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THE ABELIANISATION OF THE REAL CREMONA GROUP

SUSANNA ZIMMERMANN

Abstract. We present the Abelianisation of the birational transformations

of P2
R. Its kernel is equal to the normal subgroup generated by PGL3(R), and

contains all elements of degree  4. The description of the quotient yields
the existence of normal subgroups of index 2n for any n and that the normal

subgroup generated by any countable set of elements is a proper subgroup.
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1. Introduction

Let BirR(P2) ⇢ BirC(P2) be the groups of birational transformations of the
projective plane defined over the respective fields of real and complex numbers,
and AutR(P2) ' PGL3(R), AutC(P2) ' PGL3(C) the respective subgroups of linear
transformations.

According to the Noether-Castelnuovo Theorem [Cas1901], the group BirC(P2)
is generated by AutC(P2) and the standard quadratic transformation �0 : [x : y :
z] 99K [yz : xz : xy]. As an abstract group, it is not simple [CL2013], i.e. there
exist non-trivial, proper normal subgroups N ⇢ Bir(P2). However, all such groups
have uncountable index (see Remark 4.10) and the isomorphism class of the cor-
responding quotients BirC(P2)/N is quite complicated (essentially as complicated
as BirC(P2) itself). Moreover, the normal subgroup generated by any non-trivial
element which preserves a pencil of lines or which has degree d  4 is the whole
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group (see [Giz1994, Lemma 2] and Lemma 4.11) and the group is perfect [CD2013],
which means that BirC(P2) is equal to its commutator subgroup.

As we will show, the situation for the group BirR(P2) is quite di↵erent. First
of all, the group generated by AutR(P2) = PGL3(R) and �0 is certainly not the
whole group, as all its elements have only real base-points. This is not the case for
BirR(P2); for instance the quadratic involution �1 : [x : y : z] 99K [xz : yz : x2 + y2]
has non-real base-points. The group BirR(P2) however is generated by PGL3(R),
�0, �1, and by a family of transformations of degree 5 [BM2012]. We will show that
this set is not far from being a minimal set of generators. In particular, we obtain
the following result, similar to the case of Bir(Pn), n � 3 [Pan1999].

Theorem 1.1. The group BirR(P2) is not generated by AutR(P2) and a countable
set of elements.

The proof consists in finding explicit generators and relations for the group (see
Proposition 2.9). This description also allows to construct a natural quotient, and
gives our main result:

Theorem 1.2. The group BirR(P2) is not perfect: its Abelianisation is isomorphic
to

BirR(P
2)/[BirR(P

2),BirR(P
2)] '

M

R
Z/2Z.

Moreover, the commutator subgroup [BirR(P2),BirR(P2)] is the normal subgroup
generated by AutR(P2) = PGL3(R), and contains all elements of BirR(P2) of de-
gree  4.

Corollary 1.3. The sequence of iterated commutator subgroups of BirR(P2) is sta-
tionary. More precisely: Let H := [BirR(P2),BirR(P2)]. Then [H,H] = H.

Let X be a real variety. We denote by X(R) its set of real points of and by
Aut(X(R)) ⇢ Bir(X) the subgroup of birational transformations defined at each
point of X(R). It is also called the group of birational di↵eomorphisms of X, and is,
in general, strictly larger than the group of automorphisms AutR(X) of X defined
over R. The group Aut(P2(R)) is generated by AutR(P2) and the standard quintic
transformations (see Definition 2.2) [RV2005, BM2012]. Until now no similar result
is known for Aut(A2(R)).

Corollary 1.4. There exist surjective group homomorphisms

Aut(P2(R)) !
M

R
Z/2Z, Aut(A2(R)) !

M

R
Z/2Z.

Corollary 1.5. For any n 2 N there is a normal subgroup of BirR(P2) of index 2n

containing all elements of degree  4.
The same statement holds for Aut(P2(R)) and Aut(A2(R)).

Corollary 1.6. The normal subgroup of BirR(P2) generated by any countable set
of elements of BirR(P2) is a proper subgroup of BirR(P2).
The same statement holds for Aut(P2(R)) and Aut(A2(R)).

The plan of the article is as follows: After giving the basic definitions and nota-
tions in Section 2, we define in Section 3 a surjective group homomorphism from
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the subgroup J� ⇢ BirR(P2) of elements preserving a pencil of conics to the groupL
R Z/2Z. In Section 4, we extend the homomorphism to a surjective group homo-

morphism BirR(P2) !
L

R Z/2Z and give Theorem 1.1, Corollary 1.5 and Corol-
lary 1.4. In Section 5, we proof that its kernel is the normal subgroup generated
by AutR(P2), which will turn out to be commutator subgroup of BirR(P2). We will
finally be able to prove Theorem 1.2.

In the proof of the main theorems we use a technical proposition (Proposition 2.9)
that gives an explicit representation of BirR(P2) by generators and relations, and
which is independent of all the other results. Its proof is quite long and rather
technical, so we devote the whole last section (Section 6) to proving it.

In [Pol2015] one can find another description of the group BirR(P2), or rather,
more specifically, a description of the elementary links between real rational surfaces
and relations between them. However, this description was not used in the proof of
Proposition 2.9.

Aknowledgements: I thank Jérémy Blanc for the priceless discussions about
quotients and relations, and Jean-Philippe Further and Christian Urech for their
useful remarks.

2. Basic notions

We now give some basic notations and definitions. Throughout the article, every
variety and rational map is defined over R, unless stated otherwise.

Definition 2.1. We define two rational fibrations

⇡⇤ : P
2 99K P

1

[x : y : z] 7! [y : z]

⇡� : P
2 99K P

1

[x : y : z] 7! [y2 + (x+ z)2 : y2 + (x� z)2]

whose fibres are respectively the lines through [1 : 0 : 0] and the conics through p1 :=
[1 : i : 0], p2 := [0 : 1 : i], and their conjugates p̄1 = [1 : �i : 0], p̄2 = [0 : 1 : �i].

We define by J⇤, J� the subgroups of BirR(P2) preserving the fibrations ⇡⇤,⇡�:

J⇤ = {f 2 BirR(P
2) | 9f̂ 2 AutR(P

2) : f̂⇡⇤ = ⇡⇤f}

J� = {f 2 BirR(P
2) | 9f̂ 2 AutR(P

2) : f̂⇡� = ⇡�f}

Extending the scalars to C, the analogues of these groups are conjugate in
BirC(P2) and are called de Jonquières groups. In BirR(P2), the groups J�,J⇤ are
not conjugate. This can, for instance, be seen as consequence of Proposition 4.3
(see Remark 4.9).

Definition 2.2. We define a type of real birational transformation called standard
quintic tranformation.

Let q1, q̄1, q2, q̄2, q3, p̄3 2 P

2 be three pairs of non-real conjugate points of P2, not
lying on the same conic. Denote by ⇡ : X ! P

2 the blow-up of these points. The
strict transforms of the six conics passing through exactly five of the six points are
three pairs of non-real conjugate (�1)-curves. Their contraction yields a birational
morphism ⌘ : X ! P

2 which contracts the curves onto three pairs of non-real points
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r1, r̄1, r2, r̄2, r3, r̄3 2 P

2. We choose the order so that r
i

is the image of the conic not
passing through q

i

. The birational map ⌘⇡�1 : P2 99K P

2 is contained in BirR(P2),
is of degree 5 and is called standard quintic transformation.

Lemma 2.3. Let ✓ 2 BirR(P2) be a standard quintic transformation. Then:

(1) The points q1, q̄1, q2, q̄2, q3, p̄3 are the base-points of ✓ and r1, r̄1, r2, r̄2, r3, r̄3
are the base-points of ✓�1, and they are all of multiplicity 2.

(2) For i, j = 1, 2, 3, i 6= j, ✓ sends the pencil of conics through q
i

, q̄
i

, q
j

, q̄
j

onto
the pencil of conics through r

i

, r̄
i

, r
j

, r̄
j

.
(3) We have ✓ 2 Aut(P2(R)).

Proof. (1), (2) Let L ⇢ P

2 be a general line. The strict transform of L on X by ⇡�1

has self-intersection 1 and intersects the six curves contracted by ⌘ in 2 points. The
image ✓(L) then has six singular points of multiplicity 2 and self-intersection 25. It
is thus a quintic passing through the r

i

with multiplicity 2. Therefore, the linear
system of ✓�1 consists of quintics in P

2 having multiplicity 2 at r1, r̄1, r2, r̄2, r3, r̄3.
The construction of ✓�1 being symmetric to the one of ✓, the linear system of ✓
consists of quintics having multiplicity 2 at q1, q̄1, q2, q̄2, q3, p̄3.

(3) This is shown by simply calculating the degree of the images of the conics
and their multiplicities in the base-points.

(4) The birational morphisms ⌘,⇡ induce bijections X(R) ! P

2(R) and hence
✓, ✓�1 are defined on each point of P2(R). ⇤

The family of standard quintic transformations plays an important role in BirR(P2):
Let

�0 : [x : y : z] 99K [yz : xz : xy]

�1 : [x : y : z] 99K [xz : yz : x2 + y2]

Theorem 2.4 ([RV2005],[BM2012]). The group BirR(P2) is generated by �0,�1,
AutR(P2) and the infinite family of standard quintic transformations.

Lemma 2.5. For any standard quintic transformation ✓ there exists ↵,� 2 AutR(P2)
such that �✓↵ 2 J�

Proof. For any two non-collinear non-real pairs of conjugate points there exists
↵ 2 AutR(P2) that sends the two pairs onto p1 := [1 : i : 0], p2 := [0 : 1 : i]
and their conjugates p̄1 = [1 : �i : 0], p̄2 = [0 : 1 : �i]. Let ✓ be a standard quintic
transformation. Then there exists ↵,� 2 AutR(P2) that send q1, q2 (resp. r1, r2) onto
p1, p2. The transformation �✓↵�1 preserves the pencil of conics through p1, p̄1, p2, p̄2
(Lemma 2.3) and is thus contained in J�. ⇤

Corollary 2.6. The group BirR(P2) is generated by AutR(P2), J⇤, J�

Proof. By Theorem 2.4 and Lemma 2.5, BirR(P2) is generated by AutR(P2), �0,�1
and the family of standard quintic transformations contained in J�. Observing that
�0 2 J⇤, �1 2 J�, the claim follows. ⇤

Using these generating groups, we can give a representation of BirR(P2) in terms
of generating sets and relations:

Define S := AutR(P2) [ J⇤ [ J� and let F
S

be the free group generated by S.
Let w : S ! F

S

be the canonical word map.
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Definition 2.7. We denote by G be the following group:

F
S

/

*
w(f)w(g)w(h), f, g, h 2 AutR(P2), fgh = 1 in AutR(P2)
w(f)w(g)w(h), f, g, h 2 J⇤, fgh = 1 in J⇤
w(f)w(g)w(h), f, g, h 2 J�, fgh = 1 in J�
the relations in the list below

+

(1) Let ✓1, ✓2 2 J� be standard quintic transformations and ↵1,↵2 2 AutR(P2).

w(↵2)w(✓1)w(↵1) = w(✓2) in G () ↵2✓1↵1 = ✓2.

(2) Let ⌧1, ⌧2 2 J⇤ [J� both of degree 2 or of degree 3 and ↵1,↵2 2 AutR(P2).

w(⌧1)w(↵1) = w(↵2)w(⌧2) in G () ⌧1↵1 = ↵2⌧2.

(3) Let ⌧1, ⌧2, ⌧3 2 J⇤ all of degree 2, or ⌧1, ⌧2 of degree 2 and ⌧3 of degree 3,
and ↵1,↵2,↵3 2 AutR(P2).

w(⌧2)w(↵1)w(⌧1) = w(↵3)w(⌧3)w(↵2) in G () ⌧2↵1⌧1 = ↵3⌧3↵2.

Remark 2.8. Note that the group G is isomorphic to the quotient of the generalised
amalgamated product of AutR(P2), J⇤, J� along all intersections by the relations
in the above list.

Since BirR(P2) is generated by AutR(P2),J⇤,J� (Corollary 2.6), there exists a
natural surjective group homomorphism F

S

! BirR(P2) which gives rise to a group
homomorphism G ! BirR(P2), since all relations above hold in BirR(P2).

Proposition 2.9. The natural surjective group homormophism G ! BirR(P2) is
an isomorphism.

The proof of Proposition 2.9 is quite long and technical, and we therefore prefer
to present it in the last section. The proposition (and its proof) is independent of
all the other results proven in this article. The method used in the proof has been
described in [Bla2012], [Isk1985] and [Zim2015], and is to study linear systems and
their base-points.

We now give some further notation used throughout the article.

Definition 2.10. Let f 2 BirR(P2) and p be a point that belongs to P

2 as a proper
or infinitely near point. Assume moreover that p is not a base-point of f . We define
a point f•(p), which will also be in P

2 or infinitely near. For this, take a minimal
resolution of f

S
⌫2

��

⌫1

��

P

2 f

//

P

2

where ⌫1, ⌫2 are sequences of blow-ups. Since p is not a base-point of f it corresponds
via ⌫1 to a point of S or infinitely near. Using ⌫2 we view this point on P

2, again
maybe infinitely near, and call it f•(p).

Remark 2.11. Note that f• is a one-to-one correspondence between the sets

(P2 [ {infinitely near points}) \ {base-points of f} and

(P2 [ {infinitely near points}) \ {base-points of f�1}
Furthermore, if p is a base-point of a linear system ⇤ of multiplicity m that is not
base-point of f , then f•(p) is a base-point of f(⇤) of multiplicity m [AC2002, §4.1].
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Definition 2.12.
(1) Let C ⇢ P

2 be an irreducible (closed) curve, f 2 BirR(P2) and Bp(f) the
set of base-points of f . We denote by

f(C) := f(C \ Bp(f))

the (Zariski-) closure of the image by f of C minus the base-points of f ,
and call it the image of C by f .

(2) Throughout the article, we fix the notation

p1 := [1 : i : 0], p2 := [0 : 1 : i]

for these two specific points of P

2, because we will use them extremely
often.

(3) The following definition will be used for base-points of elements of J�. Let
⌘ : X ! P

2 be the blow-up of p1, p̄1, p2, p̄2. The morphism ⇡̃� := ⇡�⌘ : X !
P

1 is a real conic bundle with fibres being the strict transforms of the conics
passing through p1, . . . , p̄2.

X

⌘

✏✏

⇡̃�

  

P

2
⇡�
//

P

1

Let ⌘0 : Y ! X be a birational morphism and q 2 Y . We define

C
q

:= ⇡�1
� (⇡̃�(⌘

0(q))).

It is the conic passing through p1, p̄1, p2, p̄2, ⌘
0(q), which is irreducible or the

union of two lines. The latter case corresponds to ⇡̃�(⌘0(q)) 2 {[1 : 0], [0 :
1], [1 : 1]}.

3. A quotient of J�

We first construct a surjective group homomorphism '� : J� !
L

R Z/2Z and
then (in Section 4) use the representation of BirR(P2) by generators and relations
(Proposition 2.9) to extend '� to a homomorphism ' : BirR(P2) !

L
R Z/2Z. Both

quotients are generated by classes of standard quintic transformations contained in
J�, as we will see from the construction in Subsection 3.2.

In order to construct the surjective homomorphism J� !
L

R Z/2Z, we first need
some additional information about the elements of J�, such as their characteristic
(Lemma 3.1) and their action on the pencil of conics passing through p1, p̄1, p2, p̄2
(Lemma 3.7).

3.1. The group J�. The next lemmata state the characteristic and some other
properties of the elements of J� (recall that for f 2 BirR(P2), the characteristic of
f is the sequence (deg(f);me1

1 , . . . ,mek
k

) where m1, . . . ,mk

are the multiplicities of
the base-points of f and e

i

is the number of base-points of f which have multiplicity
m

i

(see [AC2002, Definition 2.1.7])). We will use these properties to obtain the
action of J� on the pencil of conics through p1, . . . , p̄2. The information will be
used to construct the quotients. In Section 6 (proof of Proposition 2.9), we will use
the properties to study linear systems and their base-points in connection with the
relations given in Definition 2.7.
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Lemma 3.1. Any element of J� of degree d > 1 has characteristic:
✓
d;

d� 1

2

4

, 2
d�1
2

◆
, if deg(f) is odd

✓
d;

d

2

2

,
d� 2

2

2

, 2
d�2
2 , 1

◆
, if deg(f) is even

and p1, . . . , p̄2 are (the) base-points of multiplicity d

2 ,
d�1
2 or d�2

2 .
Furthermore,

(1) no two double points are contained in the same conic through p1, p̄1, p2, p̄2,
(2) any element of J� exchanges or preserves the real reducible conics C1 :=

L
p1,p2 [ L

p̄1,p̄2 and C2 := L
p1,p̄2 [ L

p̄1,p2 ,
(3) any element of J� of even degree contracts one of the lines L

pi,p̄i , i 2 {1, 2}
onto a point on a real conic di↵erent from C1, C2.

Proof. Let f 2 J� be of degree d > 1. Let C be a general conic passing through
p1, p̄1, p2, p̄2. By definition of J�, the curve f(C) is a conic through p1, p̄1, p2, p̄2.
Let m(q) be the multiplicity of f at the point q. Computing the intersection of C
on the blow-up of the base-points of f with the linear system of f gives the degree
of f(C):

2 = deg(f(C)) = 2d� 2m(p1)� 2m(p2) = (d� 2m(p1)) + (d� 2m(p2)).

Applying Bézout to the line through p
i

, p̄
i

, we obtain that d � 2m(p
i

), i = 1, 2.
If d� 2m(p1) = d� 2m(p2) = 1, then

m(p1) = m(p2) =
d� 1

2
.

Else, d� 2m(p
i

) = 0, d� 2m(p3�i

) = 2 for some i 2 {1, 2}, and so

m(p
i

) =
d

2
, m(p3�i

) =
d� 2

2
, i 2 {1, 2}.

Let q be a base-point of f not equal to p1, p̄1, p2, p̄2 and C
q

its associated conic
through p1, p̄1, p2, p̄2 (see Definition 2.12). Then 2 � deg(f(C

q

)) � 0 and

0  deg(f(C
q

))  2d� 2m(p1)� 2m(p2)�m(q) = 2�m(q)  2

In particular, m(q) 2 {1, 2}. Let D be a general member of the linear system of f .
The genus formula

0 = g(D) =
(d� 1)(d� 2)

2
�

X

q base-point of f

m(q)(m(q)� 1)

2

and m(q) 2 {1, 2} for all base-points q of f di↵erent from p1, p̄1, p2, p̄2 imply that

(d� 1)(d� 2)

2
= 2

2X

i=1

m(p
i

)(m(p
i

)� 1)

2
+ |{base-points of multiplicity 2}|

and in particular that

|{base-points of multiplicity 2}| =
(

d�1
2 , d odd

d�2
2 , d even

It follows from the Noether equalities that f has exactly one simple base-point if d is
even and none otherwise. This yields the characteristics. Bézout’s theorem implies
that no two double points are contained in the same conic through p1, p̄1, p2, p̄2. The
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conics C1 = L
p1,p2 [L

p̄1,p̄2 , C2 = L
p1,p̄2 [L

p̄1,p2 , C3 := L
p1,p̄1 [L

p2,p̄2 are the only
reducible conics through p1, . . . , p̄2, and C1, C2 each consist of two non-real lines
while C3 consists of two real lines. If f has even degree, it contracts the line L

pi,p̄i ,
where m(p

i

) = d

2 , onto the base-point of f�1 of multiplicity 1, and no other line is
contracted (because f�1 has only one base-point of multiplicity 1). Because of this
and the multiplicities of the base-points of f , f sends L

pi,pj , Lpi,p̄j , i 6= j, onto non-
real lines. This is also true if f has odd degree (simply because of the multiplicities of
its base-points). Thus f preserves or exchanges C1, C2. In particular, the induced
automorphism f̂ of f on P

1 does not send ⇡�(C3) onto either of ⇡�(C1),⇡�(C2).
It follows that if f has even degree, the point f(L

pi,p̄i) is contained in the conic

⇡�1
� (f̂(⇡�(C3))) 6= C1, C2. In particular, the simple base-point of f�1 (which is

f(L
pi,p̄i)) is not contained in C1, C2. By symmetry, the same holds for f . ⇤

Remark 3.2. The group J� contains standard quintic transformations (Lemma 2.5).
Remark that �1 : [x : y : z] 99K [xz : yz : x2 + y2] is contained in J�.

The linear map [x : y : z] 7! [z : �y : x] exchanges p1 and p2 (and p̄1 and p̄2),
and the linear map [x : y : z] 7! [�x : y : z] exchanges p1 and p̄1 and fixes p2. Both
are contained in AutR(P2) \ J�.

Lemma 3.3. For any q 2 P

2(R) not collinear with any two of {p1, p̄1, p2, p̄2} except
maybe the pair (p2, p̄2), there exists f 2 J� of degree 2 with base-points p1, p̄1, q.

In particular: Let f 2 J� of even degree d, the points p
i

, p̄
i

its base-points of
multiplicity d

2 and r its simple base-point or the proper point of P2 to which the
simple base-point is infinitely near.

Then there exists ⌧ 2 J� of degree 2 with base-points p
i

, p̄
i

, r.

Proof. Since q is not collinear with p1, p̄1, there exists ↵ 2 AutR(P2) that sends
p1, p̄1, q onto p1, p̄1, [0 : 0 : 1]. Let t := (�1↵)•(p2). The quadratic transformation
�1↵ has base-points p1, p̄1, q and sends the pencil of conics through p1, p̄1, p2, p̄2
onto the pencil of conics through p1, p̄1, t, t̄. By assumption, the point p2 is not on
the lines L

q,p1 , Lq,p̄1 and thus t, t̄ are proper points of P

2 that are not collinear
with p1, p̄1. There exists � 2 AutR(P2) that fixes p1, p̄1 and sends t, t̄ onto p2, p̄2.
The quadratic transformation ��1↵ has base-points p1, p̄1, q and sends the pencil
of conics through p1, p̄1, p2, p̄2 onto itself, i.e. is contained in J�.

Let f 2 J� of even degree d, p
i

, p̄
i

its base-points of multiplicity d

2 and r its simple
base-point or the proper point of P2 to which the simple base-point is infintely near.
By Bézout, r, p

i

, p̄
i

are not collinear and by Lemma 3.1 the points r, p
i

, p3�i

and
r, p̄

i

, p3�i

are not collinear. Hence there exists ⌧ 2 J� of degree 2 with base-points
r, p

i

, p̄
i

. ⇤
To prove the next lemma (Lemma 3.6), we are forced to introduce another kind

of quintic transformation, which is just a degeneration of standard quintic transfor-
mations. They will pop up again in Section 5, where we look at relations between
quadratic and standard quintic transformations in order to prove that the kernel of
the Abelianisation map is equal to the normal subgroup generated by AutR(P2).

Definition 3.4. We define a type of real birational transformation called special
quintic transformation.

Let q1, q̄1, q2, q̄2 2 P

2 be two pairs of non-real points of P2, not on the same line.
Denote by ⇡1 : X1 ! P

2 the blow-up of the four points, and by E1, Ē1 ⇢ X1 the
curves contracted onto q1, q̄1 respectively. Let q3 2 E1 be a point, and q̄3 2 Ē1 its
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conjugate. We assume that there is no conic of P2 passing through q1, q̄1, q2, q̄2, q3, q̄3
and let ⇡2 : X2 ! X1 be the blow-up of q3, q̄3.

On X2 the strict transforms of the two conics C, C̄ of P

2 passing through
q1, q̄1, q2, q̄2, q3 and q1, q̄1, q2, q̄2, q̄3 respectively, are non-real conjugate disjoint (�1)
curves. The contraction of these two curves gives a birational morphism ⌘2 : X2 !
Y1, contracting C, C̄ onto two points r3, r̄3. On Y1 we find two pairs of non-real (�1)
curves, all four curves being disjoint. These are the strict transforms of the excep-
tional curves associated to q1, q̄1, and of the conics passing through q1, q̄1, q2, q3, q̄3
and q1, q̄1, q̄2, q3, q̄3 respectively. The contraction of these curves gives a birational
morphism ⌘1 : Y1 ! P

2 and the images of the four curves are points r1, r̄1, r2, r̄2
respectively. The real birational map  = ⌘1⌘2(⇡1⇡2)�1 : P2 99K P

2 is of degree 5
and called special quintic transformation.

Remark 3.5. Let ✓ be a special quintic transformation and keep the notation of
its definition. With similar argument as for the standard quintic transformations
(Lemma 2.3) one shows that q1, . . . , q̄3 are the base-points of ✓, and are of multi-
plicity 2. Furthermore, ✓ sends the pencil of conics through q1, q̄1, q2, q̄2 onto the
pencil of conics through r1, r̄1, r2, r̄2 and ✓ 2 Aut(P2(R)).

Lemma 3.6. The group J� is generated by its linear, quadratic and standard quintic
elements.

Proof. Let f 2 J�. We use induction on the degree d of f . We can assume that
d > 2.

• If d is even, it has a (real) simple base-point. Denote by r the simple base-
point of f or, if the simple base-points is not a proper point of P2, the proper point
of P2 to which the simple base-point is infinitely near to. Let p

i

, p̄
i

, i 2 {1, 2} be
the points of multiplicity d

2 (Lemma 3.1). By Lemma 3.3 there exists a quadratic
transformation ⌧ 2 J� with base-points p

i

, p̄
i

, r. The map f⌧�1 2 J� is of degree
 d� 1.

• Suppose that d is odd and has a real base-point q. By Lemma 3.1, the points
q, p1, p2 are of multiplicity 2, d�1

2 , d�1
2 respectively. We can assume that q is a proper

point of P2 (since no real point is infinitely near p1, . . . , p̄2). By Bézout, q is not
collinear with p

i

, p
j

, i, j 2 {1, 2}, and so there exists ⌧ 2 J� of degree 2 with
base-points q, p1, p̄1 (Lemma 3.3). The map f⌧�1 2 J� is of degree d� 1.

• Suppose that d is odd and has no real base-points. If it has a double point
q di↵erent from p1, . . . , p̄2 which is a proper point of P2 then p1, p̄1, p2, p̄2, q, q̄ are
not on the same conic (Lemma 3.1). In particular, there exists a standard quintic
transformation ✓ 2 J� with those points its base-points (Definition 2.2, Lemma 2.5).
The map f✓�1 2 J� is of degree d� 4.

If it has no double points that are proper points of P2, there exists a double point
q infinitely near one of the p

i

’s. By Bézout, p1, p̄1, p2, p̄2, q, q̄ are not contained on
one conic, hence there exists a special quintic transformation ✓ 2 J� with base-
points p1, p̄1, p2, p̄2, q, q̄ (Definition 3.4). The map f✓�1 2 J� is of degree d� 4. By
[BM2012, Lemma 3.7] and Remark 3.2, ✓ is the composition of standard quintic
and linear transformations contained in J�. ⇤

Recall that for each element f 2 J� there exists f̂ 2 AutR(P1) such that f̂ �
⇡� = ⇡� � f (Definition 2.1). This induces a group homomorphism J� ! AutR(P1)
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given by f 7! f̂ (see Definition 2.1). The next Lemma states that this action
corresponds to a real scaling and that every scaling can be realised by a quadratic
transformation. The cubic and standard quintic transformations scale by ±1.

Lemma 3.7. The action of J� on P

1 gives rise to a surjective homomorphism

J� ! (R
>0)

⇤
o Z/2Z

where (R
>0)⇤ ⇢ PGL2(R) is given by diagonal maps [x : y] 7! [ax : ay], a, b 2

(R
>0)⇤ and Z/2Z is generated by [x : y] 7! [y : x].
Moreover, any element of (R

>0)⇤ is the image of a quadratic element of J� and
Z/2Z is the image of a linear element.

Furthermore:
• The cubic transformations are sent onto (1, 0) if they contract L

pi,q onto p
i

or
p̄
i

, i = 1, 2, where q is the double point, and onto (1, 1) otherwise.
• The standard quintic transformations are sent onto (1, 0) or (1, 1).

Proof. There are exactly three real reducible conics passing through p1, p̄1, p2, p̄2,
namely

C1 := L
p1,p2 [ L

p̄1,p̄2 , C2 := L
p1,p̄2 [ L

p̄1,p2 , C3 := L
p1,p̄1 [ L

p2,p̄2 ,

and their images by ⇡� : P2 99K P

1 are

⇡�(C1) = [0 : 1], ⇡�(C2) = [1 : 0], ⇡�(C3) = [1 : 1].

Let f 2 J� and f̂ the induced automorphism on P

1. By Lemma 3.1, f preserves
or exchanges C1, C2, which yields that f̂ is of the form f̂ : [u : v] 7! [au : bv] or
f̂ : [u : v] 7! [av : bu], a, b 2 R

⇤, where [a : b] = f̂(⇡�(C3)) = ⇡�(f(C3)). This yields
a homomorphism

 : J� ! R

⇤
o Z/2Z.

Lets show that the image of  is (R
>0)⇤ oZ/2Z and that any element of (R

>0)⇤ is
the image of a quadratic transformation.

By Lemma 3.6, the group J� is generated by its linear, quadratic and standard
quintic elements. The map � : [x : y : z] 7! [�x : y : z] induces �̂ : [u : v] 7! [v : u],
i.e.  (�) = (0, 1). The linear transformations send lines onto lines, and hence are
sent by  onto (1, 0) or (1, 1). The standard quintic transformations preserve the
set {C1, C2, C3} and are hence sent onto (1, 0) or (1, 1). Let ⌧ 2 J� be a quadratic
transformation. It has base-points p

i

, p̄
i

, q, for some i 2 {1, 2}, and sends p3�i

, p̄3�i

onto proper points of P2. In particular, q is not collinear with any two of p1, p̄1, p2, p̄2
except maybe p3�i

, p̄3�i

. It follows that q 2 P

2(R) \ {[1 : 0 : 1], [1 : 0 : �1]}. On the
other hand, take q = [a : b : 1] 2 P

2(R) \ {[1 : 0 : 1], [1 : 0 : �1]}. Then q is not
collinear with any two of p1, p̄1, p2, p̄2, except maybe p2, p̄2. By Lemma 3.3 there
exists a quadratic transformation ⌧ 2 J� with base-points q, p1, p̄1.

We have ⇡�(⌧�1(C3)) = ⇡�(q) = [b2 + (a + 1)2 : b2 + (a � 1)2], which is not
equal to [0 : 1], [1 : 0]. In particular,  (⌧�1) 2 (R

>0)⇤ o Z/2Z, and it follows that
 (J�) ⇢ (R

>0)⇤ o Z/2Z.
Note that pr1( (⌧)) = ⇡�(q), so the image by (pr1 �  ) of the set of quadratic

elements of J� is equal to the image by ⇡� of the set P2(R)\{[1 : 0 : 1], [1 : 0 : �1]}.
Claim: ⇡�( P2(R) \ {[1 : 0 : 1], [1 : 0 : �1]} ) = {[a : 1] 2 P

1(R) | a > 0} ' R

>0:
The set of points where ⇡� : [x : y : z] 99K [y2 + (x + z)2 : y2 + (x � z)2] is not
defined is {p1, p̄1, p2, p̄2}, hence ⇡� is defined on P

2(R) and continuous on it. Thus
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P

2 \ P2(R)

p1

p̄1

p2

p̄2

X \X(R)p3

p̄3

p3

p̄3

⇡�
P

1 \ P1(R)

[0 : 1]
R

⇡�(p3) = [a+ ib : 1]

⇡�(p̄3) = [a� ib : 1]

⇡̃�

a

|b|

R

⌫
C

p3

C
p̄3

C
p3

C
p̄3

Figure 1. The map ⌫ (Definition 3.8)

⇡�(P2(R)) is a connected subset of {[a : 1] 2 P

1(R) | a � 0} [ {[1 : 0]} ⇢ P

1(R).
The claim now follows with ⇡�([1 : 0 : 1]) = [1 : 0] and ⇡�([1 : 0 : �1]) = [0 : 1].

In conclusion, every element of (R
>0)⇤ is the image of a quadratic element of J�,

and  has image (R
>0)⇤ o Z/2Z.

To complete the proof of the lemma, remark that cubic transformations preserve
C3 and they preserve C1, C2 if they contract L

pi,q onto p
i

or p̄
i

, i = 1, 2, where q is
the double point. ⇤
3.2. The quotient. Using Lemma 3.7, we now construct a surjective group homo-
morphism J� !

L
R Z/2Z.

Definition 3.8. Let f 2 J�. For any non-real base-point q of f , we have ⇡�(Cq

) =
[a+ ib : 1] and ⇡�(Cq̄

) = [a� ib : 1] for some a, b 2 R, b 6= 0 (see Definition 2.12 for
the definition of C

q

). We define

⌫(C
q

) :=
a

| b | 2 R.

Note that ⌫(C
q

) = ⌫(C
q̄

). Moreover, ⌫(C
q

0) = ⌫(C
q

) if and only if ⇡�(Cq

) =
�⇡�(Cq

0) or ⇡�(Cq

) = �⇡�(Cq̄

0) for some � 2 R

⇤.

Definition 3.9. We define e
�

2 �RZ/2Z to be the ”standard vector” given by

(e
�

)
"

=

(
1, � = "

0, else

Definition 3.10. Let f 2 J� and S(f) be the set of non-real conjugate pairs of
base-points of f di↵erent from p1, . . . , p̄2. We define

'� : J� �!
M

R
Z/2Z, f 7�!

X

(q,q̄)2S(f)

e
⌫(Cq)

which is a well defined map according to Definition 3.8.

Remark 3.11. The following remarks directly follow from the definition of '�.

(1) If S(f) = ;, then '0(f) = 0.
(2) For every f 2 J� of degree  4 the set S(f) is empty (follows from its

characteristic; Lemma 3.1), hence in particular '0(f) = 0.
(3) Let ✓ 2 J� be a standard quintic transformation. Then |S(f)| = 1 and

'�(✓) is a ”standard vector”.
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(4) It follows from the definition of standard quintic transformations (Defini-
tion 2.2) that for every � 2 R there exists a standard quintic transformation
✓ 2 J� such that '�(✓) = e

�

.
(5) Let ✓1, ✓2 2 J� be standard quintic transformations and S(✓

i

) = {(q
i

, q̄
i

)},
i = 1, 2. If C

q1 = C
q2 (or C

q1 = C
q̄2), then '�(✓1) = '�(✓2).

(6) Let ✓ 2 J� be a standard quintic transformation. Let S(✓) = {(q1, q̄1)}
and S(✓�1) = {(q2, q̄2)}. Since ✓ induces Id or [x : y] 7! [y : x] on P

1

(Lemma 3.7), it follows that ⌫(C
q1) = ⌫(C

q2) and in particular '�(✓) =
'�(✓�1).

(7) Let f 2 J� and C be any non-real conic passing through p1, . . . , p̄2. The
automorphism f̂ on P

1 induced by f is a scaling by a positive real number
(Lemma 3.7), thus ⌫ � f̂ = ⌫. In particular,

e
⌫(f(C)) = e

⌫(f̂(C)) = e
⌫(C).

Let us finally prove that '� is a homomorphism of groups.

Lemma 3.12. The map '� : J� !
L

R Z/2Z is a surjective group homomorphism
and its kernel contains all elements of degree  4.

Proof. It su�ces to show that '� is a group homomorphism: the surjectivity and
the assertion on the kernel then follow from Remark 3.11 (2) and (4).

Let f, g 2 J�. We want to show that '�(fg) = '�(f) + '�(g). The group J�
is generated by its linear, quadratic and standard quintic elements (Lemma 3.6),
so we can assume that f is a linear, quadratic or standard quintic element of J�.
In particular, S(f) is empty if f is linear or quadratic (Remark 3.11 (2)), and
|S(f)| = 1 if f is a standard quintic transformation.

Suppose that S(f) \ S(g�1) = ;, then S(fg) = S(g) [ (g�1)•(S(f)) [AC2002,
Corollary 4.1.14]. If S(f) = ;, we have '�(f) = 0 (Remark 3.11 (1)), S(fg) = S(g),
and in particular '�(fg) = '�(f) + '�(g). If S(f) 6= ;, then S(f) = {(q, q̄)}. By
Remark 3.11 (7), we have

e
⌫(C(g�1)•(q))

= e
⌫(g�1(Cq)) = e

⌫(Cq)

In particular,

'�(fg) =
X

(p,p̄)2S(fg)

e
⌫(Cp) = e

⌫(C(g�1)•(q))
+

X

(p,p̄)2S(g)

e
⌫(Cp)

= e
⌫(Cq) +

X

(p,p̄)2S(g)

e
⌫(Cp) = '�(f) + '�(g)

Suppose that ; 6= S(f) ⇢ S(g�1). Then f is a standard quintic transformation.
In order to make the argument a bit more simple, lets prove that '�(g�1f�1) =
'�(g�1) + '�(f�1), which will yield the claim (since '�(h) = '�(h�1) by Re-
mark 3.11 (6)). Let S(f) = {(q, q̄)}, S(f�1) = {(q0, q̄0)}.

We claim that S((fg)�1) = f• � S(g�1) \ {(q, q̄)}
�
. Indeed, the multiplicity of

(fg)�1 in q0 is equal to the intersection of the strict transform of C
q

with the strict
transform of the linear system of g�1 in the blow-up of q, q̄, p1, p̄1, p2, p̄2 in P

2. Since
C

q

contains exactly one base-point of g�1 (Lemma 3.1), which is q, the intersection
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is precisely

m(fg)�1(q0) = 2 deg(g�1)� 2m
g

�1(p1)� 2m
g

�1(p2)�
X

r2Cq

m
g

�1(r)

= 2 deg(g)� 2(deg(g)� 1)�m
g

�1(q) = 0

On the other hand, f does not touch the base-points of g�1 di↵erent from q, q̄, p1, p̄1, p2, p̄2.
It follows that S(g�1f�1) = f• � S(g�1) \ {(q, q̄)}

�
[AC2002, Corollary 4.1.14]. In

particular, we have by Remark 3.11 (6), (7)

'�(g
�1f�1) =

X

(p,p̄)2S(g�1
f

�1)

e
⌫(Cp) =

X

(p,p̄)2f

•( S(g�1)\{(q,q̄)})

e
⌫�(Cp)

(7)
=

X

(p,p̄)2S(g�1)\{(q,q̄)}

e
⌫(Cp) = '�(g

�1)� e
⌫(Cq)

= '�(g
�1)� '�(f)

(6)
= '�(g

�1) + '�(f
�1)

⇤

4. A quotient of BirR(P2)

Let '0 : J� !
L

R Z/2Z be the map given in Definition 3.8. By Proposition 2.9,
the group BirR(P2) is isomorphic to G (see Defintion 2.7), which, according to
Remark 2.8, is the quotient of the free product AutR(P2) ⇤ J⇤ ⇤ J� by the nor-
mal subgroup generated by all the relations given by the pairwise intersections of
AutR(P2),J⇤,J� and the relations (1), (2), (3) of Definition 2.7. Define the map

� : AutR(P
2) ⇤ J⇤ ⇤ J� �!

M

R
Z/2Z, f 7!

(
'�(f), f 2 J�

0, f 2 AutR(P2) [ J⇤

It is a surjective homomorphism of groups because '� is a surjective homomorphism
of groups (Lemma 3.12).

We shall now show that there exists a homomorphism ' such that the diagram

AutR(P2) ⇤ J⇤ ⇤ J�
⇡

//

�

✏✏

G ' BirR(P2)

9 '

uuL
R Z/2Z

is commutative, where ⇡ is the quotient map. For this, it su�ces to show that
ker(⇡) ⇢ ker(�). We will first show that the relations given by the pairwise inter-
sections of AutR(P2),J⇤,J� are contained in ker(�) and then it is left to prove that
relations (1), (2), (3) are contained ker(�).

Lemma 4.1.
(1) Let f1 2 AutR(P2), f2 2 J� such that ⇡(f1) = ⇡(f2). Then �(f1) = �(f2) = 0.
(2) Let f1 2 J⇤, f2 2 J� such that ⇡(f1) = ⇡(f2). Then �(f1) = �(f2) = 0.
In particular, � induces a homomorphism from the generalised amalgamated product
of AutR(P2),J⇤,J� along all pairwise intersections onto

L
R Z/2Z.

Proof. (1) We have ⇡(f1) = ⇡(f2) 2 AutR(P2)\J� ⇢ J�. In particular, '�(⇡(fi)) =
0, i = 1, 2 (Remark 3.11, (2)), and so �(f1) = �(f2) = 0 by definition of �.
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(2) Lets first figure out what exactly J⇤ \ J� consists of. First of all, it is not
empty because the quadratic involution

⌧ : [x : y : z] 99K [y2 + z2 : xy : xz]

is contained in it. Let f 2 J⇤ \J� be of degree d. By Lemma 3.1, its characteristic

is (d; d�1
2

4
, 2

d�1
2 ) or (d; d

2

2
, d�2

2

2
, 2

d�2
2 , 1). Since f 2 J⇤, it has characteristic (d; d�

1, 12d�2). If follows that d 2 {1, 2, 3}.
Linear and quadratic elements of J� are sent by '� onto 0 (Remark 3.11 (2)).

Elements of J� of degree 3 decompose into quadratic elements of J� and are hence
sent onto zero by '� as well. In particular, �(f1) = �(f2) = 0.

Since �(AutR(P2)) = �(J⇤) = 0, (1) and (2) imply that � induces a homo-
morphism from the generalised amalgamated product of AutR(P2),J⇤,J� ontoL

R Z/2Z. ⇤

Lemma 4.2. Let ✓ 2 J� be a standard quintic with S(✓) = {(q, q̄)}, S(✓�1) =
{(q0, q̄0)}.

Let ↵
q

,↵
q

0 2 AutR(P2) that fix p1 and send q (resp. q0) onto p2. Then ✓0 :=
↵
q

0✓(↵
q

)�1 2 J� is a standard quintic transformation and

�(✓) = �(↵
q

0✓(↵
q

)�1) = �(✓0)

Note that the statement still holds if we write p̄2 instead of p2.

Proof. Remark that

S(✓0) = { (↵
q

(p2), ↵q

(p̄2)) }.

Hence we need to show that

�(✓0) = '�(✓
0) = e

⌫(C↵q(p2)) = e
⌫(Cq) = '�(✓) = �(✓).

To do this, it su�ces to show that ⇡�(C
↵q(p2)) = �⇡�(Cq

) or ⇡�(C
↵q(p2)) = �⇡�(Cq̄

)
for some � 2 R

⇤. For this, we need to understand the map ↵
q

. So, we study the
non algebraic mapping

 : P2(C) \ {z = 0} �! P

2(C) \ {z = 0}, q 7! ↵
q

(p2)

which we can describe, via the parametrisation

◆ : R2 ! P

2(C), (u, v, x, y) 7! [u+ iv : x+ iy : 1],

by the real birational involution

 ̂ : R4 99K R

4, (u, v, x, y) 799K
✓
ud� vx

v2 + y2
,

�v

v2 + y2
,
uv + xy

v2 + y2
,

y

v2 + y2

◆
.

The domain of  ̂ is R4 \ {v = y = 0} = ◆�1
�
P

2(C) \ ({z = 0} [ P

2(R))
�
. To under-

stand  (C
q

\ {z = 0}), we use the parametrisation

par : C �! C
q

\ {z = 0},

t 7!

(t� 1)(t+ 1)(�+ µ)

�t+ µt+ �� µ
:
i(�t2 + µt2 + 2�t� 2µt+ �+ µ)

�t+ µt+ �� µ
: 1

�
,
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which is the inverse of the projection of C
q

centred at p1. This yields the commu-
tative diagram

◆�1(C
q

\ {z = 0})

◆

✏✏

 ̂

//  ̂(◆�1(C
q

\ {z = 0}))

◆

✏✏

C

par
//

44C
q

\ {z = 0}  

//  (C
q

\ {z = 0}) ⇡�
//

P

1

The map (⇡� �  � par) is given by

x+ iy 7!

�⇢Q

q

(x, y)

4(⌫2 + ⇢2)
+ i

�⌫Q
q

(x, y)

4(⇢2 + ⌫2)
: 1

�

where ⇢, ⌫ 2 R are the real coordinates of ⇡�(Cq

), i.e. ⇡�(Cq

) = [⇢ + i⌫ : q],
and Q

q

(x, y) 2 R[x, y] is of degree 2. This shows that the points ⇡�(Cq

) and

⇡�(C(↵q)�1(p2)) are equal up to multiplication by �Qq(x,y)
4(⌫2+⇢2) , which yields the claim.

⇤

Recall the definition of the homomorphism

� : AutR(P
2) ⇤ J⇤ ⇤ J� �!

M

R
Z/2Z, f 7!

(
'�(f), f 2 J�

0, f 2 AutR(P2) [ J⇤

Proposition 4.3. The homomorphism � induces a surjective homomorphism of
groups

' : BirR(P
2) �!

M

R
Z/2Z

which is given as follows:
Let f 2 BirR(P2) and write f = f

n

· · · f1, where f1, . . . , fn 2 AutR(P2)[J⇤[J�.
Then '(AutR(P2) [ J⇤)) = 0 and

'(f) =
nX

i=1

�(f
i

) =
X

fi2J�

'�(fi)

Its kernel ker(') contains all elements of degree  4.

Proof. Let ⇡ : AutR(P2) ⇤ J⇤ ⇤ J� ! G ' BirR(P2) be the quotient map (Re-
mark 2.8). We want to show that there exists a homomorphism ' : BirR(P2) !L

R Z/2Z such that the diagram

AutR(P2) ⇤ J⇤ ⇤ J�
⇡

//

�

✏✏

G ' BirR(P2)

9 '

vvL
R
Z/2Z

is commutative. For this, it su�ces to show that ker(⇡) ⇢ ker(�). By Lemma 4.1, �
induces a homomorphism from the generalised amalgamated product of AutR(P2),J⇤,J�
along all intersections onto

L
R Z/2Z. So, by Remark 2.8 it su�ces to show that �

sends the relations (1), (2), (3) in Definition 2.7 onto zero.
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Linear, quadratic and cubic transformations in J� and the group J⇤ are sent
onto zero by ' (definition of � and Remark 3.11 (2)), hence relations (2) and (3)
are contained in ker(�). So, we just have to bother with relation (1):

Lets ✓1, ✓2 2 J� be standard quintic transformations, ↵1,↵2 2 AutR(P2) such
that

✓2 = ↵2✓1↵1

If ↵1,↵2 are contained in J�, then �(↵2✓1↵1(✓2)�1) = '�(↵2✓1↵2(✓2)�1) = '�(Id) =
0.

So, lets assume that ↵1,↵2 /2 J� and define q := (q, q̄) for q 2 P

2. Denote
S(✓1) = {p3}, S((✓1)�1) = {p4}. There exist i, j 2 {1, 2, 3} such that (↵1)�1(p

i

) =
p1, (↵1)�1(p

j

) = p2. Since ↵1 /2 J�, we have 3 2 {i, j}. By Remark 3.2 there exist
�, � 2 J� \AutR(P2) such that (↵�1

1 ��1)(p1) = p1 and (↵2�)(p1) = p1. We obtain
that (�↵1)�1(p3) 2 p2 and (↵2�)(p4) 2 p2. It follows from Lemma 4.2 that

�(✓2) = �
�
(↵2�)(�

�1✓1�
�1)(�↵1)

�
= �(✓1),

i.e. � sends relation (1) onto zero. The surjectivity of ' follows from the surjectivity
of '0 (Lemma 3.12).

If f 2 BirR(P2) is of degree 2 or 3 there exists ↵,� 2 AutR(P2) such that
�f↵ 2 J⇤. Hence '(f) = 0. If deg(f) = 4, f is a composition of quadratic maps,
hence '(f) = 0. ⇤

Let X be a real variety. We denote by X(R) its set of real points of and by
Aut(X(R)) ⇢ Bir(X) the subgroup of transformations defined at each point of
X(R). It is also called the group of birational di↵eomorphisms of X, and is, in
general, strictly larger than the group of automorphisms AutR(X) of X defined
over R. The group Aut(P2(R)) is generated by AutR(P2) and the standard quin-
tic transformations [RV2005, BM2012]. Until now no similar result was found for
Aut(A2(R)).

Corollary 4.4 (Corollary 1.4). There exist surjective group homomorphisms

Aut(P2(R)) !
M

R
Z/2Z, Aut(A2(R)) !

M

R
Z/2Z.

Proof. We identify A

2(R) with P

2(R) \L
p1,p̄1 . All quintic transformations are con-

tained in Aut(P2(R)) (Lemma 2.3) and preserve C3 := L
p1,p̄1 [ L

p2,p̄2 . For any
standard quintic transformation ✓ there exists a permutation ↵ of p1, . . . , p̄2 such
that ↵✓ preserves L

pi,p̄i , i = 1, 2, i.e. is contained in Aut(A2(R)). Therefore, the
restriction of ' onto Aut(P2(R)) and Aut(A2(R)) is surjective. ⇤
Corollary 4.5 (Corollary 1.5). For any n 2 N there is a normal subgroup of
BirR(P2) of index 2n containing all elements of degree  4.
The same statement holds for Aut(P2(R)) and Aut(A2(R)).

Proof. Let pr
�1,...,�n :

L
R Z/2Z ! (Z/2Z)n be the projection onto the �1, . . . , �n-th

factors. Then pr
�1,...,�n � ' has kernel of index 2n containing ker(') and thus all

elements of degree  4. By Corollary 1.4, the same argument works for Aut(P2(R))
and Aut(A2(R)). ⇤

Lemma 2.5 and Theorem 2.4 imply that BirR(P2) is generated by AutR(P2),�1,�0
and all standard quintic transformations in J�. This generating set is not far from
being minimal:
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Corollary 4.6 (Theorem 1.1). The group BirR(P2) is not generated by AutR(P2)
and a countable family of elements.

Proof. If BirR(P2) was generated by AutR(P2) and a countable family {f
n

}
n2N of

elements of BirR(P2) then by Proposition 4.3, the countable family would yield a
countable generating set of �RZ/2Z, which is impossible. ⇤

Note that the same argument works for Aut(P2(R)) and also for Aut(A2(R)) if we
replace AutR(P2) by the subgroup of a�ne automorphisms of A2, which corresponds
to AutR(P2) \Aut(A2(R)).

Corollary 4.7 (Corollary 1.6). The normal subgroup of BirR(P2) generated by any
countable set of elements of BirR(P2) is a proper subgroup of BirR(P2).
The same statement holds for Aut(P2(R)) and Aut(A2(R)).

Proof. Let S ⇢ BirR(P2) be a countable set of elements. Its image ⇡(S) ⇢
L

R Z/2Z
is a countable set and hence a proper subset of

L
R Z/2Z. Since ⇡ is surjective

(Proposition 4.3), the preimage ⇡�1(⇡(S)) ( BirR(P2) is a proper subset. The
group �RZ/2Z is Abelian, so the set ⇡�1(⇡(S)) contains the normal subgroup of
BirR(P2) generated by S, which in particular is a proper subgroup of BirR(P2). ⇤
Remark 4.8. The group homomorphism ' : BirR(P2) !

L
R Z/2Z does not have

any sections: If it had a section, then for any k 2 N the group (Z/2Z)k would embed
into BirR(P2), which is not possible by [Beu2007].

Remark 4.9. Over C, the group J� is conjugate to J⇤ (f.e. by any quadratic
transformation having base-points p1, p̄1, p2 and sending p̄2 onto [1 : 0 : 0]). This
is not true over R: By Proposition 4.3, one is contained in ker(') and the other is
not.

Remark 4.10.
(1) No proper normal subgroup of BirR(P2) of finite index is closed with respect

to the Zariski or the Euclidean topology because BirR(P2) is connected with respect
to either topology [Bla2010].

(2) The group BirC(P2) does not contain any proper normal subgroups of count-
able index: Assume that {Id} 6= N is a normal subgroup of countable index. The im-
age of PGL3(C) in the quotient is countable, hence PGL3(C)\N is non-trivial. Since
PGL3(C) is a simple group, we have PGL3(C) ⇢ N . Since the normal subgroup
generated by PGL3(C) is BirC(P2) [Giz1994, Lemma 2], we get that N = BirC(P2).

Lemma 4.11. The normal subgroup of BirC(P2) generated by any non-trivial ele-
ment of of degree  4 is equal to BirC(P2).

Proof. The claim is stated in [Giz1994, Remark on Lemma 2, p. 42] for degree  7
but only a partial proof is given, which works for all transformations preserving a
pencil of lines [Giz1994, Lemma 2].

(deg 1:) For degree 1, it is the fact that the normal subgroup generated by
PGL3(C) is equal to BirC(P2) [Giz1994, Lemma 2, Case 1 of proof].

(deg 2, 3:) Let f 2 BirR(P2) be of degree 2 or 3. There exists a proper base-point
q (resp. q0) of f (resp. f�1) such that f sends the pencil of lines through q onto
the pencil of lines through q0. Pick ↵ 2 PGL3(C) that exchanges q, q0 and such that
f↵�1f↵ 6= Id. Then Id 6= f↵�1f↵ is contained in the normal subgroup generated by
f and preserves the pencil of lines through q0. Hence the normal subgroup generated
by f is BirC(P2) [Giz1994, Lemma 2].
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(deg 4:) If the transformation has a triple base-point, we prove the claim with a
similar argument as above. For transformations without triple points, despite the
idea of proof in [Giz1994, Remark on lemma 2], we only succeeded to show the
claim with a lot of e↵ort and a rather long case by case study depending on the
configuration of the base-points. ⇤

5. The kernel of the quotient

In this section, we prove that the kernel of ' : BirR(P2) !
L

R Z/2Z is the
normal subgroup generated by AutR(P2), which will turn out to be the commutator
subgroup of BirR(P2). It implies that the quotient ' : BirR(P2) !

L
R Z/2Z is in

fact the Abelianisation of BirR(P2).
For this, we will again use the presentation of BirR(P2) in terms of generators and

relations given in Proposition 2.9. We will see that ker(') is the normal subgroup
generated by AutR(P2), J⇤ and ker('0), and then it su�ces to prove that J⇤ and
ker('�) are contained in the normal subgroup generated by AutR(P2).

The key idea is to show that if two standard quintic transformations ✓1, ✓2 are
sent by '� onto the same image, then ✓2 can be obtained by composing ✓1 with a
suitable amount of quadratic elements, which will imply that ✓1(✓2)�1 is contained
the normal subgroup of BirR(P2) generated by AutR(P2). For this to be useful, we
need to be able to put the quintic elements next to each other when decomposing
an element of J� into quadratic and standard quintic elements. To do this we need
to sidle o↵ to involve special quintic transformations (see Definition 3.4), which is
why they pop up again in this section.

More precisely, Lemma 5.6 shows that if two standard or special quintic trans-
formations in J� have the same image via '�, we can obtain one from the other
by composing with a suitable amount of quadratic transformations in J�. We then
show that every quadratic transformation in BirR(P2) is contained in the normal
subgroup generated by AutR(P2) (Lemma 5.8). Lemma 5.9 shows that J⇤ is con-
tained in the normal subgroup generated by AutR(P2). All of this will yield that
that the kernel of ' is indeed the normal subgroup generated by AutR(P2) (Propo-
sition 5.13)

Definition 5.1. We denote by hhAutR(P2)ii the normal subgroup of BirR(P2) gen-
erated by AutR(P2).

5.1. Geometry between cubic and quintic transformations. One idea in the
proof that ker(') = hhAutR(P2)ii is to see that if two standard quintic transfor-
mations are sent onto the same standard vector in

L
R Z/2Z, then one is obtained

from the other by composing from the right and the left with suitable cubic maps,
which in turn can be written as composition of quadratic maps. For this, we first
have to dig into the geometry of cubic maps.

Remark 5.2. Let f 2 J� of degree 3 and r 2 P

2(R) its double point. The points
p1, . . . , p̄2 are base-points of f of multiplicity 1 (Lemma 3.1). Note that for i 2 {1, 2},
the map f contracts the line passing through r, p

i

onto one of p1, p̄1, p2, p̄2 and that
by Bézout the (real) double point is not collinear with any two of p1, p̄1, p2, p̄2.

Lemma 5.3. For every r 2 P

2(R) not collinear with any two of p1, p̄1, p2, p̄2 there
exists f 2 J� of degree 3 with base-points r, p1, p̄1, p2, p̄2 (with double point r).
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r

p1

p̄1

p2

p̄2

⇡ ⌘

⌘(C̃
r

)

p̄2

p2

p̄1p1

⌘•(q)

q

q

C̃
r

L̃
r,p1

L
r,p̄1

L
r,p2

L
r,p̄2

E1

Ē1

E2

Ē2

L̃
r,p̄2

L̃
r,p2

L̃
r,p̄1

L
r,p1 ⌘(E1)

⌘(Ē1)

⌘(E2)

⌘(Ē2)C
q

C̃
q

f(C
q

) = C
q

f

⌘(E
r

)

E
r

Figure 2. The cubic transformation of Lemma 5.4

Proof. Since r is not collinear with any two of p1, p̄1, p2, p̄2, there exists ⌧1 2 J�
quadratic with base-points r, p1, p̄1 (Lemma 3.3). The base-points of its inverse are
s, p

i

, p̄
i

for some s 2 P

2(R) and i 2 {1, 2}. We can assume that i = 1 by exchanging
p1, p2 if necessary (Remark 3.2). Since r, p2, p̄2 are not collinear, also s, p2, p̄2 are not
collinear because ⌧1 sends the lines through r onto the lines through s and preserves
{p2, p̄2}. Moreover, s is not collinear with p1, p2 because (⌧�1

1 )•(p2) 2 {p2, p̄2} is a
proper point of P2. Hence there exists ⌧2 2 J� of degree 2 with base-point s, p2, p̄2
(Lemma 3.3). The map ⌧2⌧1 2 J� is of degree 3 with base-points r, p1, p̄1, p2, p̄2. ⇤

Lemma 5.4. Let q 2 P

2(C) \ {p1, p̄1, p2, p̄2} be a non-real point such that C
q

=
⇡�1
� (⇡�(q)) is irreducible. Then there exists a real point r 2 P

2(C) and f 2 J� of
degree 2 or 3 with r among its base-points such that

(1) f(C
q

) = C
q

(2) f•(q) is infinitely near p1 corresponding to the tangent direction of f(C
q

)
(3) either deg(f) = 3 and C

r

is irreducible or deg(f) = 2 and C
r

is singular.
(4) q 2 L

r,p̄2 .

Proof. Let L be the line passing through q, p̄2. Since C
q

is irreducible, q is not
collinear with any of p1, p̄1, p2, p̄2. It follows that L 6= L̄, and so L and L̄ intersect
in exactly one point r, which is a real point.

If r is not collinear with any two of p1, p̄1, p2, p̄2, then Lemma 5.3 states that
there exists f 2 J� of degree 3 with singular point r. The line L is contracted onto
p
i

or p̄
i

, i 2 {1, 2}. By composing with elements of AutR(P2) \ J�, we can assume
that L is contracted onto p1 and that f preserves the conic L

p1,p2 [ L
p̄1,p̄2 , and

thus induces the identity map on P

1 (Lemma 3.7), and therefore preserves C
q

. It
follows that f•(q) is infinitely near p1 and corresponds to the tangent direction of
f(C

q

) = C
q

.
If r is collinear with two of p1, p̄1, p2, p̄2, it is collinear with p1, p̄1 and not collinear

with any other two. Lemma 3.3 implies that there exists f 2 J� of degree 2 with
base-points r, p2, p̄2, and we can choose f such that the line L (through q, p̄2, r) is
contracted onto p1 (then f({p1, p̄1}) = {p2, p̄2}) and such that f(p1) = p2. Then
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f•(q) is infinitely near p1. We claim that f(C
q

) = C
q

: Call f̂ the automorphism

of P1 induced by f . We calculate f̂�1 (cf. proof of Lemma 3.7). Since f(L
p1,p2) =

L
p1,p2 , we see that f̂�1 : [u : v] 7! [(r21 + (r0 + r2)2)u : (r21 + (r0 � r2)2)v], where

r = [r0 : r1 : r2]. Since r 2 L
p1,p̄1 , we have r2 = 0 and so f̂�1 = Id. In particular,

f(C
q

) = C
q

. ⇤

Remark 5.5. Let ✓1, ✓2 2 J� be special quintic transformations with S(✓
i

) =
{(q

i

, q̄
i

)}. If C
q1 = C

q2 or C
q1 = C

q̄2 , then q1 = q2 or q1 = q̄2 respectively. In
particular, there exist ↵1,↵2 2 J� \AutR(P2) such that ✓2 = ↵2✓1↵1.

Lemma 5.6. Let ✓1, ✓2 2 J� be standard quintic transformations with S(✓
i

) =
{(q

i

, q̄
i

)}, i = 1, 2. Assume that C
q1 = C

q2 or C
q1 = C

q̄2 .
Then there exist ⌧1, . . . , ⌧8 2 J� of degree  2 such that ✓2 = ⌧8 · · · ⌧5✓1⌧4 · · · ⌧1.

Proof. By exchanging the names of q2, q̄2, we can assume that C
q1 = C

q2 . It su�ces
to show that there exist g1, . . . , g4 2 J� of degree  3 such that ✓2 = g4g3✓1g2g2,
since every element of J� of degree 3 can be written as a product of two qudratic
elements of J�. We give an explicit construction of the g

i

’s.
According to Lemma 5.4 there exist for i = 1, 2 a real point r

i

and f
i

2 J� of
degree d

i

2 {2, 3} with base-point r
i

such that f
i

preserves C
qi and t

i

:= (f
i

)•(qi)
is infinitely near p1 corresponding to the tangent direction of C

qi and that q
i

2
L
ri,p̄2 =: L. Since C

ri is real, r
i

is not on a conic contracted by ✓
i

, and so s
i

:=
(✓

i

)•(ri) = ✓
i

(r
i

) is a proper point of P2.
If C

ri is irreducible (and hence d
i

= 3), then r
i

is not collinear with any two of
p1, . . . , p̄2, and so s

i

is not collinear with any two of p1, . . . , p̄2 either. Therefore,
there exists h

i

2 J� of degree 3 with singular base-point s
i

(Lemma 5.3). If C
ri

is singular (and hence d
i

= 2), then r
i

2 L
p1,p̄1 , and so s

i

2 ✓
i

(L
p1,p̄1) = L

pj ,p̄j

for some j 2 {1, 2}. Therefore, there exists h
i

2 J� of degree 2 with base-points
s
i

, p3�j

, p̄3�j

(Lemma 3.3).
By composing h

i

with elements in J� \ AutR(P2), we can assume that h
i

sends
the line ✓

i

(L
ri,p̄2) onto p1 (Remark 5.2). Then h

i

✓
i

(f
i

)�1 2 J� is of degree 5.
Its base-points are p1, p̄1, p2, p̄2, (fi)•(qi), (fi)•(q̄i), where the latter ones are infin-
itely near p1, p̄1 corresponding to the tangent direction of C

qi , Cq̄i . By Remark 5.5,
h1✓1(f1)�1 and h2✓2(f2)�1 have exactly the same base-points, hence h1✓1(f1)�1 =
�h2✓2(f2)�1↵ for some ↵,� 2 AutR(P2)\J�. In particular, ✓2 = (h2)�1��1h1✓1(f1)�1↵�1f2.
The claim follows with g1 = ↵�1f2, g2 = (f1)�1, g3 = ��1h1, g4 = (h2)�1. ⇤

Lemma 5.7. Let ✓1, ✓2 2 J� be a standard and a special quintic transformation
respecitvely with S(✓

i

) = {(q
i

, q̄
i

)}. Assume that C
q1 = C

q2 or C
q1 = C

q̄2 .
Then there exists ⌧1, . . . , ⌧4 2 J� of degree  2 such that ✓2 = ⌧4⌧3✓1⌧2⌧1.

Proof. By exchanging the names of q1, q̄1, q2, q̄2, we can assume that C
q1 = C

q2 and
that q2 is infinitely near p

i

, i 2 {1, 2}. By Lemma 5.4 there exists f 2 J� of degree
d 2 {2, 3} such that f(C

q1) = C
q1 = C

q2 and f•(q1) is infinitely near p
i

. Let r be
the real base-point of f . Since r is real, it is not on a conic contracted by ✓1, and
so (✓1)•(r) = ✓1(r) is a proper point of P2.

If C
r

is irreducible (i.e. d = 3), the conic ✓1(Cr

) = C
✓(r) is irreducible as well. By

Lemma 5.3 there exists g 2 J� of degree 3 with double point ✓1(r). If Cr

is singular
(i.e. d = 2), the conic ✓1(Cr

) = C
✓(r) is singular as well. By Lemma 3.3 there exists

g 2 J� of degree 2 with ✓(r) among its base-points.
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The map g✓1f
�1 is of degree 5 with base-points p1, p̄1, p2, p̄2, f•(q1), f•(q1), where

the latter two are infinitely near p
i

, p̄
i

corresponding to the tangent directions C
q1 =

C
q2 , Cq̄2 . Hence there exists ↵ 2 AutR(P2)\J� such that ↵g✓1f�1 = ✓2. The claim

follows from the fact that we can write f, g as composition of at most two quadratic
transformations in J�. ⇤
5.2. The normal subgroup generated by AutR(P2). Lemma 5.6 implies that
if two standard or special quintic transformations ✓1, ✓2 contract the same conics
through p1, p̄1, p2, p̄2, then ✓2 is obtained from ✓1 by composing with suitable qua-
dratic transformations. So, one step of proving that ker(') = hhAutR(P2)ii is to see
that all quadratic transformations are contained in hhAutR(P2)ii.

Lemma 5.8. Any quadratic map in BirR(P2) is contained in hhAutR(P2)ii.

Proof. Let ⌧ 2 BirR(P2) be of degree 2. Pick two base-points q1, q2 of ⌧ that are
either a pair of non-real conjugate points or two real base-points, such that either
both are proper points of P2 or q1 is a proper point of P2 and q2 is in the first
neighbourhood of q1. Let t1, t2 be base-points of ⌧�1 such that ⌧ sends the pencil
of conics through q1, q2 onto the pencil of conics through t1, t2. Pick a general point
r 2 P

2 and let s := ⌧(r). There exists ↵ 2 AutR(P2) that sends q1, q2 onto t1, t2 and
exchanges r, s. The map ⌧̃ := ⌧↵ is of degree 2, fixes s, and t1, t2 are base-points of
⌧̃ and ⌧̃�1.

Since r is general, also s is general, and there exists ✓ 2 BirR(P2) of degree 2
with base-points t1, t2, s. Observe that the map ✓⌧̃✓�1 is linear. In particular, ⌧ is
contained in hhAutR(P2)ii. ⇤

Recall that J⇤ is contained in ker('). Using Lemma 5.8, we now prove that J⇤
is contained in hhAutR(P2)ii:

Lemma 5.9. The group J⇤ is generated by its quadratic and linear elements. In
particular, J⇤ ⇢ hhAutR(P2)ii.

Proof. Let f 2 J⇤. We do induction on the degree d = deg(f) of f . If f is linear or
quadratic, there is nothing to do. So, we can assume that d � 3.

Case 1: Assume that there exist two simple base-points q1, q2 of f that are proper
points of P2 and either non-real conjugate points or both real points. The points
[1 : 0 : 0], q1, q2 are not collinear by Bézout, hence there exists a quadratic map
⌧ 2 J⇤ with base-points [1 : 0 : 0], q1, q2. The map f⌧�1 2 J⇤ is of degree d� 1.

Case 2: Assume that f has exactly one simple (real) base-point q that is a proper
point of P2. Let r be a general real point in P

2. There exists ⌧1 2 J⇤ of degree 2
with base-points [1 : 0 : 0], q, r and the map f(⌧1)�1 2 J⇤ is of degree d. If t is
a base-point of f in the first neighbourhood of [1 : 0 : 0] or q, then (⌧1)•(t) is a
base-point of f(⌧1)�1 that is a proper point of P2. Thus f(⌧1)�1 has at least two
simple base-points that are proper points of P2 and either non-real conjuagte points
(if t is non-real) or both real (if t is real). We proceed as above.

Case 3: Assume that f has no simple proper base-points at all, i.e. any simple
base-point is infinitely near [1 : 0 : 0].

• If there are at least two base-points q1, q2 in the first neighbourhood of [1 : 0 : 0],
let r, s 2 P

2 be general points. There exists ⌧1 2 J⇤ of degree 2 with base-points
[1 : 0 : 0], r, s. Call [1 : 0 : 0], r0, s0 the base-points of (⌧1)�1. The map f(⌧1)�1 is of
degree d+1. We may assume that q1, q2 are both real or a pair of non-real conjugate
points. Then (⌧1)•(q1), (⌧1)•(q2) are proper points of P2 and base-points of f(⌧1)�1.
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Since [1 : 0 : 0], ⌧1(q1), ⌧1(q2) are not collinear, there exists ⌧2 2 J⇤ of degree 2 with
base-points [1 : 0 : 0], ⌧1(q1), ⌧1(q2). The map f(⌧1)�1(⌧2)�1 is of degree d. We claim
that the image by (⌧2)•(⌧1)• of all base-points of f di↵erent from q1, q2 in the first
neighbourhood of [1 : 0 : 0] or of q1, q2 are base-points of f(⌧1)�1(⌧2)�1 that are
proper points of P2 or are in the 1st neighbourhood of [1 : 0 : 0]: Indeed, let t be a
base-point of f in the 1st neighbourhood of [1 : 0 : 0] or q1. Then (⌧1)•(t) is either
a proper point of P2 on the line L

r

0
,s

0 or is infinitely near ⌧1(q1). By Bézout, [1 : 0 :
0], ⌧1(q1), (⌧1)•(t) are not collinear. It follows that (⌧2)•((⌧1)•(t)) is either in the 1st

neighbourhood of [1 : 0 : 0] (if t is in the 1st neighbourhood of [1 : 0 : 0] or q1 and
proximate to [1 : 0 : 0]) or a proper point of P2 (if t is in the 1st neighbourhood of q1
but not proximate to [1 : 0 : 0]). The situation is visualised in the following picture:

[1 : 0 : 0]

q1

q2

r

s

[1 : 0 : 0]

r0

s0

⌧1

(⌧1)•(q1)

(⌧1)•(q2)

⌧2

(⌧1)•(t)

(⌧1)•(t)

q01

q02

[1 : 0 : 0]

(⌧2)•((⌧1)•(t))
(⌧2)•(r0)

(⌧2)•(s0)

(⌧2)•((⌧1)•(t))

Figure: The quadratic maps ⌧1, ⌧2, and the possibilities for the point
(⌧2)•((⌧1)•(t)).

Since not all base-points of f are proximate to [1 : 0 : 0], we can repeat all of
this until we obtain an element of J⇤ of degree d with simple proper base-points.
We continue as in Case 1 or Case 2.

• If there is exactly one base-point q of f in the first neighbourhood of [1 : 0 : 0],
then in particular, q is a real point. Let r 2 P

2 be a general real point. There exists
⌧ 2 J⇤ of degree 2 with base-points [1 : 0 : 0], q, r. The map f⌧�1 2 J⇤ is of
degree d and the image by ⌧• of any base-point in the first neighbourhood of q is
a base-points of f⌧�1 in the first neighbourhood of [1 : 0 : 0]. We repeat this step
until we reach one of the above cases or until we obtain a linear map. ⇤

5.3. The kernel is equal to hhAutR(P2)ii. It now remains to actually prove that
ker(') = hhAutR(P2)ii. Take an element of ker('). It is the composition of linear,
quadratic and standard and special quintic elements (Lemma 3.6). The next three
lemmata show that we can choose the order of the linear, quadratic and standard
and special quintic elements so that the ones belonging to the same coset are just
one after another. These lemmata will be the remaining ingredients to prove that
ker(') = hhAutR(P2)ii

Lemma 5.10. Let ⌧, ✓ 2 J� be a quadratic and a standard (or special) quintic

transformation respectively. Then there exist ⌧̃1, ⌧̃2 2 J� of degree 2 and ✓̃1, ✓̃2 2 J�
standard (or special quintic) transformations such that ⌧✓ = ✓̃1⌧̃1 and ✓⌧ = ⌧̃2✓̃2,
i.e. we can ”permute” ⌧, ✓.

Proof. The map ⌧�1 has base-points p
i

, p̄
i

, r, for some r 2 P

2(R), i 2 {1, 2}. Since
r is not on a conic contracted by ✓, the point ✓•(r) = ✓(r) is a proper point of
P

2 that is a base-point of (✓⌧)�1. Let p
ji be the image by ✓ of the contracted

conic not passing through p
i

. The map ✓⌧ is of degree 6 and p
ji , p̄ji are base-points
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of (✓⌧)�1 of multiplicity 3. By Lemma 3.3 there exists ⌧̃ 2 J� of degree 2 with
base-points ✓(r), p

ji , p̄ji . The map ✓̃ := ⌧̃ ✓⌧ 2 J� is a standard (or special) quintic
transformation. We put ⌧̃2 := ⌧̃�1, ✓̃2 := ✓̃. A similar construction yields ✓̃1, ⌧̃1. ⇤

Lemma 5.11. Let ✓1, ✓2 2 J� be standard or special quintic transformations (both
can be either) such that '0(✓1) 6= '0(✓2). Then there exist ✓3, ✓4 2 J� standard or
special quintic transformations, such that

✓2✓1 = ✓4✓3, '0(✓1) = '0(✓4), '0(✓2) = '0(✓3)

i.e. we can ”permute” ✓1, ✓2.

Proof. Let S(✓1) = {(p3, p̄3)} and S(✓2) = {(p4, p̄4)}. By definition of '0 the as-
sumption '0(✓1) 6= '0(✓2) implies p4 /2 C

p3 [ C
p̄3 .

The point p5 := ((✓1)�1)•(p4) is either a proper point of P

2 or in the first
neighbourhood of one of p1, p̄1, p2, p̄2. Because p4, p̄4, p1, p̄1, p2, p̄2 are not on one
conic, the points p5, p̄5, p1, . . . , p̄2 are not on one conic. So, there exists a standard
or special quintic transformation ✓3 2 J� with base-points p1, . . . , p̄2, p5, p̄5. The
map ✓4 := ✓2✓1(✓3)�1 2 J� is a standard or special quintic transformation. In fact,
its inverse has base-points p1, . . . , p̄2, (✓2)•(p3), (✓2)•(p̄3). We have by construction
✓2✓1 = ✓4✓3. The equalities '�(✓1) = '�(✓4) and '�(✓2) = '�(✓3) follow from the
construction and Remark 3.11 (7). ⇤

Lemma 5.12. Let ✓1, ✓2 2 J� be standard or special quintic transformations (both
can be either) such that '0(✓1) = '0(✓2). Then ✓1(✓2)�1 2 hhAutR(P2)ii.

Proof. Let S(✓1) = {(p3, p̄3)} and S(✓2) = {(p4, p̄4)}. The assumption '0(✓1) =
'0(✓2) implies that there exists some � 2 R

>0 such that ⇡�(Cp3) = �⇡�(Cp4) or
⇡�(Cp3) = �⇡�(Cp̄4) in P

1. By Lemma 3.7 there exist ⌧1 2 J� of degree 2 such that
⇡�(⌧1(Cp3)) = ⇡�(Cp4) (resp. ⇡�(Cp̄4)), i.e. ⌧1(Cp3) = C

p4 (resp. C
p̄4). Let r be the

real base-points of ⌧ . Since C
r

is a real conic, it is not contracted by ✓1 and hence
(✓1)•(r) = ✓1(r) is a proper point of P2 and a base-point of (✓1⌧1)�1. Let p

ji be
the image by ✓1 of the contracted conic not passing through p

i

. The map ✓1⌧1 is
of degree 6 and p

ji , p̄ji are base-points of (✓1⌧1)�1 of multiplicity 3. By Lemma 3.3
there exists ⌧2 2 J� of degree 2 with base-points ✓(r), p

ji , p̄ji . The map ⌧2✓1⌧1 2 J�
is a standard or special quintic transformation contracting the conics C

p4 , Cp̄4 .
Hence, by Lemma 5.6, Remark 5.5 and Lemma 5.7, there exist ⌫1, . . . , ⌫2m 2 J� of
degree  2 such that ✓2 = ⌫2m · · · ⌫

m+1(⌧2✓1⌧�1
n

)⌫
m

· · · ⌫1. Then

✓1(✓2)
�1 =

�
✓1(⌫m · · · ⌫1)�1(⌧1)✓

�1
1 )

�
⌧2)

�1(⌫2m · · · ⌫
m+1)

�1.

By Lemma 5.8, all quadratic elements of J� belong to hhAutR(P2)ii, so ✓1(✓2)�1 is
contained in hhAutR(P2)ii. ⇤

Proposition 5.13. Let ' : BirR(P2) !
L

R Z/2Z be the surjective group homo-
morphism defined in Theorem 4.3. Then

ker(') = hhAutR(P
2)ii
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Proof. By definition of ' (see Proposition 4.3), AutR(P2) is contained in ker('),
hence hhAutR(P2)ii ⇢ ker('). Lets prove the other inclusion. Consider the commu-
tative diagram from Proposition 4.3:

AutR(P2) ⇤ J⇤ ⇤ J�
⇡

//

�

✏✏

G ' BirR(P2)

'

vvL
R
Z/2Z

It follows that ker(') = ⇡(ker(�)), which is the normal subgroup generated by
AutR(P2),J� and ker('�). Moreover, AutR(P2) and J⇤ are contained in hhAutR(P2)ii
(Lemma 5.9), thus it su�ces to prove that ker('0) is contained in hhAutR(P2)ii.

By Lemma 3.6, every f 2 ker('�) is the composition of linear, quadratic and
standard quintic elements of J�. Note that a quadratic or quintic element composed
with a linear element is still a quadratic or standard quintic element respectively,
so we can assume that f decomposes into quadratic and standard quintic elements.
For every � 2 R the number of standard quintic elements in the decomposition of
f with image e

�

is even. According to Lemma 5.10 and Lemma 5.11, we can write
f as a composition of quadratic, and standard and special quintic transformations,
such that for each � 2 R, all the standard and special quintic transformations with
image e

�

are next to each other. In particular, for any � the number of standard
and special quintic transformations next to each other that are sent onto e

�

is even.
It follows from Lemma 5.12, Lemma 5.8 and '0(✓) = '0(✓�1) (Remark 3.11 (6))
that f 2 hhAutR(P2)ii. ⇤

Corollary 5.14. We have

hhAutR(P
2)ii = ker(') =

⇥
BirR(P

2),BirR(P
2)
⇤

Proof. The first equality is Proposition 5.13. The normal subgroup
⇥
BirR(P2),BirR(P2)

⇤

contains non-trivial linear elements, and since AutR(P2) is a simple group,
⇥
BirR(P2),BirR(P2)

⇤

contains AutR(P2) and therefore also hhAutR(P2)ii. Thus, the Abelianisation ho-
momorphism factors through '. As ' is a homomorphism onto an Abelian group
it implies that ' is the Abelianisation homomorphism. ⇤

Corollary 5.15 (Corollary 1.3). The sequence of iterated commutated subgroups
of BirR(P2) is stationary. More specifically: Let H := [BirR(P2),BirR(P2)]. Then
[H,H] = H.

Proof. Since AutR(P2) ⇢ H, the group [H,H] contains non-trivial elements of
AutR(P2). But AutR(P2) is simple, hence AutR(P2) ⇢ [H,H]. By Corollary 5.14,
we have

H = hhAutR(P2)ii ⇢ [H,H].

⇤

Theorem 5.16 (Theorem 1.2). The group BirR(P2) is not perfect: its Abelianisa-
tion is isomorphic to

BirR(P
2)/[BirR(P

2),BirR(P
2)] '

M

R
Z/2Z.
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Moreover, the commutator subgroup of [BirR(P2),BirR(P2)] is the normal subgroup
generated by AutR(P2) = PGL3(R), and contains all elements of BirR(P2) of degree
 4.

Proof. Follows from Proposition 4.3, Proposition 5.13 and Corollary 5.14. ⇤
Remark 5.17. The kernel of ' is the normal subgroup N generated by all squares
in BirR(P2): On one hand, for any group G, its commutator subgroup [G,G] is
contained in the normal subgroup of G generated by all squares. On the other
hand, since

L
R Z/2Z is Abelian and all its elements are of order 2, the normal

subgroup of BirR(P2) generated by the squares is contained in ker('). The claim
now follows from ker(') = [BirR(P2),BirR(P2)] (Corollary 5.14).

Remark 5.18. Endowed with the Zariski topology or the Euclidean topology (see
[BF2013]), the group BirR(P2) does not contain any non-trivial proper closed nor-
mal subgroups and hhAutR(P2)ii is dense in BirR(P2) [BZ2015]. In particular, the
quotient topology on

L
R Z/2Z is the trivial topology.

6. Presentation of BirR(P2) by generating sets and relations

This section is devoted to the rather technical proof of Proposition 2.9. We
remind of the notation p1 := [1 : i : 0], p2 := [0 : 1 : i].

Recall that BirR(P2) is generated by AutR(P2),J⇤,J� (Corollary 2.6).
Consider F

S

, the free group generated by the set

S = AutR(P
2) [ J⇤ [ J�.

There is a natural word map w : S ! F
S

, sending an element to its corresponding
word.

Remark 6.1. Let G as in Definition 2.7. There exists a natural surjective homo-
morphism G ! BirR(P2). By abuse of notation, we also denote by

w : AutR [J⇤ [ J� ! G
the composition of S ! F

S

with the canonical projection F
S

! G.
Remark 6.2. In the proof that G ' BirR(P2) (Proposition 2.9) the relations given
in the definition of G (list in Definition 2.7) mostly turn up in the form of the
following examples:

(1) Let ✓ 2 J� be a standard quintic transformation (see Definition 2.2).
Call its base-points p1, p̄1, p2, p̄2, p3, p̄3, and the base-points of its inverse
p1, p̄1, p2, p̄2, p4, p̄4 where p3, p4 are non-real proper points of P2. There ex-
ist i, j 2 {1, 2} such that ✓ sends the pencil of conics passing through
p
i

, p̄
i

, p3, p̄3 onto the pencil of conics passing through p
j

, p̄
j

, p4, p̄4. Let
↵1,↵2 2 AutR(P2) such that ↵1 sends the set {p1, p̄1, p2, p̄2} onto {pi, p̄i, p3, p̄3},
and ↵2 sends the set {p

j

, p̄
j

, p4, p̄4} onto the set {p1, p̄1, p2, p̄2}, i 2 {1, 2}.
Then ↵2✓↵1 2 J� is a standard quintic transformation. The relation w(↵2)w(✓)w(↵1) =
w(↵2✓↵1) holds in G (Definition 2.7 (1)).

(2) Let ⌧ 2 J� be of degree 2 or 3. Let r be the real base-point of ⌧ and s the
real base-point of ⌧�1. Observe that ⌧ sends the pencil of lines through r
onto the pencil of lines through s. There exist ↵1,↵2 2 AutR(P2) such that
(↵1)�1(r) = [1 : 0 : 0] = ↵2(s). Then ↵2⌧↵1 is an element of J⇤ and the
relation w(↵2)w(⌧)w(↵1) = w(↵2⌧↵1) holds in G (Definition 2.7 (2)) .
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(3) Let ⌧1, ⌧2 2 J� of degree 2 with base-points p
i

, p̄
i

, r and p
j

, p̄
j

, s respectively,
and ↵ 2 AutR(P2) such that ↵(p

i

) = p
j

and ↵(r) = s. Then ⌧2↵(⌧1)�1 is
linear. The relation w(⌧2)w(↵)w((⌧1)�1) = w(⌧2↵(⌧1)�1) holds in G ((Def-
inition 2.7 (2)).

(4) Let ⌧1, ⌧2 2 J⇤ be of degree 2 with base-points p := [1 : 0 : 0], r1, r2 and
p, s1, s2 respectively, and ↵ 2 AutR(P2) with ↵(r

i

) = s
i

but ↵(p) 6= p (i.e.
↵ /2 J⇤). Suppose that the base-points of (⌧1)�1, (⌧2)�1 are p, r01, r

0
2 and

p, s01, s
0
2 respectively. Then ⌧3 := ⌧2↵(⌧1)�1 is quadratic with base-points

r01, r
0
2, ⌧1(↵

�1(p)) and its inverse has base-points s01, s
0
2, ⌧2(↵(p)). There exist

�1,�2 2 AutR(P2), ⌧̃3 2 J⇤ of degree 2 such that ⌧3 = �2⌧̃3�3. The relation
w(�2)w(⌧̃3)w(�2) = w(⌧2)w(↵)w(⌧1) holds in G (Definition 2.7 (3)).

Remark 6.3. Suppose ✓1, ✓2 2 J� are special quintic transformations (see Def-
inition 3.4). If there exist ↵1,↵2 2 AutR(P2) such that ✓2 = ↵2✓1↵1 then ↵1,↵2

permute p1, p̄1, p2, p̄2 and are thus contained in J�. So, the relation

w(✓2) = w(↵2)w(✓1)w(↵2) () ✓2 = ↵2✓1↵1 in BirR(P
2)

is true in G and even in the generalised amalgamated product of AutR(P2)J⇤,J�
along all the pairwise intersections.

Lookout 6.4. We are going to look at the following three situations: Let g 2
AutR(P2) and f, h 2 BirR(P2) belonging to J⇤ or being standard quintic transfor-
mations.

Suppose that ⇤ is a real linear system of degree D := deg(⇤) and that

deg(h�1(⇤))  D, deg(fg(⇤)) < D

We want to find ✓1, . . . , ✓n 2 AutR(P2) [ J⇤ [ J� such that w(f)w(g)w(h) =
w(✓

n

) · · ·w(✓1)

⇤
g

// g(⇤)

f

##

h�1(⇤)

h

<<

✓1
// //

✓n
// fg(⇤)

and such that the successive images of h�1(⇤) have degree < D or such that the
degree certain elements ✓

i

2 J⇤ drop (Lemma 6.7, Lemma 6.10, Lemma 6.11).
This will then be the key ingredient to prove that G is isomorphic to BirR(P2)

(Proposition 6.12).

Lemma 6.5. Let f 2 J⇤ [J� be non-linear and ⇤ be a real linear system of degree
deg(⇤) = D. Suppose that

deg(f(⇤))  D (resp. deg(f(⇤)) < D).

(1) If f 2 J⇤, there exist two real or a pair of non-real conjugate base-points
q1, q2 of f such that

m⇤([1 : 0 : 0]) +m⇤(q1) +m⇤(q2) � D (resp. > D)

(2) Suppose that f 2 J�. Then there exists a base-point q /2 {p1, . . . , p̄2} of f
of multiplicity 2 such that

(2.1) m⇤(p1) +m⇤(p2) +m⇤(q) � D (resp. > D)
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or f has a simple base-point r and there exists i 2 {1, 2} such that

(2.2) 2m⇤(pi) +m⇤(r) � D (resp. >).

Moreover, if inequality (2.1) does not hold, we can replace � with > in (2.2)
if deg(f) > 2.

Proof. Define d := deg(f) to be the degree of f .
(1) Suppose that f 2 J⇤. Its characteristic is (d; d � 1, 12d�2). Let r1, . . . , r2d�2

be its simple base-points. Since non-real base-points come in pairs, f has an even
number N of real base-points. Call m

i

:= m⇤(ri) the multiplicity of ⇤ in r
i

and
m0 = m⇤([1 : 0 : 0]) the one in [1 : 0 : 0]. We order the base-points such that either
r2i�1, r2i are real or r2i = r̄2i�1 for i = 1, . . . , d� 1. Then

D � deg(f(⇤)) =dD � (d� 1)m0 �
d�1X

i=1

(m2i�1 +m2i)

=D +
d�1X

i=1

(D �m0 �m2i�1 �m2i)

Hence there exists i0 such that D  m0�m2i0�1�m2i0 . The claim for ”>” follows
analogously.

(2) Suppose that f 2 J�. By Lemma 3.1, its characteristic is (d; d�1
2

4
, 2

d�1
2 ) or

(d; d

2

2
, d�2

2

2
, 2

d�2
2 , 1).

Assume that f has no simple base-point. Call r1, . . . , r(d�1)/2 its base-points
of multiplicity 2. Let m

i

:= m⇤(pi) be the multiplicity of ⇤ in p
i

, i = 1, 2 and
a
i

:= m⇤(ri) the one in r
i

. Then

D � deg(f(⇤)) = dD � 2m1 ·
d� 1

2
� 2m2 ·

d� 1

2
� 2

(d�1)/2X

i=1

a
i

= D + 2

(d�1)/2X

i=1

(D �m1 �m2 � a
i

)

which implies that there exists i0 such that 0 � D �m1 �m2 � a
i0 . The claim for

”>” follows analogously.
Assume that f has a simple base-point r. Let r1, . . . , r(d�2)/2 be its base-points

of multiplicity 2, a
i

:= m⇤(ri) the multiplicity of ⇤ in r
i

, and m
i

:= m⇤(pi) the
one in p

i

. Then

D � deg(f(⇤)) = dD � 2m
j

· d
2
� 2m

k

· d� 2

2
� (2

(d�2)/2X

i=1

a
i

)�m⇤(r)

= D + (D � 2m
j

�m⇤(r)) + 2

(d�2)/2X

i=1

(D �m
j

�m
k

� a
i

)

where {j, k} = {1, 2}. The inequality implies there exist i0 such that 0 � D�m
j

�
m

k

� a
i0 or that 0 � D � 2m

j

�m⇤(r). The claim for ”>” follows analougously.
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Suppose that 0 < D�m
j

�m
k

�a
i

for all i = 1, . . . , d�2
2 , i.e. , 1  D�m

j

�m
k

�a
i

for all i = 1, . . . , d�2
2 . We obtain from the calculations above that

0 � (D � 2m
j

�m⇤(r)) + 2

(d�2)/2X

i=1

(D �m
j

�m
k

� a
i

)

� (D � 2m
j

�m⇤(r)) + (d� 2)

Assume that d > 2, i.e. since d is even here, d � 4. The inequality above implies

�2 � �(d� 2) � D � 2m
j

�m⇤(r)

and so

2m
j

+m⇤(r) � D + 2 > D.

⇤

Notation 6.6. For a pair of non-real points q, q̄ 2 P

2 or infinitely near, we denote
by q the set {q, q̄}.

Lemma 6.7. Let f, h 2 J� be standard or special quintic transformations, g 2
AutR(P2) and ⇤ be a real linear system of degree D. Suppose that

deg(h�1(⇤))  D and deg(fg(⇤)) < D.

Then there exists ✓1 2 AutR(P2), ✓2, . . . , ✓n 2 AutR(P2) [ J� such that

(1) w(f)w(g)w(h) = w(✓
n

) · · ·w(✓1) holds in G, i.e. the following diagram cor-
responds to a relation in G:

⇤
g

// g(⇤)

f

##

h�1(⇤)

h

<<

✓1
// //

✓n
// fg(⇤)

(2) deg(✓
i

· · · ✓1h�1(⇤)) < D for i = 2, . . . , n.

Proof. The maps h�1 and f have base-points p1, p̄1, p2, p̄2, p3, p̄3 and p1, p̄1, p2, p̄2, p4, p̄4
respectively, for some non-real points p3, p4 that are in P

2 or infinitely near one
of p1, . . . , p̄2. Denote by m(q) := m⇤(q) the multiplicity of ⇤ at q. According to
Lemma 6.5 we have

(Ineq0) m(p1) +m(p2) +m(p3) � D, m
g(⇤)(p1) +m

g(⇤)(p2) +m
g(⇤)(p4) > D

We choose r1, r2, r3 with {r1, r2, r3} = {p1, p2, p3} such that m(r1) � m(r2) � m(r3)
and such that if r

i

is infinitely near r
j

, then j < i. Similarly, we choose r4, r5, r6
with {r4, r5, r6} = g�1({p1, p2, p4}). In particular, r1, r4 are proper points of P2.

The two inequalities (Ineq0) translate to

(Ineq1) m(r1) +m(r2) +m(r3) � D, m(r4) +m(r5) +m(r6) > D

We now look at four cases, depending of the number of common base-points of
fg and h�1.

Case 0: If h�1 and fg have six common base-points, then ↵ := fgh is linear and
w(g)w(h)w(↵�1) = w(f�1) (Definition 2.7 (1)).



THE ABELIANISATION OF THE REAL CREMONA GROUP 29

Case 1: Suppose that h�1 and fg have exactly four common base-points. There
exists ↵1 2 AutR(P2) such that ↵1 sends the common base-points onto p1, . . . , p̄2
if all the common points are proper points of P

2, and onto p
i

, p̄
i

, p3, p̄3 if p3, p̄3
are infinitely near p

i

, p̄
i

(cf. Remark 6.2). There exist ↵2,↵3 2 AutR(P2) such that
f̃ := ↵3fg(↵1)�1 2 J� and h̃ := ↵1h↵2 2 J� (see Lemma 2.5). The commutative
diagram

⇤
fg

**

↵1

✏✏

h�1(⇤)

h

44

↵2

// ↵2h
�1(⇤)

h̃

//

✓2

99

↵1(⇤)
f̃

// ↵3fg(⇤) fg(⇤)
↵3

oo

is generated by relations in G (Definition 2.7 (1), Remark 6.2, Remark 6.3). Write
✓2 := f̃ h̃ 2 J�. The claim now follows with ✓1 := ↵1, ✓2, ✓3 := (↵3)�1.

Case 2: Suppose that the set r1[r2[r4[r5 consists of 6 points r
i1 , r̄i1 , . . . , ri3 , r̄i3 .

If at least four of them are proper points of P2, inequality (Ineq1) yields

2m(r
i1) + 2m(r

i2) + 2m(r
i3) > D,

which implies that the six points r
i1 , r̄i1 , . . . , ri3 , r̄i3 are not contained in one conic.

By this and by the chosen ordering of the points, there exists a standard or special
quintic transformation ✓ 2 J�, ↵ 2 AutR(P2) such that those six points are the
base-points of ✓↵. By construction, we have

deg(✓↵(⇤)) = 5D � 4m(r
i1)� 4m(r

i2)� 4m(r
i3) < D,

and h�1, ✓↵ and ✓↵, fg each have four common base-points. We apply Case 1 to
h,↵, ✓ and to ✓�1, g↵�1, f .

If only two of the six points are proper points of P2, then the chosen ordering
yields q = r1 = r4 and the points in r2 [ r5 are infinitely near points. Since h, f are
standard or special quintic transformations, it follows that r3, r6 are both proper
points of P2. We choose i 2 {3, 6}, j 2 {2, 5} with m(r

i

) = max{m(r3),m(r6)} and
m(r

j

) = max{m(r2),m(r5)}. We have

2m(r1) + 2m(r
j

) + 2m(r
i

) � 2m(r4) + 2m(r5) + 2m(r6) > D.

Thus the six points in r1 [ r
i

[ r
j

are not contained on one conic and there exists a
standard or special quintic transformation ✓ 2 J�, ↵ 2 AutR(P2) such that the base-
points of ✓↵ are r1 [ r

i

[ r
j

. Again, the maps h�1, ✓↵ and ✓↵, fg have four common
base-points, deg(✓↵(⇤)) < D and we apply Case 1 to h,↵, ✓ and to ✓�1, g↵�1, f .

Case 3: Suppose that r1 [ r2 [ r4 [ r5 consists of eight points. Then r1 [ r2 [ r4
and r1 [ r4 [ r5 each consist of six points. We have by inequality Ineq1 and by the
chosen ordering that

2m(r1) + 2m(r2) + 2m(r4) > 2D, 2m(r1) + 2m(r4) + 2m(r5) > 2D,

so the points in each set r1[r2[r4 and r1[r4[r5 are not on one conic. Moreover, at
least four points in each set are proper points of P2 (r1, r4 2 P

2). Therefore, there
exist standard or special quintic transformations ✓1, ✓2 2 J�, ↵1,↵2 2 AutR(P2)
such that ✓1↵1 (resp. ✓2↵2) has base-points r1 [ r2 [ r4 (resp. r1 [ r4 [ r5). Then
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deg(✓
i

↵
i

(⇤)) < D and we can apply Case 1 to h,↵�1
1 , ✓1 and to (✓1)�1,↵2(↵1)�1, ✓2

and to (✓2)�1, g(↵2)�1, f . ⇤
Remark 6.8. Let f 2 J⇤, and q1, q2 two simple base-points of f . Then by Bézout,
the points [1 : 0 : 0], q1, q2 are not collinear. (This means that they do not belong,
as proper points of P2 or infinitely near points, to the same line.)

Notation 6.9. In the following diagrams, the points in the brackets are the base-
points of the corresponding birational map (arrow). A dashed arrow indicates a
birational map, and a drawn out arrow a linear tranformation.

Lemma 6.10. Let f, h 2 J⇤, g 2 AutR(P2) and ⇤ be a real linear system of degree
D. Suppose that

deg(h�1(⇤))  D, deg(fg(⇤)) < D

Then there exist ✓1, . . . , ✓n 2 AutR(P2) [ J⇤ [ J� such that

(1) w(f)w(g)w(h) = w(✓
n

) · · ·w(✓1) holds in G, i.e. the following commutative
diagram corresponds to a relation in G:

⇤
g

// g(⇤)

f

##

h�1(⇤)

h

<<

✓1
// //

✓n
// fg(⇤)

(2) ✓1 2 AutR(P2), deg(✓
i

· · · ✓1h�1(⇤)) < D for i = 2, . . . , n
(3) or ✓1 2 J⇤, ✓2 2 AutR(P2), deg(✓1) = deg(h)� 1 and

deg(✓1(⇤)) = deg(✓2✓1(⇤))  D

deg(✓
i

· · · ✓1h�1(⇤)) < D, i = 3, . . . , n.

Proof. If g 2 J⇤ then w(f)w(g)w(h) = w(fgh) in J⇤. So, lets assume that g /2 J⇤.
Let p := [1 : 0 : 0], q := g�1([1 : 0 : 0]). Let m(q) be the multiplicity of ⇤ in q. By
Lemma 6.5 there exists r1, r2 base-points of h�1 and s1, s2 base-points of fg such
that

(F) m(p) +m(r1) +m(r2) � D, m(q) +m(s1) +m(s2) > D

and either r1, r2 (resp. s1, s2) are both real or a pair of non-real conjugate points.
We can assume that m(r1) � m(r2), m(s1) � m(s2) and that r1 (resp. s1) is a
proper point of P2 or in the first neighbourhood of p (resp. q) and that r2 (resp. s2)
is a proper point of P2 or in the first neighbourhood of p (resp. q) or r1 (resp. s1).

Note that if deg(h�1(⇤)) < D, then by Lemma 6.5 ”>” holds in all inequalities.
We split the remain of the proof into three Situations, depending on whether or
not there exist ⌧1, ⌧2 2 BirR(P2) with base-point p, r1, r2 and p = g(q), g(s1), g(s2)
respectively.

- Situation 1 - Assume that there exist ⌧1, ⌧2 2 J⇤ of degree 2 with base-points
p, r1, r2 and p = g(q), g(s1), g(s2) respectively, and that ⌧1, ⌧2g have common base-points.

Observe that ⌧1h, f(⌧2)�1 2 J⇤ and deg(⌧1h) = deg(h)�1, and by inequality (F)
that

deg(⌧1(⇤)) = 2D �m(p)�m(r1)�m(r2)  D,

deg(⌧2g(⇤)) = 2D �m(q)�m(s1)�m(s2) < D

We are going to look at three cases, depending on the common base-points of ⌧1, ⌧2.
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• If ⌧1 and ⌧2g have three common base-points, the map ⌧2g(⌧1)�1 is linear. The
commutative diagram

⇤
g

//

⌧1

✏✏

g(⇤)

f

  

⌧2

✏✏

h�1(⇤)

h

::

// ⌧1(⇤) // ⌧2g(⇤) //

is generated by relations in G (Definition 2.7 (2)), and the claim follows with ✓1 :=
Id, ✓2; = ⌧1h, ✓3 := ⌧2g(⌧1)�1, ✓4 := f(⌧2)�1.

• If ⌧1 and ⌧2g have exactly two common base-points, the map ⌧2g(⌧1)�1 is of
degree 2 and there exists ↵1,↵2 2 AutR(P2), ⌧3 2 J⇤ such that ⌧2g(⌧1)�1 = ↵2⌧3↵1.

The situation is summarised in the following commutative diagram

⇤
g

//

⌧1
[p,r1,r2]

✏✏

g(⇤)

⌧2

[g(q),g(s1),g(s2)]

%%

f

**

h�1(⇤)

h

00

deg(h)�1
// ⌧1(⇤)

↵1
// ↵1⌧1(⇤)

⌧3
// ⌧3↵1⌧1(⇤)

↵2
// ⌧2(⇤) // fg(⇤)

Observe that is generated by relations in G (Definition 2.7 (3)) and that

deg(↵1⌧1(⇤)) = deg(⌧1(⇤))  D, deg(⌧3↵1⌧1(⇤)) = deg(⌧2(⇤)) < D.

The claim follows with ✓1 := ⌧1h, ✓2 := ↵1, ✓3 := ⌧3, ✓4 := ↵2, ✓5 := f(⌧2)�1.
• If ⌧1 and ⌧2g have exactly one common base-point, then ⌧2g(⌧1)�1 is of degree

3 and there exists ↵1,↵2 2 AutR(P2), ⌧3 2 J⇤ of degree 3 such that ⌧2g(⌧1)�1 =
↵2⌧3↵1, which corresponds to a relation in G (Definition 2.7 (3)). The situation can
be visualised with the diagram of the previous case, and here too, deg(↵1⌧1(⇤)) =
deg(⌧1(⇤))  D, deg(⌧3↵1⌧1(⇤)) = deg(⌧2(⇤)) < D. The claim follows, as above,
with ✓1 := ⌧1h, ✓2 := ↵1, ✓3 := ⌧3, ✓4 := ↵2, ✓5 := f(⌧2)�1.

- Situation 2 - As in Situation 1, we assume that there exist ⌧1, ⌧2 2 J⇤ of
degree 2 with base-points p, r1, r2 and p = g(q), g(s1), g(s2) respectively. Opposed to
Situation 1, we now assume that ⌧1, ⌧2g have no common base-points.

We put ✓1 := ⌧1h, ✓n := f(⌧2)�1 and construct ✓2, . . . , ✓n�1 as follows in the
below three cases, which depend on the r

i

’s and s
i

’s begin real point or non-real
points:

• If r1, r2, s1, s2 are real points, let {a1, a2, a3} = {p, r1, r2} and {b1, b2, b3} =
{g(q), g(s1), g(s2)} such that m(a

i

)  m(a
i+1) and m(b

i

)  m(b
i+1), i = 1, 2, 3,

and if a
i

(resp. b
i

) is infinitely near a
j

(resp. b
j

) then j > i. From inequalities (F),
we obtain

m(a1) +m(a2) +m(b1) > D, m(a1) +m(b1) +m(b2) > D.

By them and the chosen ordering, there exists ⌧3, ⌧4 2 J⇤ of degree 2, ↵1,↵2 2
AutR(P2) such that ⌧3↵1, ⌧4↵2 have base-points a1, a2, b1 and a1, b1, b2 respectively.
The situation is summarised in the following commutative diagram

⇤ //

⌧3↵1

[a1,a2,b1]

✏✏

⌧1

[a1,a2,a3]

zz

g(⇤)

⌧2

[b1,b2,b3]

%%

⌧4↵2
[a1,b1,b2]

✏✏

f

$$

h�1(⇤)

h

--

deg(h)�1
// ⌧1(⇤) ⌧3↵1(⇤) ⌧4↵2g(⇤) ⌧2g(⇤) // fg(⇤)
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By construction of ⌧3, ⌧4, we have

deg(⌧3↵1(⇤)) = 2D �m(a1)�m(a2)�m(b1) < D,

deg(⌧4↵2g(⇤)) = 2D �m(a1)�m(b1)�m(b2) < D

The maps ⌧1, ⌧3↵1, the maps ⌧3↵1, ⌧4↵2 and the maps ⌧4↵2, ⌧2 each have two
common base-points, and we proceed with each pair as in Situation 1 to obtain
✓2, . . . , ✓n�1.

• Assume that r2 = r̄1 and s1, s2 are real points. If m(q) � m(p), then

m(q) + 2m(r1) > D

hence q, r1, r̄1 are not collinear and there exists ⌧3 2 J⇤ of degree 2 with base-points
g(q), g(r1), g(r2).

If m(q) < m(p), then

m(p) +m(q) +m(s1) > m(q) +m(s1) +m(s2) > D

hence there exists ⌧4 2 J⇤ of degree 2 with base-points p, q, s1. Note that ⌧2(⌧3)�1, ⌧4(⌧1)�1 2
J⇤. The situation is summarised in the following commutative diagrams.

⇤

⌧1

✏✏

g

// g(⇤)

⌧2

[g(q),g(s1),g(s2)]

$$

⌧3
[g(q),g(r1),g(r2)]

✏✏

⌧1(⇤) ⌧3(⇤) // ⌧2g(⇤),

⇤

⌧1

[p,r1,r2]

{{

⌧4

[p,q,s1]

✏✏

g

// g(⇤)

⌧2

✏✏

⌧1(⇤) // ⌧4(⇤) ⌧2g(⇤)

By construction of ⌧3, ⌧4, we have

deg(⌧3g(⇤)) < D, deg(⌧4(⇤)) < D

The maps ⌧1, ⌧3g, the maps ⌧4, ⌧2g are of degree 2 with one common base-point and
we obtain ✓2, . . . , ✓n�1 as in Situation 1.

• If r2 = r̄1 and s2 = s̄1, then r1, r̄2, s1, s̄1 are proper points of P2. Moreover, no
three collinear: Else, all four would be on one line and so 2m(r1) + 2m(s1)  D.
But then the inequality (obtained from inequalities (F))

(Ineq2) (m(p) + 2m(r1)) + (m(q) + 2m(s1)) > 2D

would imply m(p) +m(q) > D, which is impossible by Bézout. Since no three are
collinear, there exists ↵,�, � 2 AutR(P2) such that ↵(r1) = p1,↵(s1) = p2 and
⌧̃1 := �⌧1↵

�1 2 J�, ⌧̃2 := �⌧2g↵
�1 2 J� (see Remark 6.2). These correspond to

relations in G (Definition 2.7 (2)).

⇤
g

//

↵

✏✏

⌧1
zz

g(⇤)

⌧2

✏✏

⌧1(⇤)
�

$$

↵(⇤)

⌧̃1

✏✏

⌧̃2

%%

⌧2(⇤)

�

✏✏

�⌧1(⇤) // �⌧2g(⇤)

Note that ⌧̃2(⌧̃1)�1 2 J� and we get from the inequalities at the very beginning of
the proof that

deg(�1⌧1(⇤)) = deg(⌧1(⇤))  D, deg(�⌧2g(⇤)) = deg(⌧2g(⇤)) < D.
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The claim follows with ✓2 := �, ✓3 := ⌧̃2(⌧̃1)�1, ✓3 = ✓
n�1 = ��1.

- Situation 3 - Assume that there exists no ⌧1 2 J⇤ or no ⌧2 2 J⇤ of degree 2
with base-points p, r1, r2 and p = g(q), g(s1), g(s2) respectively.

We essentially look at two cases, depending on who of ⌧1, ⌧2 exists:
• Assume that neither ⌧1 nor ⌧2 exists. Since p, r1, r2 (resp. q, s1, s2) are not

collinear by Lemma 6.8, it follows that r1, r2 are both proximate to p and s1, s2
are both proximate to q [AC2002, §2]. Then m(p) � m(r1) + m(r2), and from
Inequalities (F) we obtain 2m(p) � m(p) +m(r1) +m(r2) � D. Similarly we get
2m(q) > D. But then m(p) � D

2 and m(q) > D

2 , which is impossible by Bézout.
So, this case does not appear.

• Assume that ⌧1 exists, but ⌧2 does not. As above, it follows that s1, s2 are both
proximate to q and hence m(q) > D

2 . In particular, by Bézout,

m(q) > m(s1),m(s2),m(p),m(r1),m(r2).

Furthermore, ⌧1h 2 J⇤ and (from Inequalities (F))

deg(⌧1h) = deg(h)� 1, deg(⌧1(⇤)) = 2D �m(p)�m(r1)�m(r2)  D.

We define ✓1 := ⌧1h and construct ✓2, . . . , ✓n.
If r1, r2 are real, let {t1, t2, t3} = {p, r1, r2} such that m(t

i

) � m(t
i+1) and such

that if t
i

is infinitely near t
j

then i > j. By the chosen ordering, we have

m(t1) +m(t2) +m(q) � 2D

3
+

D

2
> D.

Moreover, t1, t2 are proper points of P2 or t2 is in the first neighbourhood of t1,
hence there exist ⌧3 2 J⇤ with base-points [1 : 0 : 0] = g(q), g(t1), g(t2).

If r2 = r̄1, then r1, r̄2 are proper points of P2 (they are base-points of ⌧1). We
have from inequalities (F) and m(q) > m(p) and that

m(q) + 2m(r1) > m(p) + 2m(r1) � D.

Thus there exists ⌧4 2 J⇤ with base-points [1 : 0 : 0] = g(q), g(r1), g(r̄2).

⇤
g

//

⌧1

[p,r1,r2]

✏✏

g(⇤)

f

&&

⌧3/

⌧4
[g(q),g(r1),g(r̄2)]

[g(q),g(t1),g(t2)]/

✏✏

h�1(⇤)

h

::

deg(h)�1

✓1
// ⌧1(⇤) ⌧3g(⇤)/⌧4g(⇤)

✓7
// fg(⇤)

The maps f(⌧3)�1 and f(⌧4)�1 are contained in J⇤ and

deg(⌧3g(⇤)) = 2D �m(q)�m(t1)�m(t2) < D,

deg(⌧4g(⇤)) = 2D �m(q)� 2m(r1) < D

Define ✓7 := f(⌧3)�1 (resp. = f(⌧4)�1). We obtain ✓2, . . . , ✓6 by applying Situation
1 to ⌧1, ⌧3g (resp. ⌧1, ⌧4g).

• The case where ⌧1 does not exist and ⌧2 exists is treated similarly. ⇤

Lemma 6.11. Let f 2 J� be a standard or special quintic transformation, h 2 J⇤,
g 2 AutR(P2) and ⇤ be a real linear system of degree D. Suppose that

deg(h�1(⇤))  D, deg(fg(⇤)) < D

Then there exist ✓1, . . . , ✓n 2 AutR(P2) [ J⇤ [ J� such that
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(1) w(f)w(g)w(h) = w(✓
n

) · · ·w(✓1) holds in G, i.e. the following commutative
diagram corresponds to a relation in G:

⇤
g

// g(⇤)

f

##

h�1(⇤)

h

<<

✓1
// //

✓n
// fg(⇤)

(2) ✓1 2 AutR(P2), deg(✓
i

· · · ✓1h�1(⇤)) < D for i = 2, . . . , n
or ✓1 2 J⇤, ✓2 2 AutR(P2), deg(✓1) = deg(h)� 1 and

deg(✓1(⇤)) = deg(✓2✓1(⇤))  D,

deg(✓
i

· · · ✓1h�1(⇤)) < D, i = 3, . . . , n.

(3) If h 2 J� is a standard or special quintic transformation and f 2 J⇤, the
same statements holds with

✓1 2 AutR(P
2), deg(✓

i

· · · ✓1h�1(⇤)) < D, i = 2, . . . , n

If deg(h�1(⇤)) < D, then ”<” holds everywhere.

Proof. We only look at the situation, where f 2 J�, h 2 J⇤, since for f 2 J⇤,
h 2 J� the proof works similarly.

Let p := [1 : 0 : 0], and define m(q) := m⇤(q) to be the multiplicity of ⇤ at q.
Call p1, . . . , p̄2, p3, p̄3 the base-points of f . By Lemma 6.5 we have

(Ineq3) m(p1) +m(p2) +m(p3) > D

By Lemma 6.5 there exist two real or two non-real conjugate base-points r1, r2 of
h, such that

(Ineq4) m(p) +m(r1) +m(r2) � D

Note that if deg(h�1(⇤)) < D, then ”>” holds everywhere (Lemma 6.5) and we
will have ”<” everywhere.

We order r1, r2 such that m(r1) � m(r2) and such that r1 is a proper point of
P

2 or infinitely near p and r2 is a proper base-point of P2 or infinitely near p or r1.
Let s1 [ s2 [ s3 = g�1(p1 [ p2 [ p3) such that m(s1) � m(s2) � m(s3) and if s

i

is infinitely near s
j

, then i > j. In particular, s1 is a proper point of P2. We now
look at two cases, depending on whether r1, r2 are real or not. Inequality (Ineq3)
translates to

(Ineq5) m(s1) +m(s2) +m(s3) > D

We look at two cases, depending on whether r1, r2 are real or not.

Case 1: Suppose that r1, r2 are real points. Let t 2 {p, r1, r2} \ P

2 such that
m(t) = max{m(p),m(r1),m(r2)}. Then

m(t) + 2m(s1) > D

There exists ⌧ 2 J⇤ of degree 2, ↵ 2 AutR(P2) such that ✓↵ has base-points t, s1, s̄1.
There exists �1,�2,�3 2 AutR(P2) such that ⌧̃ := �1g(⌧↵)�1�1, f̃ := �3f(�2)�1 2
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J� (see Remark 6.2). The situation is summarised in the following commutative
diagram:

⇤
g

//

⌧↵

[q,s1,s̄1]

✏✏

g(⇤)
f

''

�2

$$h�1(⇤)

h

::

⌧↵(⇤) (�1)�1⌧↵(⇤)
�1

oo

⌧̃

//

77

f̃

// �3fg(⇤) fg(⇤)
�3
oo

It is generated by relations in G (Definition 2.7 (2)). Moreover,

deg((�1)
�1⌧↵(⇤)) = deg(⌧↵(⇤)) = 2D �m(q)� 2m(s1) < D

The claim now follows from applying Lemma 6.10 to h,↵, ⌧ .

Case 2: Assume that r2 = r̄1. If r1, r̄1 2 s1 [ s2 [ s2, then in particular, r1, r̄1
are proper points of P2, and by Remark 6.8 the points p, r1, r̄1 are not collinear.
So, there exists ⌧ 2 J⇤ of degree 2 with base-points p, r1, r̄1. Let ↵1,↵2,↵3 2 J�
such that ⌧̃ := ↵2⌧↵1 2 J�, f̃ := ↵3fg↵1 2 J�. The situation is summarised in the
following commutative diagram:

h(⇤)
g

//

⌧

✏✏

g(⇤)

f

$$

h�1(⇤)

deg(h)�1
##

h

;;

(↵1)�1(⇤)

⌧̃

✏✏

f̃

&&

↵1

ee

fg(⇤)

↵3

zz

⌧(⇤)
↵2
// ⌧̃(↵1)�1(⇤) // ↵3fg(⇤)

It is generated by relations in G (Definition 2.7 (2)). Note that deg(⌧h) = deg(h)�1
and

deg(⌧̃(↵1)
�1(⇤)) = deg(⌧(⇤))  D, deg(↵3fgh(⇤)) = deg(fg(⇤)) < D

The claim follows with ✓1 := ⌧h, ✓2 := ↵2, ✓3 := f̃ ⌧̃ , ✓4 := (↵3)�1.
So, lets assume that r1, r̄1 /2 s1 [ s2 [ s2.
• If m(p) < m(r1), then in particular r1, r̄1 are proper points of P2 and there

exists ⌧ 2 J⇤ with base-points p, r1, r̄1. Remark that

deg(⌧(⇤))  D, deg(⌧h) = deg(h)� 1.

Furthermore, from inequality (Ineq5) and the order of the s
i

’s we derive the inequal-
ity 2m(r1) + 2m(s1) + 2m(s2) > 2D. Since moreover r1, s1 are proper points of P2,
there exists a standard or special quintic transformation ✓ 2 J�, ↵ 2 AutR(P2) such
that ✓↵ has base-points g(r1 [ s1 [ s2). Consider the following diagram

⇤
g

//

⌧

✏✏

g(⇤)

✓↵

✏✏

f

$$

h�1(⇤)
deg(h)�1

//

h

;;

⌧(⇤) ✓↵g(⇤) fg(⇤)

Note that by construction of ✓, we have

deg(✓↵g(⇤)) = 5D � 4m(r1)� 4m(s1)� 4m(s2) < D
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The maps ⌧,↵g, ✓ are in the situation of the Case 1, and ✓,↵, f satisfy the assump-
tions of Lemma 6.7, and the claim follows from them.

• If m(p) � m(r1), then m(p) + 2m(s1) > D and so there exists ⌧ 2 J⇤ with
base-points p, s1, s̄1. We proceed as in Case 1 (where r1, r2 are real but the map we
construct is of the same kind). ⇤

Proposition 6.12. ([ Proposition 2.9 ]) Let f1, . . . , fm 2 AutR(P2)[J⇤ [J� such
that

f
m

· · · f1 = Id in BirR(P
2).

Then

w(f
m

) · · ·w(f1) = 1 in G.
In particular, the natural surjective homomorphism G ! BirR(P2) is an isomor-
phism.

Proof. Let ⇤0 be the linear system of lines in P

2, and define

⇤
i

:= (f
i

· · · f1)(⇤0)

It is the linear system of the map (f
i

· · · f1)�1 and of degree d
i

:= deg(f
i

· · · f1).
Define

D := max{d
i

| i = 1, . . . ,m}, n := max{i | d
i

= D}, k :=
nX

i=1

(deg(f
i

)� 1)

We use induction on the lexicographically ordered pair (D, k).
If D = 1, then f1, . . . , fm are linear maps, and thus w(f

m

) · · ·w(f1) = 1 holds in
AutR(P2) (and hence in G). So, lets assume that D > 1. Note that by construction
deg(f

n+1) � 2. We may assume that f
n

is a linear map - else we can insert Id after
f
n

, i.e. w(f
m

) · · ·w(f1) = w(f
m

) · · ·w(f
n+1)w(Id)w(fn) · · ·w(f1), which does not

change (D, k).
We now construct maps ✓1, . . . , ✓N 2 AutR(P2) [ J⇤ [ J� such that

w(f
n+1)w(fn)w(fn�1) = w(✓

N

) · · ·w(✓1)

and such that the pair (D̃, k̃) associated to f
m

· · · f
n+1✓N · · · ✓1fn�2 · · · f1 is strictly

smaller than (D, k).

If f
n�1, fn+1 2 J⇤, we apply Lemma 6.10 to f

n�1, fn, fn+1 to decrease (D, k).

If f
n�1 2 J� or f

n+1 2 J�, we have to look at three cases, depending on to which
group they belong to. We will only do one case as the other two are done similarly.

Suppose that f
n�1 2 J� and f

n+1 2 J⇤. By Lemma 6.5, there exists a base-
point q of (f

n�1)�1 of multiplicity 2 such that m(p1)+m(p2)+m(q) � D, or there
exists i 2 {1, 2} such that 2m(p

i

) + m(r) � D, where r is the simple base-point
of (f

n�1)�1. We can assume that q is either a proper point of P2 or in the first
neighbourhood of one of p1, p̄1, p2, p̄2.

• If m(p1)+m(p2)+m(q) � D for some non-real base-point q of (f
n�1)�1 of mul-

tiplicity 2, then p1, . . . , p̄2, q, q̄ are not one one conic (Lemma 3.1). So, there exists a
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standard or special quintic transformation ✓ 2 J� with base-points p1, . . . , p̄2, q, q̄.
Then ✓f

n�1 2 J� and

(⇤) deg(✓f
n�1) = deg(f

n�1)� 4 < deg(f
n�1), deg(✓(⇤

n�1))  D.

Applying Lemma 6.11 to ✓�1, f
n

, f
n+1 decreases (D, k).

• If m(p1) + m(p2) + m(q) � D for some real base-point q of f of multiplicity
2, then q is a proper point of P2. If deg(f

n�1) is odd, then by Bézout, q is not
collinear with any two of p1, p̄1, p2, p̄2, and there exists ✓1 2 J� of degree 3 with
base-points q, p1, . . . , p̄2 (Lemma 5.3). If deg(f

n�1) is even, let pi be a base-point of

multiplicity deg(fn�1)
2 . By Bézout, q is not collinear with any two of {p1, p̄1, p2, p̄2}

except maybe p3�i

, p̄3�i

. It follows from Lemma 3.3 that there exists ✓2 2 J� of
degree 2 with base-points q, p

i

, p̄
i

. Note that for i = 1, 2, ✓
i

f
n+1 2 J� and

(⇤⇤) deg(✓
i

f
n�1) = deg(f

n�1)� 2 < deg(f
n�1), deg(✓(⇤

n�1))  D

There exist ✓̃
i

2 J⇤ and ↵1,↵2 2 AutR(P2) such that ✓
i

= ↵2✓̃i↵1. By Defini-
tion 2.7 (2), w(✓

i

) = w(↵2)w(✓̃i)w(↵1) and we can apply Lemma 6.10 to ✓̃�1 , f
n

(↵1)�1, f
n+1,

which decreases (D, k).
• Suppose that there is no base-point q of multiplicity 2 such that m(p1) +

m(p2) +m(q) � D, which means by Lemma 6.5 that

(1) d is even,
(2) m(r) + 2m(p

i

) � D, i 2 {1, 2},
(3) 2m(p

i

) +m(r) > D if deg(f
n�1) > 2.

If deg(f
n�1) = 2, there exist ↵,� 2 AutR(P2), ⌧ 2 J⇤ such that f

n�1 = �⌧↵ 2 J⇤.
Aplplying Lemma 6.10 to ⌧, f

n

↵�1, f
n+1 decreases (D, k).

If deg(f
n�1) > 2, the point r may not be a proper point of P2. We denote by s

the proper point of P2 to which r is infinitely near to, if r is not a proper point of
P

2, and s = r if r is a proper point of P2. The above list still holds if we write s
instead of r. In particular, p

i

, p̄
i

, s are not collinear and so there exists ⌧ 2 J� of
degree 2 with base-points s, p

i

, p̄
i

(Lemma 3.3). Then ⌧f
n�1 2 J� and

deg(⌧(⇤
n�1)) = 2D �m(r)� 2m(p

i

) < D.

The situation is summarised in the following commutative diagram:

⇤
n�1

fn
//

⌧

✏✏

⇤
n

fn+1

��⇤
n�1

fn�1

::

// ⌧(⇤
n�1)

There exist ↵,� 2 AutR(P2), ⌧̃ 2 J⇤ of degree 2 such that ⌧ = �⌧̃↵. Applying
Lemma 6.10 to ⌧, f

n

↵�1, f
n+1 decreases (D, k). ⇤
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