(

[J(D)− E(J(D))]k
)

= εk
{

E
(

[L(X)− E(L(X))]k)
)

+
εk

2
E
(

[L(X)− E(L(X))]k−1[B(X,X)− E(B(X,X))]
)

+O(ε2)
}
.

Then, a tedious but elementary calculus (the product of two asymptotic expansions) leads to the
desired result. �

4 Computation of the expansion coefficients. The general case.

4.1 Direct computation

For sake of simplicity, we shall assume that the boundary perturbation field X is centered which
induces E(L(X)) = 0. We then can compute as in [7]

E
(

[L(X)− E(L(X))]2
)

= E
(
L(X)2

)
= E

[(∫
∂D0

`(x)X(x, ω)dσ(x)
)2
]

= E
[∫

∂D0

∫
∂D0

X(x, ω)X(y, ω)`(x)`(y)dσ(x)dσ(y)
]

=
∫
∂D0

∫
∂D0

E[X(x, .)X(y, .)]`(x)`(y)dσ(x)dσ(y).

The crucial operator to be studied here is the (two-point) autocovariance function of X defined as

CovX(x, y) = E(X(x, .)X(y, .)).

In fact, the knowledge of the law of X is not needed for the computation we have in mind, we only
need the autocovariance function. Notice that various laws for X can provide the same function CovX .
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We can proceed in two different ways to compute the expectation of the shape Hessian. The first
approach has already been pointed out in e.g. [12]. We shall explain the proceeding in case of the
Dirichlet energy. In that case, according to (2b), we have

E(B(X,X)) = E
(∫

∂D0

[
∂nu+

1
2
H(∂nu)2

]
X2

)
+ E

(
〈−∂nuX,Λ(−∂nuX)〉H1/2×H−1/2

)
.

For the first term, one has easily by Fubini’s theorem that

E
(∫

∂D

[
∂nu+

1
2
H(∂nu)2

]
X2

)
=
∫
∂D0

E(X2)
[
∂nu+

1
2
H(∂nu)2

]
=
∫
∂D0

V(X)
[
∂nu+

1
2
H(∂nu)2

]
since X is centered. To compute the second term, we shall define the following tensor product type
boundary value problem:

(id⊗ (−∆))V = 0 in ∂D0 ×D0,

V = CovX(id⊗ (−∂nu)) on ∂D0 × ∂D0.
(13)

Note that the differential operator which underlies this boundary value problem is id⊗ Λ. Due to its
linearity and Fubini’s theorem, we get thus for the second term

E
(
〈−∂nu X,Λ(−∂nu X)〉H1/2×H−1/2

)
=
∫
∂D0

E (−∂nu(x)X(x, ·)(Λ(−∂nu X))(y, ·))
∣∣
x=y

dσ(x)

=
∫
∂D0

−∂nu(x)V (x, y)
∣∣
x=y

σ(x).

Boundary value problems like that in (13) can be solved in essentially linear complexity if a sparse
tensor product discretization is employed as proposed in e.g. [9, 11, 12]. However, the implementation
of this approach would be highly intrusive.

4.2 Toward a low-rank approximation

The second way, which is much simpler to implement, consists in computing an expansion of the
autocovariance function of X of the form

CovX =
∑
k

κk ⊗ κk. (14)

For example, such a representation can be achieved by a spectral decomposition as an application of
Mercer’s theorem that ensures the representation of CovX in the form

CovX(x, y) =
∑
k

λkek(x)ek(y). (15)

Another way to obtain such a decomposition is an (possibly infinite) Cholesky decomposition of
autocovariance function. With the expansion (14) at hand, we will obtain in Section 5 the following
expansion of the expectation of the shape Hessian:

E
(
B[J ](D0)[X,X]

)
=
∑
k

B[J ](D0)[κk, κk].

We therefore need only to be able to evaluate the shape Hessian in certain directions {κi}.
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4.3 Numerical realization

In practice, the expansion (14) will be infinite and has to be appropriately truncated for numerical
computations. Consider a suitable ansatz space Vn = span{ϕi : i = 1, 2, . . . , n} ⊂ C2(∂D0). Then, we
shall discretize the two-point correlation CovX ∈ L2(∂D0× ∂D0) in the tensor product space Vn⊗ Vn
which yields the matrix

C =
[ ∫

∂D0

∫
∂D0

CovX(x, y)ϕi(x)ϕj(y)dσ(x)dσ(y)
]
i,j

∈ Rn×n. (16)

The discrete version of the expansion (14) is now efficiently be derived by an appropriate low-rank
decomposition of this matrix, i.e.,

C ≈ Cm =
m∑
k=1

`k`
T
k , (17)

where the truncation error ‖C − Cm‖ should be rigorously controllable. Namely, with the low-rank
decomposition (17) and the mass matrix

G =
[ ∫

∂D0

∫
∂D0

ϕi(x)ϕj(y)dσ(x)dσ(y)
]
i,j

∈ Rn×n

with respect to the ansatz space Vn at hand, we have

CovX(x, y) ≈
m∑
k=1

( n∑
i=1

˜̀
k,iϕi(x)

)( n∑
j=1

˜̀
k,jϕj(y)

)
with ˜̀

k = [˜̀k,i]i = G−1`k.

The best low-rank approximation in L2(∂D0× ∂D0) is given by truncating the spectral decomposi-
tion (15). The computation requires the knowledge of the eigenpairs (ϕi, λi) of the integral operator

(Cu)(x) :=
∫
∂D0

CovX(x, y)u(y)dσ(y), x ∈ ∂D0 (18)

which is a very demanding task. In particular, the decay of the eigenvalues {λk} and thus the rank
m depend heavily on the smoothness of the autocovariance function CovX . Related decay rates have
been proven in [16].

We propose to use the pivoted Cholesky decomposition to compute a low-rank approximation of
CovX as proposed in [10]. It is a purely algebraic approach which is quite simple to implement, see
Algorithm 1. It produces a low-rank approximation to C for any given precision ε > 0 where the
approximation error is rigorously controlled in the trace norm. A rank-m approximation is computed
in O(m2n) operations. Exponential convergence rates in m are proven under the assumption that the
eigenvalues of C exhibit a sufficiently fast exponential decay, see [10]. Nevertheless, numerical exper-
iments show that, in general, the pivoted Cholesky decomposition converges optimally in the sense
that the rank m is uniformly bounded by the number of terms required for the spectral decomposition
of CovX to get the error ε.

5 Computing the coefficients for a low-rank approximation of X

As a result of the pivoted Cholesky decompostion, we obtain a low-rank approximation on the random
field X. Given N smooth real valuated functions fℵ defined on ∂D0, eventually with compact support
on ∂D0 if needed, we consider the domains defined by their boundary

∂Dε(ω) =
{
x+ εX(x, ω)n(x); X ∈ ∂D0

}
, (19)
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Algorithm 1: Pivoted Cholesky decomposition
Data: matrix C = [ci,j ]i,j ∈ Rn×n and error tolerance ε > 0
Result: low-rank approximation Cm =

∑m
i=1 `i`

T
i such that trace(C−Cm) ≤ ε

begin
set m := 1;
set d := diag(C) and error := ‖d‖1;
initialize π := (1, 2, . . . , n);
while error > ε do

set i := arg max{dπj : j = m,m+ 1, . . . , n};
swap πm and πi;
set `m,πm :=

√
dπm ;

for m+ 1 ≤ i ≤ n do

compute `m,πi :=
(
cπm,πi −

m−1∑
j=1

`j,πm`j,πi

)/
`m,πm ;

update dπi := dπi − `m,πm`m,πi ;

compute error :=
n∑

i=m+1

dπi ;

increase m := m+ 1;

end

with

X(x, ω) =
N∑
ℵ=1

αℵ(ω)fℵ(x) (20)

where the αℵ are independent and indentically distributed following the same centered distribution
L of a random variable α. Note that such a model can also be provided by the Karhunen-Loève
expansion. Nevertheless, for the the third order term of the expansion of the variance (see (24)) we
make the assumption that the αℵ are independent and not only decorrelated.

In that case, the expansion coefficients can be very easily computed: the computational cost reduces
to N + 1 resolutions of boundary values problems defined on the same domain so that a single mesh
can be used. This amount doubles to 2N + 2 resolutions in case of general shape functionals where
also an adjoint state has to be computed.

Proposition 5.1 When the random graph has the form (19), one has

E(J(D)) = J(D0) +
ε2

2
E(α2)

N∑
ℵ=1

B(fℵ, fℵ) +O(ε3) (21)

and

var(J(D)) = ε2 E(α2)
N∑
ℵ=1

(L(fℵ))2 + ε3 E(α3)
N∑
ℵ=1

L(fℵ)B(fℵ, fℵ) +O(ε4). (22)

Moreover, if the random variable α is symmetric, it even holds

var(J(D)) = ε2E(α2)
N∑
ℵ=1

(L(fℵ))2 +O(ε4). (23)
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Proof of Proposition 5.1. Note that we give the proof in full details for the generic case of the
Dirichlet energy to simplify notations. This case presents all the difficulties, one has to face.

1. Expansion of the expectation. By linearity, it comes directly

E(L(X)) = L (E(X)) = 0.

Concerning the order two coefficient, a difficulty appears since, in general, the shape Hessian B acting
on normal components of deformations can be split in two parts: first a integral term involving
the square of the normal deformation or of its derivatives and second a non local one involving a
pseudodifferential operator.

Let us explain how to compute it on the significant example of Dirichlet energy. In that case,
according to (2b),

E(B(X,X)) = E
(∫

∂D0

[
∂nu+

1
2
H(∂nu)2

]
X2

)
+ E

(
〈−∂nuX,Λ(−∂nuX)〉H1/2×H−1/2

)
.

We recall that Λ denotes the Dirichlet-to-Neumann map defined via (3). On the one hand, one has
easily by Fubini’s theorem and the choice of αℵ are independent and centered:

E
(∫

∂D0

[
∂nu+

1
2
H(∂nu)2

]
X2

)
=
∫
∂D0

[
∂nu+

1
2
H(∂nu)2

]
E(X2)

= E(α2)
∫
∂D0

[
∂nu+

1
2
H(∂nu)2

] N∑
ℵ=1

f2
ℵ.

On the other hand, due to the linearity of the Dirichlet-to-Neumann map which acts only on the
spatial variable, we observe

Λ
(
∂nu

N∑
ℵ=1

αℵ(ω)fℵ

)
=

N∑
ℵ=1

αℵ(ω)Λ(∂nufℵ).

Hence, it follows likewise by Fubini’s theorem

E
(
〈−∂nuX,Λ(−∂nuX)〉H1/2×H−1/2

)
= E

 N∑
ℵ1=1

N∑
ℵ2=1

αℵ1αℵ2〈∂nu fℵ1 ,Λ(∂nu fℵ2)〉H1/2×H−1/2


= E(α2)

N∑
ℵ=1

〈−∂nu fℵ,Λ(−∂nu fℵ)〉H1/2×H−1/2.

2. Expansion of the variance. We first have

E
(

[L(X)− E(L(X))]2
)

) =
∫
∂D0

∫
∂D0

E(X(x, .)X(y, .))`(x)`(y)dσ(x)dσ(y)

= E(α2)
N∑
ℵ=1

∫
∂D0

∫
∂D0

`(x)`(y)fℵ(x)fℵ(y) dσ(x)dσ(y) = E(α2)
N∑
ℵ=1

(L(fℵ))2.

where we used the notation introduced in (5) and Fubini’s theorem. Second, we have to compute

A = E ([L(X)− E(L(X))] [B(X,X)− E(B(X,X))]) = E(L(X)B(X,X))
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since E(L(X)) = 0. We split the shape Hessian as previously into an integral over the boundary and
the pseudo-differential term so that A = A1 +A2. We explicit the generic case of torsion:

A1 = E

[∫
∂D0

`(x)
N∑
ℵ=1

αℵfℵ(x)dσ(x)

]∫
∂D0

[
∂nu(y) +

1
2
H(y)(∂nu(y))2

][ N∑
ℵ=1

αℵfℵ(y)

]2

dσ(y)

 ,

A2 = E

[∫
∂D0

`(x)
N∑
ℵ=1

αℵfℵ(x)dσ(x)

] N∑
ℵ1=1

N∑
ℵ2=1

αℵ1αℵ2〈∂nufℵ1 ,Λ(∂nufℵ2)〉H1/2×H−1/2

 .

Applying Fubini’s theorem, we obtain after expansion:

A1 =
∫
∂D0

∫
∂D0

`(x)
[
∂nu(y) +

1
2
H(y)(∂nu(y))2

]
×

N∑
ℵ1=1

N∑
ℵ2=1

N∑
ℵ3=1

E(αℵ1αℵ2αℵ3)fℵ1(x)fℵ2(y)fℵ3(y) dσ(x)dσ(y),

A2 =
∫
∂D0

`(x)
N∑
ℵ1=1

N∑
ℵ2=1

N∑
ℵ3=1

E(αℵ1αℵ2αℵ3)fℵ1(x)〈∂nufℵ2 ,Λ(∂nufℵ3)〉H1/2×H−1/2dσ(x).

Since the αℵ are independant, one has

E(αℵ1αℵ2αℵ3) = 0 except if ℵ1 = ℵ2 = ℵ3. (24)

We then arrive at

A1 = E(α3)
N∑
ℵ=1

L(fℵ)
∫
∂D0

[
∂nu(y) +

1
2
H(y)(∂nu(y))2

]2

fℵ(y)2dσ(y);

A2 = E(α3)
N∑
ℵ=1

L(fℵ)〈∂nufℵ,Λ(∂nufℵ)〉H1/2×H−1/2 .

Gathering A1 and A2, we obtain the claimed result. If the random variable α is symmetric, then
E(α3) = 0 and both terms A1 and A2 vanish. �

Finally, using the Bienaymé-Chebychev inequality, we obtain intervals in which the Dirichlet energy
takes its values with a fixed probability. For example, fixing a desired probability p, we get the bounds

P

(
|J(D)− E(J(D))| ≤

√
var(J(D))

1− p

)
≥ p.

Thanks to the asymptotic expansions (21)–(22), we obtain then

P
(
J−ε,p(D) ≤ J(D) ≤ J+

ε,p(D)
)
≥ p (25)

where we have set

J±ε,α(D) = J(D0)± ε√
1− p

√√√√E(α2)
N∑
ℵ=1

(L(fℵ))2

+
ε2

2

(
E(α2)

N∑
ℵ=1

B(fℵ, fℵ)±
E(α3)√

1− p

N∑
ℵ=1

L(fℵ)B(fℵ, fℵ)

)
+O(ε3).
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6 Numerical illustrations

We now present numerical validations of the proposed asymptotic expansions. We will consider two
dimensional cases for the Dirichlet energy and the first eigenvalue of the Dirichlet-Laplace operator.
Numerical resolution of the boundary values problems is made either with the finite elements either
with boundary integral method. We will consider both uniform and Beta distribution. During the
Monte-Carlo simulations, the random generator has been restarted after at most 10 000 samples.

6.1 The Dirichlet energy around disk in dimension two

6.1.1 The random domains

We consider the unit disk in the plane and random perturbations of the type

Dε(ω) =

{
(r, θ) : 0 ≤ r < 1 + εf(θ, ω) and f(θ) =

N∑
ℵ=1

αℵ(ω)fℵ(x)

}
(26)

where the αℵ are i.i.d. In the following computations, we have taken N = 11 and the fℵ are the first
normalized fonctions in the Fourier basis that is

f1 = 1, f2(θ) = cos(θ), f3(θ) = sin(θ), f4(θ) = cos(2θ)/4, f5(θ) = sin(2θ)/4, . . . , f11(θ) = sin(5θ)/25.

Let us present some realisations of such domains with various values of ε and various distributions. In
Figure 1, we present some realisations of such random domains for α following the uniform distribution
on [−1/2, 1/2]: note that the range of α is [−1/2, 1/2].
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Four realisations of the random domain  − epsilon=1/8

(a) ε = 1/8.
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Four realisations of the random domain  − epsilon=1/4

(b) ε = 1/4.

Figure 1: Some realisations of domains according to (26) with the unifom distribution.

In Figure 2, α follows the centered and normalized Beta distribution of parameter (2, 5) in order to
use a non symetric distribution. Note that the range of this distribution is larger (it can take values
greater than 4), so for the same value of the parameter ε the perturbations can be wider for the beta
distribution than for the unifom distribution. Therefore, we will consider a smaller range of value of
epsilon.
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(a) ε = 1/8.
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(b) ε = 1/4.

Figure 2: Some realisations of domains according to (26) with the beta distribution.

6.1.2 Monte-Carlo simulations

To check our expansion, we proceed to simulation with the Monte-Carlo method. For each value of ε
in abcisse on the graphs, we proceed to 4 000 simulations using P1 finite elements over around 2 000
triangles each made with the FREEFEM++ code. The convergence is illustrated in Figure 3. It seems
that a visually correct asymptotic regime is reached for some thousand of simulations.

6.1.3 Comparison with the asymptotic expansions

Finally, we compare with the asymptotic expansions obtained in Proposition 5.1. Let us emphasize
that the coefficients appearing in (5.1) are computed numerically. The first step is to compute the
state equation in the reference domain, then the shape gradient is obtained via the computation of
an integral over the boundary. Finally, the computation of each term B(fℵ, fℵ) requires the solution
of a boundary value problem of the same type than the one solved for the state equation. Therefore,
the computation of these coefficients is cheap since it requires only N + 1 resolutions of a boundary
value problem. The results for both the uniform distribution and the Beta distribution are presented
in Figure 4.

We can also use (25) to obtain bounds of intervals of values taken by the Dirichlet energy. In Figure
5, we have plot both the graphs of the functions J±ε,p and the empirical quantiles. Notice that the
bounds which are obtained through the asymptotic expansions of the expectation and the variance
are better than expected.

Such a nice behavior may depend on the specific choice of Fourier basis, since the shape gradients
and Hessian evaluated at the fℵ decrease fastly as shown by the following computed values:

L(f1) = −0.786069 B(f1, f1) = −2.35621

L(f2) = −1.74702.10−6 B(f2, f2) = −0.392049

L(f4) = 4.71636.10−6 B(f4, f4) = 0.0246288

L(f6) = 3.00416.10−7 B(f6, f6) = 0.0145671

L(f8) = 4.24149.10−8 B(f8, f8) = 0.00767894

L(f10) = −1.48682.10−7 B(f10, f10) = 0.00440313
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Figure 3: Convergence of Monte-Carlo simulations for perturbed disks defined in (26).

6.1.4 With other boundary perturbations

In this second test, we change the type of random perturbations: instead of being decomposed on
Fourier basis, X(ω) is now described by its zero mean and its covariance function. We shall next
consider models with standard covariance kernels, namely Mátern kernels of smoothness class ν.
Specifically, we choose ν = ∞ which yields the Gaussian kernel k∞(x, y) = exp(−|x − y|2/2), we
choose ν = 1/2 which yields the exponential kernel k1/2(x, y) = exp(−|x− y|), and we choose ν = 3/2
which yields the kernel k3/2(x, y) = (1 −

√
3|x − y|) exp(−

√
3|x − y|). The covariance kernels are

discretized by 500 periodic cubic B-splines on an equidistant subdivision of [0, 2π] in accordance with
Subsection 4.3. The pivoted Cholesky decomposition with accuracy 10−6 yields a rank of m = 13 for
k∞, a rank of 83 for k3/2, and a rank of m = 500 for k1/2.

We still compare a Monte-Carlo simulation with the asymptotic expansions derived in this paper
for different values ε ≤ 0.2. For the Monte-Carlo simulation, we assume that X(ω, θ) could be written
as the following truncated Karhunen-Loève type expansion:

X(ω, θ) =
m∑
ℵ=0

αℵ(ω)
√
λℵϕ(θ),

where the random variables are assumed to be i.i.d. and modeled as uniformly distributed in [−
√

3,
√

3].
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Figure 4: Comparison of the Monte-Carlo simulation with the asymptotic expansions for perturbed
disks defined in (26).
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Figure 5: Comparison between asymptotic expansions’ bounds and empirical quantiles for perturbed
disks defined in (26).

Herein, the same accuracy is used as for the pivoted Cholesky decomposition which yields nearly the
same ranks m. The numerical computation of the shape functional, shape gradient and shape Hessian
is now performed by a fast boundary element method as outlined in [6]. The Monte-Carlo method
uses 10 000 samples. As seen in Figures 6, 7, and 8, the asymptotic expansions fit well the behaviour of
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the expectation and variance of the stochastic shape functional under consideration for all covariance
kernels under consideration.
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Figure 6: Expectation and variance of the Dirichlet energy – Gaussian covariance kernel k∞.
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Figure 7: Expectation and variance of the Dirichlet energy – Mátern covariance kernel k3/2.

6.2 The first eigenvalue of the Laplace Dirichlet operator in a perforated ellipse

To consider another output function, we present simulations for the first eigenvalue of the Dirichlet
Laplace operator. Again, the related shape gradient and Hessian are obtained thanks to Lemma 2.2.
Here the reference domain D is an ellipse of semi axis 4 and 3 where a disk centered of the center of the
ellipse and of radius 1 are been removed. Random perturbations are applied to the disk’s boundary.
As in the first example, we take

f(θ) =
N∑
ℵ=1

αℵ(ω)fℵ(x)

where the αℵ are i.i.d. In the following computations, we have taken N = 21 and the fℵ are the
first normalized fonctions in the Fourier basis. We emphasize in Figure 9 the local character of the
approximation.
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Figure 8: Expectation and variance of the Dirichlet energy – Exponential covariance kernel k1/2.
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Figure 9: Comparison between the asymptotic expansions and the Monte-Carlo simulation for the
eigenvalue problem – Uniform distribution.
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