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SOLUTION OF THE POISSON EQUATION WITH A THIN
LAYER OF RANDOM THICKNESS

M. DAMBRINE, I. GREFF, H. HARBRECHT, AND B. PUIG

Abstract. The present article is dedicated to the numerical solution of the Pois-

son equation with a thin layer of different conductivity and of random thickness.

We change the boundary condition to transform the boundary value problem

given on a random domain into a boundary value problem on a fixed domain.

The randomness is then contained in the coefficients of the new boundary condi-

tion. This thin coating can be expressed by a random Robin boundary condition

which yields a third order accurate solution in the scale parameter of the layer’s

thickness. Based on the decay of the Karhunen-Loève expansion of the random

fluctuations of the layer’s thickness, we prove rates of decay of the derivatives of

the random solution with respect to the stochastic variable. They are robust in

the thickness parameter and enable the use of the quasi Monte-Carlo method or of

the anisotropic stochastic collocation method for the computation of the bound-

ary value problem’s random solution. Numerical results validate our theoretical

findings.

1. Introduction

1.1. Problem formulation. Many practical problems in engineering lead to bound-

ary value problems for an unknown function. In this article, we consider uncertainties

in the geometric definition of the domain motivated by tolerances in the fabrication

processes or in a damaged boundary during the life of a mechanical device. Man-

ufactured or damaged devices are close to a nominal geometry but differ of course

from its mathematical definition. Since we are motivated by tolerances, we can make

the crucial assumption of the smallness of the random perturbations. By identifying

domains with their boundary, domains close to the nominal domain D can be seen

as a perturbation in the normal direction of the nominal boundary ∂D.

The most common approach to study boundary value problems with stochastic

inputs is the Monte-Carlo method, see e.g. [19] and the references therein. In many

situations, this approach is easy to implement since it only requires a sufficiently

large number of samples. However, for boundary value problems on random domains,

each sample means a new domain and thus a new mesh, the building of new mass

Key words and phrases. Thin layer equation, random boundary value problems, random

domains.
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and stiffness matrices, etc. All these steps are mandatory to compute the quantity

of interest. Therefore, the Monte-Carlo method is extremely costly and not so easy

to implement in our context. This article is a contribution to the development of a

cheap method to solve boundary values problem in random domains.

If one considers general deformations without assuming the smallness of the pertur-

bation, one has to mention the work of Canuto and Kozubek [6] based on a fictitious

domains approach and the work of Xiu and Tartakovsky [21] based on a mapping

point of view, see also [7, 12] for related regularity results. In the same context of

small random perturbations around a given domain, one has to mention the work of

Harbrecht, Schneider and Schwab [14] based on the use of shape derivatives. Since

shape derivatives are in general hard to compute, we will propose here an alternative

approach based on approximated boundary conditions.

1.2. Geometrical setting. Let us make precise the geometrical situation: a given

C∞-domain D is surrounded by a thin coating layer Lε. The thickness h of the layer

is a smooth, real-valued function which is defined on ∂D. We make the assumptions

that the layer coats D everywhere and that its characteristic size is a small parameter

ε > 0 so that the layer Lε is described as:

Lε = {x + tn(x) : 0 ≤ t < εh(x), x ∈ ∂D}.

Moreover, there exist nonnegative real numbers 0 < hmin ≤ hmax such that

hmin ≤ h(x) ≤ hmax for all x ∈ ∂D.

D Lε

Dε

Figure 1.1. The geometrical setting – the domain D and the layer Lε.

Now, we are interested in the numerical resolution of the following model boundary

value problem posed in Dε = D ∪ Lε: for a given function f ∈ L2(Dε), find the
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function u such that

(1.1)

{
−div(σ∇u) = f in Dε,

u = 0 on ∂Dε,

where the conductivity σ is piecewise constant, taking the value σ0 in D and 1 in

the layer Lε. This change in conductivity is motivated by the possibility to take into

account surface treatments or surface damage.

1.3. Asymptotic analysis. In order to efficiently compute a numerical approxima-

tion u|D of the solution to (1.1), a classical idea is to introduce impedance boundary

conditions (see [4, 10], and derived works) to avoid the meshing of the thin layer.

The strategy is thus the following: work only in D and search for a boundary con-

dition on ∂D so that the solution of the new boundary value problem defined in D

(that is without the thin layer) is a good approximation of the restriction to D of

the solution of the real boundary value problem set in Dε.

A heuristic way to derive such a condition is as follows. Consider a point x on ∂D.

The thickness εh being small, Taylor’s formula provides

u(x + εh(x)n(x)) ≈ u(x) + εh(x)∂nu(x)

up to a second order error. Since the point x + εh(x)n(x) lays on the boundary

∂Dε, we get u(x + εh(x)n(x)) = 0. Hence, a natural choice is to solve the Robin

boundary value problem:

(1.2)

{
−σ0∆u[1] = f in D,

u[1] + εhσ0∂nu
[1] = 0 on ∂D.

It is well-known in the literature [1, 5, 18, 20] that indeed this choice is pertinent.

There is a constant C, independent of ε, such that

(1.3) ‖u− u[1]‖H1(D) ≤ Cε2.

A more precise but less intuitive approximated boundary value problem is

(1.4)


−σ0∆u[2] = f in D,(

1 +
κhε

2

)
u[2] + εσ0h∂nu

[2] =
ε2h2

2
f on ∂D.

Of course, this approximation obviously needs additional regularity of the right hand

side f to be well defined. This will be specified later in Subsection 2.2. Then, for the

solution of this boundary value problem, there is another constant C, independent

of ε, such that

(1.5) ‖u− u[2]‖H1(D) ≤ Cε3.
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Proving the error estimates (1.3) and (1.5) requires a careful asymptotic analysis of

problem (1.1) as already performed in the previously cited references. Note that the

method has been also used for other boundary value conditions and other differential

operators. Since we will consider families of random layers, a crucial point for our

work is the dependency of the constant C in terms of the thickness h. Since this

point is not specified in the aforementioned literature, we will present it in Section

2. Our result is that the constants C appearing in (1.3) and (1.5) depend only

on the C1(∂D)-norm of h. The proof of this crucial point requires to elaborate on

asymptotic expansions of the solution of (1.1) in Dε.

1.4. Layers of random thickness. Once the uniform error estimates (1.3) and

(1.5) are obtained, we shall consider the situation that the layer’s thickness h is

random. To that end, let (Ω,Σ,P) be a complete probability space and assume that

h : ∂D × Ω→ R is a process which satisfies the following assumptions:

(UB) Uniform boundedness: there exist two nonnegative real numbers hmin ≤ hmax

and q < 1 such that the random field

h(x, ω) = h(x) + h̃(x, ω) with h(x) = E
(
h(x, ω)

)
fulfills

(1.6) 0 < hmin ≤ h(x) ≤ hmax and |h̃(x, ω)| ≤ q|h(x)|

for all x ∈ D and for P-almost all ω ∈ Ω.

(UR) Uniform regularity: for all ω in Ω, the function x 7→ h(x, ω) is C1, that is,

the stochastic process h belongs to the Bochner space L2
P(Ω, C1(∂D)).

Let us recall for the reader’s convenience the definition of Bochner spaces. Consider

a real number p ≥ 1. Then, for a Banach space X, the Bochner space LpP(Ω,X)

consists of all functions v : Ω→ X whose norm

‖v‖Lp
P(Ω,X) :=


(∫

Ω

‖v(·,y)‖pX dP(ω)

)1/p

, p <∞,

ess sup
ω∈Ω

‖v(·, ω)‖X, p =∞,

is finite. If p = 2 and X is a Hilbert space, then the Bochner space is isomorphic to

the tensor product space L2
P(Ω)⊗ X.

In the sequel, we tacitly assume that the right hand side f is defined in a sufficiently

large hold-all D such that f ∈ L2(Dε(ω)) holds for P-almost all ω ∈ Ω. We then

continue with the second order approximation of the solution to the thin layer equa-

tion. The reason for this is that it is more accurate without being computationally
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much more demanding. We shall thus finally consider the following elliptic partial

differential equation with random Robin boundary condition:

−σ0∆u[2](ω) = f in D

∂nu
[2](ω) +

[
1

εσ0h(ω)
+

κ

2σ0

]
u[2](ω) =

εh(ω)

2σ0

f on ∂D

 P-a.e. ω ∈ Ω.

1.5. Road map. The rest of this article is organized as follows. As mentioned

above, the asymptotic analysis for the thin layer is performed in Section 2. Then,

in Section 3, we investigate the existence of solutions to this Robin boundary value

problem in case of a layer of random thickness and estimate the systematic error

committed on the expectation and the variance by this solution. In order to solve

the random Robin problem, we assume in Section 4 that the random fluctuations

are given in the form of a Karhunen-Loève expansion. Our main result is then

Theorem 4.2 which gives precise estimates on the derivatives of the random solution

with respect to the stochastic variable. These estimates allow the use of quasi Monte-

Carlo methods and anisotropic collocation schemes with convergence rates that are

independent of the truncation length of the Karhunen-Loève expansion. Numerical

experiments are performed in Section 5 to show the feasibility of our approach

and to validate the theoretical findings. The article’s conclusion is finally drawn in

Section 6.

2. Approximated boundary conditions for slowly varying layers.

2.1. Asymptotic expansion in D and in the layer Lε. Let us introduce the

notation and needed objects. For ease of notation, we deal with the bidimensional

case and assume that D is simply connected so that its boundary has a parametriza-

tion by the arclength s 7→ γ(s) defined on the segment [0, |∂D|] where |∂D| is the

perimeter of D. At the point γ(s), the unit tangent vector t(s) is γ′(s), the curva-

ture κ(s) is defined by the equality n′(s) = κ(s)t(s). Within these notations, the

boundary of D is parametrized by s 7→ γh(s) = γ(s) + εh(s)n(s). Of course, this

parametrization is not by the arclength and the unit tangential and outward normal

field are

th(s) =
(1 + εhκ)t(s) + εh′n(s)√

(1 + εhκ)2 + (εh′)2
and nh(s) =

(1 + εhκ)n(s)− εh′t(s)√
(1 + εhκ)2 + (εh′)2

.

We drop the dependency in s for κ and h for ease of notation. Let χ be the cut

locus of ∂D. For a function u defined in Dε, we consider ũ : [0, |∂D|] × (−χ, χ) be

defined by ũ(s, t) = u(x). In accordance with [5], the gradient and Laplace operator
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are expressed in the curvilinear coordinates as:

∇ =
1

1 + tκ

∂

∂s
t(s) +

∂

∂t
n(s),

∆ =
1

1 + tκ

∂

∂s

(
1

1 + tκ

∂

∂s

)
+

κ

1 + tκ

∂

∂t
+
∂2

∂t2
.

The usual strategy relies on an asymptotic expansion of u with respect to the scaling

factor ε with a double ansatz one valid in D and the other in the layer Lε. Namely,

we postulate that there are real-valued functions ukint defined on D and ukext defined

on [0, |∂D|]× [0, 1] such that

(2.7)


u(x) = uint(x) =

∞∑
k=0

εkukint(x) in D,

u(x) = uext(x) =
∞∑
k=0

εkukext

(
s,

t

εh

)
in Lε.

With respect to previous works, the anisotropy in the second curvilinear coordinate

takes the variation of the thickness into account. With these ansätze at hand, we

can reformulate the boundary value problem (1.1) as a transmission problem:

(2.8)


−σ0∆uint = f in D,

−∆uext = f in Lε,

uint = uext on ∂Lε,

σ0∂nuint = ∂nuext on ∂Lε.

In accordance with [5], the equation in the layer Lε is

(2.9) Lũ = −(1 + tκ) f with L = ∂s

(
1

1 + tκ
∂s

)
+ κ∂t + (1 + tκ)∂2

t .

In order to rewrite this equation with respect to anisotropic, curvilinear coordinates

(s, τ) = (s, t/(εh)), corresponding to the ansätze (2.7), we compute:

∂t =
1

εh
∂τ , κ∂t =

κ

εh
∂τ ,

∂2
t =

1

ε2h2
∂2
τ , (1 + tκ)∂2

t =
1

ε2h2
∂2
τ +

κτ

εh
∂2
τ ,

∂s

(
1

1 + tκ
∂s

)
=
∑
n≥0

(−1)nεnτnκnhn∂2
s −

∑
n≥1

(−1)nεnτnn(κ′κn−1hn + κnh′hn−1)∂s,

(1 + tκ)f(., t) = (1 + εhκτ)f(., εhτ).

When f is smooth in the layer, the right hand side in the layer can be expanded by

a Taylor expansion

(1 + εhκτ)f(., εhτ) =
N∑
n=0

εnfn(., τ) +O(εN+1).
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In particular, one has simply f0(s, τ) = f(s, 0). As a consequence, the operator L
can be split in powers of the small parameter ε as L =

∑
n≥−2 ε

nLn with

L−2 =
1

h2
∂2
τ , L−1 =

κ

h

(
∂τ + τ∂2

τ

)
, L0 = ∂2

s ,

and, for n ≥ 1, with

Ln = (−1)nτn
[
κnhn∂2

s − n(κ′κn−1hn + κnh′hn−1)∂s
]
.

Plugging in the ansätze (2.7), we obtain first

Luext = ε−2 1

h2
∂2
τu

0
ext + ε−1

(
1

h2
∂2
τu

1
ext +

κ

h

(
∂τu

0
ext + τ∂2

τu
0
ext

))
+
∑
n≥0

εn

(
1

h2
∂2
τu

n+2
ext +

κ

h

(
∂τu

n+1
ext + τ∂2

τu
n+1
ext

)
+

n∑
k=0

Ln−kukext

)
and then, in view of (2.9), the sequence of differential equations for the functions

ukext:

∂2
τu

0
ext = 0,

∂2
τu

1
ext = −κh

(
∂τu

0
ext + τ∂2

τu
0
ext

)
,

∂2
τu

n+2
ext = −

(
κh
(
∂τu

n+1
ext + τ∂2

τu
n+1
ext

)
+ h2

n∑
k=0

Ln−kukext

)
− h2fn for all n ≥ 0.

The boundary conditions are given by the transmission conditions on ∂D stated in

(2.8):

σ0∂nuint = ∂tuext =
1

εh
∂τuext ⇒ σ0∂nu

k−1
int =

1

h
∂τu

k
ext

uint = uext ⇒ ukint = ukext

The resolution is then iterative. Let us make the first terms explicit.

Order n = 0. It comes that u0
int is the solution of −∆u = f in H1

0(D). Thus, the first

function u0
ext should be affine in the variable τ , taking the value 0 for τ = 0 and

τ = 1. Hence, it follows u0
ext = 0 and in particular

u0
ext = 0 on ∂D.

Order n = 1. The equations for u1
ext are

∂2
τu

1
ext = −κh

(
∂τu

0
ext + τ∂2

τu
0
ext

)
= 0,

∂τu
1
ext(s, 0) = σ0h∂nu

0
int(s, 0),

u1
ext(s, 1) = 0.
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Consequently, u1
ext is the affine (in τ) function u1

ext(s, τ) = (τ − 1)σ0h∂nu
0
int(s, 0) so

that

u1
ext = −σ0h∂nu

0
int on ∂D.

Thus, u1
int solves ∆u1

int = 0 with u1
int = u1

ext = −σ0h∂nu
0
int on ∂D.

Order n = 2. Since u0
ext = 0 and u1

ext is affine in τ , the equations for u2
ext are

∂2
τu

2
ext = −κh∂τu1

ext − h2f0 = −κh2σ0∂nu
0
int(s, 0)− h2f0,

∂τu
2
ext(s, 0) = σ0h∂nu

1
int(s, 0),

u2
ext(s, 1) = 0.

These equations for u2
ext can still be solved analytically. Now, since f0(s, ξ) = f(s, 0)

is independent of τ , the second order primitive integral of −f0(s, τ) which vanishes

at 1 and which has a derivative that vanishes at 0 is f(s, 0)(1 − τ 2)/2. Namely, it

holds

u2
ext(s, τ) =

1− τ 2

2
κh2σ0∂nu

0
int(s, 0) + (τ − 1)σ0h∂nu

1
int(s, 0) + f(s, 0)

1− τ 2

2
.

Therefore, we obtain the following value of u2
ext = u2

int on ∂D:

u2
ext =

1

2
κh2σ0∂nu

0
int − σ0h∂nu

1
int +

f(s, 0)

2
on ∂D.

2.2. Derivation of the approximate boundary conditions. Let us now de-

rive the first and second order approximate boundary conditions. To that end, we

introduce the partial sums u
[1]
int = u0

int + εu1
int and u

[2]
int = u0

int + εu1
int + ε2u2

int. By

construction, we check that −σ0∆u
[i]
int = f in D for i = 1, 2.

Order n = 1. On ∂D, one has u
[1]
int = −εσ0h∂nu

0
int and it follows

u
[1]
int + εσ0h∂nu

[1]
int = ε2σ0h∂nu

1
int.

We therefore introduce v
[1]
ε as the solution of the following Robin boundary value

problem:

−σ0∆v = f in D,

v + εσ0h∂nv = 0 on ∂D.

Notice that u
[1]
int and v

[1]
ε solve two distinct boundary value problems differing from

a second order term (in ε) in the boundary condition.
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Order n = 2. On the boundary ∂D, one has

u
[2]
int = −εσ0h∂nu

0
int + ε2

(
1

2
κh2σ0∂nu

0
int − σ0h∂nu

1
int +

h2

2
f

)
= −εσ0h

(
1− κhε

2

)
∂nu

0
int − ε2σ0h

(
1− κhε

2

)
∂nu

1
int

+
ε2h2

2
f − κε3

2
σ0h

2∂nu
1
int.

Therefore, using the Taylor expansion (1− x)−1 = 1 + x+O(x2), we obtain(
1 +

κhε

2

)
u

[2]
int + εσ0h∂nu

[2]
int −

ε2h2

2
f = O(ε3).

We therefore introduce v
[2]
ε the solution of the Robin boundary value problem (1.4)

that we recall for convenience:

−σ0∆v = f in D,(
1 +

κhε

2

)
v + εσ0h∂nv =

ε2h2

2
f on ∂D.

Notice that u
[2]
int and v

[2]
ε solve two distinct boundary value problems differing from

a third order term in the boundary condition.

2.3. Error estimates and dependency in the layer thickness ε. We proceed

in two steps: first, to obtain an error estimate for the remainders in the asymptotic

expansion of uε then in a second step, to obtain an asymptotic expansion of u
[i]
int for

i = 1, 2. Both steps are adopted from the classical proofs in the case of constant

thickness layers. We therefore explain the main lines of the proof without entering

into the details.

To estimate the truncation error for uε, the first step is to write a precise error

estimate for the remainder rNε in the asymptotic expansion of uext and uint, defined

in D and Lε as

rNε,int = uε −
N∑
k=0

εkukint and rNε,ext = uε −
N∑
k=0

εkukext.

These remainders satisfy the boundary values problem:

σ0∆rNε,int = 0 in D,

∆rNε,ext = O(εN−1) in Lε,

σ0∂nr
N
ε,int = ∂nr

N
ε,ext +O(εN) on ∂D,

rNε,int = rNε,ext on ∂D,

rNε,ext = 0 on ∂Dε.
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Since, for ε ≤ ε0, the family Dε is uniformly contained in a fixed domain, a uniform

Poincaré inequality holds in H1
0(Dε) which provides the uniform coercivity of the

bilinear forms aε defined on H1
0(Dε) by

aε(u, v) = σ0

∫
D

∇u∇v dx +

∫
Lε

∇u∇v dx.

Now, a classical a priori estimate provides: there is constant C independent of ε ≤ ε0

such that ‖rNε ‖H1
0(Dε) ≤ CεN−1 and the usual trick of spitting the remainder of order

N as rNε = rN+2
ε + εN+1uN+1 + εN+2uN+2 provides in fact ‖rNε ‖H1

0(Dε) ≤ CεN . We

then immediately get

(2.10) ‖rNε,int‖H1
0(D) ≤ CεN .

Of course, this constant C depends of the truncation order N .

Let us now consider the Robin boundary problems for u
[i]
int for i = 1, 2. We compute

asymptotic expansions of u
[i]
int. Thanks to the ansatz

u
[i]
int =

∞∑
k=0

εku
[i]
int,k,

we obtain recursion formulae that provide the same i first order terms: u
[i]
int,k = ukint

for k ≤ i. The previous error estimate allows to conclude that∥∥uint − u
[i]
int

∥∥
H1(D)

≤ Cεi+1 for i = 1, 2.

Notice that these errors estimates are optimal since the next terms differ.

3. Randomly varying thin layers and random Robin boundary

condition

We consider the following elliptic partial differential equation with random Robin

boundary condition:

(3.11)

−σ0∆u[2](ω) = f in D

∂nu
[2](ω) +

1

εσ0

[
1

h(ω)
+
ε

2
κ

]
u[2](ω) =

εh(ω)

2σ0

f on ∂D

 P-a.e. ω ∈ Ω.

To obtain the variational formulation, we test (3.11) with an arbitrary test function

from L2
P(Ω,H1(D)): seek u[2] ∈ L2

P(Ω,H1(D)) such that

(3.12)∫
Ω

{
σ0

∫
D

∇u[2](ω)∇v(ω) dx +
1

εσ0

∫
∂D

[
1

h(ω)
+
ε

2
κ

]
u[2](ω)v(ω) dσ

}
dP(ω)

=

∫
Ω

{∫
D

fv(ω) dx +

∫
∂D

ε

2σ0

fv(ω) dσ

}
dP(ω)

holds for all v ∈ L2
P(Ω,H1(D)).
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Theorem 3.1. Under the conditions (1.6), there exists a unique solution u[2] in

L2
P(Ω,H1(D)) to the variational formulation (3.12) provided that ε is so small such

that

(3.13) |εκ(x)| ≤ 1

hmax

for all x ∈ ∂D.

In particular, introducing the spatial energy norm

(3.14) |||u(ω)||| :=
√
σ0|u(ω)|2H1(D) +

1

εσ0

‖γ(u(ω))‖2
L2(∂D)

where γ : H1(D)→ L2(∂D) is the trace operator, we have the stability estimate

(3.15)

√∫
Ω

|||u(ω)|||2 dP ≤ C
{
‖f‖H̃−1(D) + ‖γ(f)‖L2(∂D)

}
uniformly as ε tends to 0, where ‖·‖H̃−1(D) denotes as usual the dual norm to ‖·‖H1(D).

Proof. By introducing the bilinear form

a : L2
P(Ω,H1(D))× L2

P(Ω,H1(D))→ R,

a(u, v) :=

∫
Ω

{
σ0

∫
D

∇u∇v dx +
1

εσ0

∫
∂D

[
1

h(ω)
+
ε

2
κ

]
uv dσ

}
dP(ω)

and the linear form

` : L2
P(Ω,H1(D))→ R, `(v) :=

∫
Ω

[ ∫
D

fv dx +

∫
∂D

εh(ω)

2σ0

fv dσ

]
dP(ω),

the variational formulation (3.12) is equivalent to the problem:

(3.16)
seek u[2] ∈ L2

P(Ω,H1(D)) such that

a(u[2], v) = `(v) for all v ∈ L2
P(Ω,H1(D)).

In view of (1.6), it holds that

0 < (1− q)hmin ≤ (1− q)h(x) ≤ h(x, ω) ≤ (1 + q)h(x) ≤ (1 + q)hmax

and hence with (3.13) that

(3.17)
1

2(1 + q)hmax

≤
1 + ε

2
κ(x)h(x, ω)

h(x, ω)
≤ 3

2(1− q)hmin

for all x ∈ D and for P-almost all ω ∈ Ω. Thus, the bilinear form a(·, ·) is uniformly

elliptic and bounded:

min

{
1,

1

2(1 + q)hmax

}∫
Ω

|||u(ω)|||2 dP(ω) ≤ a(u, u),

|a(u, v)| ≤ max

{
1,

3

2(1− q)hmin

}√∫
Ω

|||u(ω)|||2 dP(ω)

√∫
Ω

|||v(ω)|||2 dP(ω).



12 M. DAMBRINE, I. GREFF, H. HARBRECHT, AND B. PUIG

In addition, the linear form `(·) satisfies

|`(v)| ≤ ‖f‖H̃−1(D)

√∫
Ω

‖v(ω)‖2
H1(D) dP(ω)

+
ε

2σ0

(1 + q)hmax‖γ(f)‖L2(∂D)

√∫
Ω

‖γ(v(ω))‖2
L2(∂D) dP(ω)

provided that f ∈ L2(D) ∩ L2(∂D). Since the energy norm (3.14) is equivalent to

the H1(D)-norm with

cmin

{
√
σ0,

1
√
εσ0

}
‖u(ω)‖H1(Ω) ≤ |||u(ω)||| ≤ cmax

{
√
σ0,

1
√
εσ0

}
‖u(ω)‖H1(Ω),

we can set

cf :=
1

c
max

{
1
√
σ0

,
√
εσ0

}
‖f‖H̃−1(D) +

ε3/2

2
√
σ0

(1 + q)hmax‖γ(f)‖L2(∂D) <∞

to arrive at the continuity of the linear form `(·):

|`(v)| ≤ cf

√∫
Ω

|||v(ω)|||2 dP(ω).

Herein, the constant cf does not depend on the layer’s thickness ε any more provided

that ε ≤ ε0. According to the theorem of Lax-Milgram, we conclude thus the desired

result. �

This theorem implies the well-posedness of the thin layer equation with random

thickness. In particular, as an immediate consequence of our analysis in Subsec-

tion 2.3, we conclude that the random solution u[2] ∈ L2
P(Ω,H1(D)) of (3.12) satisfies

the error estimates

(3.18) ‖u− u[2]‖L2
P(Ω,H1(D)) ≤ Cε3.

Therefore, we derive the following proposition.

Proposition 3.2. The random solution u[2] ∈ L2
P(Ω,H1(D)) satisfies the error es-

timates

‖E(u)− E(u[2])‖H1(D) ≤ Cε3, ‖V(u)− V(u[2])‖W1,1(D) ≤ Cε4.

Proof. The first assertion follows by taking the expectation in the estimate (3.18).

For the second assertion, one has to consider the difference of the covariances

Cov(u)(x,x′) = E
([
u(x, ω)− E(u(x, ω))

][
u(x′, ω)− E(u(x′, ω))

])
,

Cov(u[2])(x,x′) = E
([
u[2](x, ω)− E(u[2](x, ω))

][
u[2](x′, ω)− E(u[2](x′, ω))

])
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in the space H1
mix(D ×D) := H1(D)⊗ H1(D). Due to

u[2](ω)− E(u[2](ω)) =
[
u[2](ω)− u(ω)

]
+
[
u(ω)− E(u(ω))

]
+
[
E
(
u(ω)− u[2](ω)

)]
,

we find

‖Cov(u)− Cov(u[2])‖H1
mix(D×D)

≤
∥∥∥E([u[2](ω)− u(ω)

]
⊗
[
u[2](ω)− u(ω)

])∥∥∥
H1

mix(D×D)

+ 2
∥∥∥E([u[2](ω)− u(ω)

]
⊗
[
u(ω)− E(u(ω))

])∥∥∥
H1

mix(D×D)

+ 3
∥∥∥E(u[2](ω)− u(ω)

)
⊗ E

(
u[2](ω)− u(ω)

)∥∥∥
H1

mix(D×D)
.

By using the fact that the first term and the last term on the right hand side of this

estimate are of order O(ε6). The second term is of order O(ε4) since we only know

that ‖u(ω)− E(u(ω))‖H1(D) = O(ε) which follows by a linearization in terms of the

local shape derivative, see [14] for the details. Hence, we arrive at

‖Cov(u)− Cov(u[2])‖H1
mix(D×D) ≤ Cε4.

Taking the trace x = x′ gives finally the desired result. �

4. Regularity of the random solution

For ease of notation, we will drop the suffix of the solution u[2], i.e., we will denote the

solution to (4.21) only by u. Moreover, we shall assume that the random fluctuations

h̃(ω) are given by a possibly infinite Karhunen-Loève expansion, that is

(4.19) h̃(x, ω) =
m∑
k=1

hk(x)Yk(ω)

where the coefficient functions {hk(x)} are pairwise orthonormal in L2(D) and the

random variables {Yk(ω)} are assumed to be independently and uniformly dis-

tributed in [−1/2, 1/2]. Although a finite Karhunen-Loève expansion is assumed

here, we shall derive estimates which are independent of the truncation length m.

This means, the situation of m → ∞ shall be covered by the following theory. To

that end, we have to assume that

(4.20) γk := ‖hk‖L∞(D) <∞ for all k ∈ {1, 2, . . . ,m}

and that the sequence {γk} is always summable as m → ∞, i.e.,
∑m

k=1 γk ≤ cγ
independently of m.

The assumption that the random variables {Yk(ω)}k are stochastically independent

implies that the pushforward measure PY := P◦Y−1 with respect to the measurable
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mapping

Y : Ω→ � := [−1/2, 1/2]m, ω 7→ Y(ω) :=
(
Y1(ω), . . . , Ym(ω)

)
is given by the joint density function 1. With this representation at hand, we can

reformulate the stochastic problem (3.11) as a parametric, deterministic problem. To

that end, we replace the space L2
P(Ω) by L2(�) and substitute the random variables

Yk by the coordinates yk ∈ [−1/2, 1/2]. Then, we have to seek u ∈ L2(�,H1(D))

such that

(4.21)

∫
�

{
σ0

∫
D

∇u(x,y)∇v(x,y) dx

+
1

εσ0

∫
∂D

[
1

h(x,y)
+
ε

2
κ(x)

]
u(x,y)v(x,y) dσx

}
dy

=

∫
�

{∫
D

f(x)v(x,y) dx +

∫
∂D

εh(x,y)

2σ0

f(x) dσx

}
dy

holds for all v ∈ L2(�,H1(D)). Herein, the function h(x,y) is affine in the random

variable y:

(4.22) h(x,y) = h(x) +
∞∑
k=1

hk(x)yk with h(x) := E (h(x)) .

The solvability condition (1.6) is equivalent to

(4.23) 0 < hmin ≤ h(x) ≤ hmax and |h̃(x,y)| ≤ qh(x) for some 0 ≤ q < 1

for all x ∈ D and y ∈ �.

The next lemma is concerned with the decay of the derivatives of the function

(4.24) g(x,y) = g(x) + g̃(x,y) :=
1

h(x,y)
+
ε

2
κ(x)

with

(4.25) g(x) :=
1

h(x)
+
ε

2
κ(x) 6= E

(
g(x,y)

)
with respect to the random variable y.

Lemma 4.1. Let (3.13), (4.20), (4.22), and (4.23) hold. Then, the derivatives of

g(y) satisfy

‖∂αy g(y)‖L∞(D) ≤
|α|!

((1− q)hmin)|α|+1
γα

for all α ∈ Nm and for all y ∈ �. Here, γα has to be understood as the product∏m
k=1 γ

αk
k .
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Proof. Due to (4.22), we conclude

(4.26) ∂mykh(x,y) =

hk(x), if m = 1,

0, if m > 1.

It thus follows by the chain rule that

∂αy g(x,y) = (−1)|α||α|!
∏m

k=1(hk(x))αk

(h(x,y))|α|+1
for all α ∈ Nm.

Hence, because of

h(x,y) ≥ (1− q)h(x) ≥ (1− q)hmin > 0

for all x ∈ D and for all y ∈ �, cf. (4.23), we derive the assertion with (3.13) and

(4.20) for all α ∈ Nm:

‖∂αy g(y)‖L∞(D) ≤ |α|!
∏m

k=1 ‖hk‖
αk

L∞(D)

((1− q)hmin)|α|+1
=

|α|!
((1− q)hmin)|α|+1

γα.

�

With the help of this lemma, we can prove the main theorem in this section which

provides estimates on the derivatives of the random solution with respect to the

stochastic variable. These estimates are robust in the scale parameter of the layer’s

thickness and show the analytic dependence of the random solution on the stochastic

variable y.

Theorem 4.2. Under the assumptions of Lemma 4.1, the derivatives of the solution

u ∈ L2(�,H1(D)) to (4.21) satisfy the pointwise estimate

(4.27) |||∂αy u(y)||| ≤ cf |α|!
(

cu
(1− q)hmin

)|α|
γα

for all y ∈ � and α ∈ Nm. Herein, the constant cf depends only on ‖f‖H̃−1(D),

‖γ(f)‖L2(∂D) and σ0, but not on the layer thickness ε, while the constant cu is given

by

cu = 2 max

{
1

(1− q)hmin

,
2(1 + q)hmax

(1− q)hmin

}
≥ 2.

Proof. For |α| = 0, the assertion follows immediately from Theorem 3.1. For |α| > 0,

we shall have a look at the parametrized problem (4.21) which, for given y ∈ �,

implies the identity

σ0

∫
D

∇u(y)∇v dx +
1

εσ0

∫
∂D

g(y)u(y)v dσ =

∫
D

fv dx +
ε

2σ0

∫
∂D

h(y)fv dσ
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for all v ∈ H1(D), where the function g is given as in (4.24) and (4.25). Thus, in view

of the Leibniz rule, differentiation with respect to y on both sides of this equality

leads

(4.28)

σ0

∫
D

∇∂αy u(y)∇v dx +
1

εσ0

∫
∂D

∑
α′≤α

(
α

α′

)
∂α−α

′

y g(y)∂α
′

y u(y)v dσ

=
ε

2σ0

∫
∂D

∂αy h(y)fv dσ.

Here, due to (4.26), the term on the right hand side vanishes if |α| > 1. Hence, we

shall first consider the case |α| = 1 where we obtain

σ0

∫
D

∇∂yku(y)∇v dx +
1

εσ0

∫
∂D

g(y)∂yku(y)v dσ

= − 1

εσ0

∫
∂D

∂ykg(y)u(y)v dσ +
ε

2σ0

∫
∂D

hkfv dσ.

In view of (3.14) and (3.17), the special choice v = ∂yku(y) yields

min

{
1,

1

2(1 + q)hmax

}
|||∂yku(y)|||2

= − 1

εσ0

∫
∂D

∂ykg(y)u(y)∂yku(y) dσ +
ε

2σ0

∫
∂D

hkf∂yku(y) dσ

≤ ‖∂ykg(y)‖L∞(∂D)|||u(y)||||||∂yku(y)|||+ ε3/2

2
√
σ0

‖hk‖L∞(∂D)‖γ(f)‖L2(∂D)|||∂yku(y)|||.

By possibly increasing cf , this leads to the assertion in the case |α| = 1:

|||∂yku(y)||| ≤ cu
2(1− q)hmin

γk|||u(y)|||+ ε3/2

2
√
σ0

max{1, 2(1 + q)hmax}γk‖γ(f)‖L2(∂D)

≤ cf
cu

(1− q)hmin

γk.

Finally, we consider the case of arbitrary multiindices |α| > 1 where we rewrite

(4.28) in accordance with

σ0

∫
D

∇∂αy u(y)∇v dx +
1

εσ0

∫
∂D

g(y)∂αy u(y)v dσ

= − 1

εσ0

∫
∂D

∑
α 6=α′≤α

(
α

α′

)
∂α−α

′

y g(y)∂α
′

y u(y)v dσ.
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We use again (3.14), (3.17) and the special choice v = ∂αy u(y) to conclude

min

{
1,

1

2(1 + q)hmax

}
|||∂αy u(y)|||2

≤ − 1

εσ0

∑
α 6=α′≤α

(
α

α′

)∫
∂D

∂α−α
′

y g(y)∂α
′

y u(y)∂αy u(y) dσ

≤
∑

α 6=α′≤α

(
α

α′

)
‖∂α−α′y g(y)‖L∞(∂D)|||∂α

′

y u(y)||||||∂αy u(y)|||,

which means that

|||∂αy u(y)||| ≤ max{1, 2(1 + q)hmax}
∑

α 6=α′≤α

(
α

α′

)
‖∂α−α′y g(y)‖L∞(Γ)|||∂α

′

y u(y)|||.

Inserting the result of Lemma 4.1 on the decay of the derivatives of g, we arrive at

|||∂αy u(y)||| ≤ cu
2

∑
α 6=α′≤α

(
α

α′

)
|α−α′|!

((1− q)hmin)|α−α′|
γα−α′ |||∂α′y u(y)|||.

By induction, we may further estimate this expression according to

(4.29) |||∂αy u(y)||| ≤ cf
cu
2
γα

(
1

(1− q)hmin

)|α| ∑
α 6=α′≤α

(
α

α′

)
|α−α′|!|α′|!c|α−α′|u .

We find that∑
α6=α′≤α

(
α

α′

)
|α′|!|α−α′|!c|α−α′|u =

|α|−1∑
j=0

j!(|α| − j)!c|α|−ju

∑
α 6=α′≤α
|α′|=j

(
α

α′

)
.

By employing the combinatorial identity∑
α 6=α′≤α
|α′|=j

(
α

α′

)
=

(
|α|
j

)
,

we thus obtain∑
α6=α′≤α

(
α

α′

)
|α′|!|α−α′|!c|α−α′|u =

|α|−1∑
j=0

j!(|α| − j)!
(
|α|
j

)
c|α|−ju = |α|!

|α|−1∑
j=0

c|α|−ju

= |α|!c
|α|
u − 1

cu − 1
.

Since cu ≥ 2, it holds that

cu
2

c
|α|
u − 1

cu − 1
≤ c|α|u .

Inserting the latter two estimates into (4.29) implies finally the desired assertion for

arbitrary |α| ≥ 1. �
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The decay estimate (4.27) coincides with the one which is obtained in case of a

diffusion problem with uniformly elliptic random coefficient, see e.g. [2, 8]. It is

sufficient to conclude that the solution u admits an analytic extension into the com-

plex plane with respect to each particular direction yk (see [2]). In fact, there exists

even an analytic extension with respect to the variable to an appropriately chosen

Bernstein ellipse (see [3, 9]). As a consequence, anisotropic stochastic collocation

schemes [2, 17] become applicable. Moreover, besides the Monte-Carlo method, also

the quasi Monte-Carlo method produces convergence rates which are independent

of the stochastic dimension m provided that it holds γk . k−2−δ for some δ > 0, see

[13, 15].

5. Numerical results

5.1. The Poisson equation on a random domain. In our first example, we will

solve the Poisson equation

(5.30) −∆u(ω) = 4 in Dε(ω), u(ω) = 0 on ∂Dε(ω),

on the randomly perturbed unit disc. The treatment of boundary value problems

on random domains is of high interest, see e.g. [6, 7, 12, 14, 16, 21, 22] and the

references therein. One has to distinguish between two descriptions of the random

solution, namely the Lagrangian and the Eulerian point of view. Our setup leads to

the Eulerian specification which means that the physical position of the points stays

fixed and only the domain’s boundary is random.

To solve the random boundary value problem (5.30) within our framework, we choose

σ0 = 1 and split the domain Dε(ω) according to

(5.31)

Dε(ω) = D ∪ Lε(ω) where Lε(ω) = {x + tn(x) : 0 ≤ t < εh(x, ω), x ∈ ∂D}.

To validate our approach for problem (5.30), (5.31), we should compare it with a

Monte-Carlo approach and with the shape derivative approach from [14]. In particu-

lar, we shall consider different values of the perturbation parameter ε to examine the

asymptotic estimates given in Proposition 3.2. To that end, we choose the reference

domain D as the disc of radius 1− ε which leads to a layer of constant thickness ε

in the mean. This means that h(x) = E
(
h(x, ω)

)
≡ 1. The particular shape of the

random layer under consideration is given as

h(ϕ, ω) = 1 +
1

8

5∑
k=0

{ak(ω) cos(kϕ) + bk(ω) sin(kϕ)} ,
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where 0 ≤ ϕ < 2π is the polar angle of a given point x ∈ ∂D and ak, bk ∈ [−1/2, 1/2]

are independent and uniformly distributed random variables. Notice that we have

0.5 ≤ h(ϕ, ω) ≤ 1.5 for all 0 ≤ ϕ < 2π and ω ∈ Ω.
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Figure 5.2. Absolute `2-error of the discrete expectation (left) and

the discrete variance (right) of the random solution versus the pertur-

bation parameter ε.

The spatial discretization we use for the numerical simulation consists of about 4000

continuous, piecewise linear, triangular finite elements. We furthermore apply the

quasi Monte-Carlo method for the stochastic discretization. This means that we

directly compute the random solution’s mean

E
(
u[2](x,y)

)
=

∫
�
u[2](x,y) dy

and variance

V
(
u[2](x,y)

)
=

∫
�

(
u[2](x,y)

)2
dy − E2

(
u[2](x,y)

)
with the help of 10000 Halton points.

We compute the solution for ε = 0.02, 0.04, . . . , 0.2 with the proposed approach, with

the Monte-Carlo method, and with the shape derivative approach. The solution of

the Monte-Carlo method is based on the mean of five runs with 10000 samples per

run. All solutions are restricted onto the fixed disc K of radius 0.8 (K coincides with

the domain D if ε = 0.2) which is contained in the reference domain D for all values

of ε. This is done by re-interpolating the solution onto a mesh on K consisting of

about 2000 triangles and ensures that the shape derivative approach approximates

the random solution’s expectation with the order O(ε2) and its variance with the

order O(ε3), see [14] for the details. For the present approach, Proposition 3.2 pre-

dicts a convergence of order O(ε3) for the expectation and of order O(ε4) for the
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variance. This asymptotic behaviour is indeed observed in the numerical results as

seen in Figure 5.2 where we plotted the discrete `2-errors of the expectation and

variance. Although the approximation order of the expectation is higher for the pro-

posed approach than for the shape derivative approach, the approximation of both,

the expectation and variance, is somewhat less accurate if ε > 0.1. Nevertheless, for

ε = 0.2, the relative error of the expectation and of the variance is only about 0.5%

and 5%, respectively. Notice finally that also the errors for the less accurate thin

layer equation (1.2) are presented in these plots. It is clearly seen that it produces

much less accurate approximations which are only second order accurate in ε in case

of the expectation and only third order accurate in ε in case of the variance.

5.2. The Poisson equation with thin random layer. Our second example is

dedicated to the thin layer equation for the unit disc. In average, the layer is assumed

to be constant and of thickness ε = 0.01. The conductivity is 1 in the layer and σ0 =

10 in the unit disc. The inhomogeneity is chosen like before as f ≡ 4. We use again

about 4000 continuous, piecewise linear, triangular finite elements for the spatial

discretization and a quasi Monte-Carlo method for the stochastic discretization.

The random boundary fluctuations h̃(x, ω) under consideration are given according

to (4.19) where we either prescribe the exponential covariance kernel exp(−‖x −
x′‖)/16, which is quite rough, or the Gaussian covariance kernel exp(−‖x−x′‖2)/16,

which is quite smooth. The Karhunen-Loève expansions of these covariance kernels

are computed with the help of the pivoted Cholesky decomposition as proposed in

[11]. We obtain m = 126 terms for the exponential covariance and m = 12 terms for

the Gaussian covariance if we demand the truncation error 10−3. It turns out that a

point on the random boundary varies at most ±0.0065 around the nominal interface

in case of the exponential variance kernel while it varies at most ±0.0035 in case of

the Gaussian covariance kernel.

The results of our computations are found in Figure 5.3 for the exponential covari-

ance kernel and in Figure 5.4 for the Gaussian covariance kernel. The expectations

look quite similar for both covariance kernels. Nevertheless, we observe clear dif-

ferences between the variances. Namely, compared to the variance in case of the

exponential covariance kernel, the variance is more concentrated near the boundary

and also smaller in the interior of the domain in case of the Gaussian covariance

kernel.
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Figure 5.3. Expectation (left) and variance (right) of the random

solution in case of a unit disc with random layer of avarage thickness

ε = 0.01 and random perturbations with exponential correlation.
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Figure 5.4. Expectation (left) and variance (right) of the random

solution in case of a unit disc with random layer of avarage thickness

ε = 0.01 and random perturbations with Gaussian correlation.

6. Conclusion

In the present article, we considered the Dirichlet boundary value problem for the

Poisson equation where the domain is surrounded by a randomly varying thin layer

of size O(ε) which has a different conductivity. We replaced this Dirichlet boundary

value problem which is stated on a random domain by a random Robin boundary

value problem which is stated on a deterministic domain. Decay estimates for the

derivates of its random solution with respect to the stochastic variable are provided

which are required to built appropriate solution schemes. Numerical experiments

were given to validate and quantify the approach.
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