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Torsion points on families of simple abelian surfaces

and Pell’s equation over polynomial rings.

D. Masser and U. Zannier

(with Appendix by V. Flynn)

Abstract. In recent papers we proved a special case of a variant of Pink’s Conjecture for a variety inside

a semiabelian scheme: namely for any curve inside anything isogenous to a product of two elliptic schemes.

Here we go beyond the elliptic situation by settling the crucial case of any simple abelian surface scheme

defined over the field of algebraic numbers, thus confirming an earlier conjecture of Shou-Wu Zhang. This

is of particular relevance in the topic, also in view of very recent counterexamples by Bertrand. Furthermore

there are applications to the study of Pell equations over polynomial rings; for example we deduce that

there are at most finitely many complex t for which there exist A,B 6= 0 in C[X] with A2 � DB2 = 1 for

D = X6 +X + t. We also consider equations A2 �DB2 = c0X + c, where the situation is quite di↵erent.

2010 MSC codes. 11G10, 14K15, 14K20, 11G50.

1. Introduction. Motivated by recent work on unlikely intersections, we consider here the following

conjecture to be found in our recent article [MZ2].

Conjecture. Let S be a semiabelian scheme over a variety defined over C, and denote by S [c] the union of

its semiabelian subschemes of codimension at least c. Let V be an irreducible closed subvariety of S. Then

V \ S [1+dimV] is contained in a finite union of semiabelian subschemes of S of positive codimension.

This is a variant of that stated by Pink [Pin] in 2005, which generalized the Zilber Conjectures [Z] of

2002 to schemes.

In [MZ2] (see also [MZ1] for a short version) we verified this conjecture in a special case where S is the

fibred square of the standard Legendre elliptic family, with coordinates (X1, Y1), (X2, Y2), and V is the curve

defined by X1 = 2, X2 = 3. This amounted to the finiteness of the set of complex numbers � 6= 0, 1 such

that the points

(2,
p
2(2� �)), (3,

p
6(3� �)) (1.1)

both have finite order on the elliptic curve E
�

defined by Y 2 = X(X � 1)(X � �).

In [MZ3] we generalized the result to any x-coordinates defined over an algebraic closure of C(�); of

course then the y-coordinates are also defined over this closure. (See the paper [BD] of Baker and DeMarco

for an analogue in the context of algebraic dynamics.) It turns out that this is equivalent to the Conjecture

above with S isogenous to the product of two isogenous elliptic schemes and V a curve.

In [MZ4] we further generalized these results to any product of two elliptic schemes, whether isogenous

or not.
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Here we settle the case of any simple abelian surface scheme defined over the field Q of all algebraic

numbers. Together with the previous results this will easily imply the following result.

Theorem. Let A be an abelian surface scheme over a variety defined over Q, and let V be an irreducible

closed curve in A. Then V \ A[2] is contained in a finite union of abelian subschemes of A of positive

codimension.

This also confirms a conjecture stated in 1998 by Zhang [Zh] (see Remark 4a p.224). Recently Bertrand

[Bert3] discovered a surprising counterexample when the surface scheme is an extension of an elliptic scheme

by the multiplicative group Gm, which is not abelian. Thus it is reassuring to know that no such surprises

exist for the abelian case. In a work [BMPZ] with him and Pillay we have also shown that his are essen-

tially the only counterexamples for semiabelian surfaces. So this work completes the analysis of the above

Conjecture for schemes of relative dimension 2 over Q. See also the second author’s book [Za] (pp.77-80).

And Harry Schmidt has investigated extensions of an elliptic scheme by the additive group Ga (which are

not even semiabelian). In this connexion see also the work [CMZ] with Corvaja.

In the works [MZ3] and [MZ4] we could treat schemes defined over C not just Q, so that becomes a

natural problem here too; there are several very promising approaches involving specialization to the above

Theorem.

From [MZ4] we can assume that A is not isogenous to the product of two elliptic schemes. We will soon

see that the base variety can be assumed to be irreducible of dimension at most one. In case it is a point,

then A is constant and we see the classical result of Manin-Mumford type in the special situation under

consideration. In fact we will appeal to the classical result to eliminate this case.

As in our previous papers we can give simple examples of our theorem for base curves. Thus we get the

finiteness of the set of complex numbers

� 6= 0, 1,�1, i,�i,
�1 +

p�3

2
,
�1�p�3

2
(1.2)

such that the pair of points

(2,
p
2(2� �)(2� �2)(2� �4)), (3,

p
6(3� �)(3� �2)(3� �4)) (1.3)

on the curve defined by

Y 2 = X(X � 1)(X � �)(X � �2)(X � �4) (1.4)

give - via the unique point at infinity on (1.4) - a point of finite order on the Jacobian (compare with (1.1)).

We could have similar examples with a polynomial of degree 6 on the right of (1.4), as the genus remains

2. But we could then replace (1.3) by the two points at infinity, where the matter is well-known since Abel

[Ab] (see also Chebyshev [C1],[C2] and Halphen [H]) to be related to the solvability of the Pell equation over

polynomial rings. Here D is given in say C[X] and we ask whether there exist A,B also in C[X] with

A2 �DB2 = 1, B 6= 0. (1.5)

A necessary condition is clearly that D has even degree. If this is 0 or 2, it is easy to see that the

answer is always yes. If 4, then the answer is usually no. For example, introducing another parameter t
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(algebraically related to �) we find that the answer is yes for D = X4 +X + t if and only if the point (0, 1)

on the elliptic curve y2 = x3 � 4tx+ 1 (256t3 6= 27) is torsion. In [MZ2] (pp.1677,1678) we showed that if �

is in C such that just (2,
p
2(2� �)) in (1.1) is torsion, then � is in Q; and a similar argument holds for the

t here.

But if D has degree 6, then we are in a situation analogous to the full (1.1): there is a point ⇧ on a

Jacobian such that n⇧ = 0 for some positive integer n. In this way we can handle one-parameter families.

For the sake of illustration we shall restrict ourselves to the example D = X6 +X + t, and we shall prove

the following result.

Theorem P1. There are at most finitely many complex t for which there exist A and B 6= 0 in C[X] with

A2 � (X6 +X + t)B2 = 1.

There are some t; for example with t = 0 we have

(2X5 + 1)2 � (X6 +X)(2X2)2 = 1 (1.6)

found quickly with continued fractions (see below). But we will show with the help of calculations over

the finite fields F3 and F5 by Olaf Merkert that (1.5) is not solvable with t = 1 and X6 + X + 1. In

Theorem P2 below we will see that Theorem P1 is best possible in the natural sense that its analogue for

A2 � (X6 +X + t)B2 of degree at most one is false.

We can consider other one-parameter families of sextic D like F (X)(X � t) for fixed quintic F in say

Q[X], related to those considered by Ellenberg, Elsholtz, Hall and Kowalski in [EEHK] and [EHK]. But the

example D = X(X2 + 1)(X3 +X + t) has generic solution

(2t�1X3 + 2t�1X + 1)2 �D(2t�1)2 = 1

and so a solution for all complex t 6= 0. There is a more complicated example for

D = X(X5 � 10tX4 + 35t2X3 � 50t3X2 + 25t4X � t10 � 2t5 � 1)

in McMullen’s paper [Mc] (pp.665,666). Some deep results of Nadel [N] suggest that such identities are rare,

and even for example that there might be an absolute upper bound on the degrees of A and B in (1.5) for

any sextic over C(t). Nevertheless the identities show that at least one condition is needed to guarantee

finiteness. This turns out to involve the points at infinity. And we will see that the more subtle example

D = X6+X2+ t leads to solvability again for an infinite but countable set of t, as for X4+X + t; this gives

an extra condition which turns out to involve the simplicity of the Jacobian. To check this various methods

are available; see especially the papers [K1],[K2] of Katz and the work [St] of Stoll quoted in the book [CF]

of Cassels and Flynn.

If D is generically not square-free, such as (X � t)2(X4 � 1) or more interestingly X2(X4 + X + t),

then the problem reduces to one about extensions of elliptic schemes by Gm so the methods of [Bert3] and

[BMPZ] are applicable (see also section 3 of Schinzel’s paper [Schi]).

The connexion with integration of algebraic functions in elementary terms is also classically known since

Abel (and his functions) and Chebychev (for elliptic functions, with his “pseudo-elliptic integrals”). In fact

our Theorem P1 for D = X6 + X + t is equivalent to the assertion that there are at most finitely many
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complex t for which there exists a non-zero E in C[X] of degree at most 4 such that Ep
D

is integrable in

elementary terms. As D

0
p
D

integrates to 2
p
D we cannot go up to degree 5 here. As above, the example (1.6)

for t = 0 leads to Z
5X2

p
X6 +X

dX = log

✓
1

2
+X5 +X2

p
X6 +X

◆
. (1.7)

It is interesting to compare this version of our Theorem P1 with one in the book [Dave] of Davenport.

His Theorem 7 (p.90) says that if an algebraic function f(X, t) is not generically integrable in elementary

terms, then there are at most finitely many complex t at which the specialised function is integrable in

elementary terms. In fact parts of his proof are unclear and we intend to investigate this more fully in future

work. Here it will be necessary to go beyond semiabelian varieties.

Our Theorem P1 shows in a particular way that imitating the classical continued fraction algorithm for

Pell over Z will not work for C[X]; a general fact also known since Abel and Chebyshev (see also the article

[PT] of van der Poorten and Tran which also covers all the above connexions with illuminating examples).

Through this link we deduce that there are at most finitely many complex t such that the continued fraction

of
p
X6 +X + t = X3

1X

k=0

✓
1/2

k

◆
(X�5 + tX�6)k = X3 +

1

2
X�2 +

t

2
X�3 � 1

8
X�7 + · · ·

in the quotient field C((X�1)) of the ring of power series in X�1 is periodic. In the usual notation

[a0; a1, a2, . . .] it starts

a0 = X3, a1 = 2X2 � 2tX + 2t2, a2 = � 1

2t3
X � 1

2t2
, a3 = �8t6X + 16t7 (t 6= 0).

But for t = 0 as in (1.6) and (1.7) we find

p
X6 +X = [X3; 2X2, 2X3, 2X2, 2X3, 2X2, 2X3, 2X2, 2X3, . . .]

with period 2.

When solving a Pell equation a2�db2 = 1 over Z one notes that a

b

must be a good rational approximation

to
p
d. But constructing such good approximations by the Box Principle gives infinitely many solutions only

of the equation a2 � db2 = m for some fixed m: “almost the Pell equation”. To obtain m = 1 an extra

application of the Box Principle is needed.

Analogous considerations for general D in C[X] of even degree, such as the continued fraction algorithm

or Padé approximation or linear algebra, will solve only

A2 �DB2 = M, (1.8)

where for D of degree 6 the polynomial M (which cannot be prescribed in advance) has degree at most 2.

Again for the sake of illustration we restrict ourselves to D = X6 +X + t; thus we get degree at most 0 for

at most finitely many t. It is now natural to investigate the intermediate situation of degree at most 1. Here

we have a generic example

(X3)2 � (X6 +X + t)(1)2 = �X � t (1.9)

holding for all complex t. We take this into account first by proving
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Theorem P2. There are infinitely many complex t for which there exist A and non-constant B in C[X]

and c0 6= 0, c in C with A2 � (X6 +X + t)B2 = c0X + c.

This situation corresponds to a point ⇧ on a Jacobian of a curve such that n⇧ lies on a fixed embedding

of the curve, rather than n⇧ = 0 as for Theorem P1 above. It gives a sense in which Theorem P1 is best

possible.

Then we show the set of t in Theorem P2 is countable provided we stay away from the generic example

(1.9).

But this set seems more mysterious than that for X6 + X2 + t (or X4 + X + t). We could not even

prove that it is not the whole of Q! Suspecting a link with Chabauty’s Method for diophantine equations,

we consulted Flynn, who very quickly did this and even showed for example that it does not meet 7Z except

at t = 0. With his kind permission we include his proof as an Appendix to the present paper.

Let us say something of our own proofs. That of our Theorem follows the general strategy of [MZ1],[MZ2],[MZ3],[MZ4]

and [PZ] but several new issues arise. For example we can no longer express the periods in terms of hyper-

geometric functions, so we have to live with the period integrals. We have to study equations

z = xf + yg + uk+ vl (1.10)

where f ,g,k, l are basis elements of the period lattice of A and z is an abelian logarithm. Our coe�cients

x, y, u, v are real and their locus S in R4 is subanalytic, of dimension at most 2 because a complex curve

has real dimension 2. When z corresponds to a torsion point, say of order dividing some n, then we get a

rational point in 1
n

Z4 on S. The work of Pila [Pil] provides for any ✏ > 0 an upper bound for their number

of order at most n✏ as n tends to infinity, provided we avoid connected semialgebraic curves inside S.

If V itself is contained in an abelian subscheme of A of positive codimension, there is nothing to prove.

Otherwise we are able to show that there are no connected semialgebraic curves inside S. This follows

from the algebraic independence of the two components of z over the field generated by the components

of f ,g,k, l in (1.10). Here the remark of Bertrand mentioned in [MZ3] and [MZ4] is especially valuable

in circumventing the question of dependence relations already holding between these components, which

would depend for example on the type of complex multiplication of A. In [MZ2] the analogous independence

was proved with relatively simple arguments involving monodromy on just f and g so essentially SL2(Z).

Extending these arguments to f, g, z, w in [MZ3] was a rather more complicated matter; we deduced the

required independence from a result of Bertrand, and we also gave a self-contained proof involving SL4(Z).

In [MZ4] we had to appeal to more general work of André [An] (see also Bertrand’s paper [Bert1]); and this

su�ces here too.

We conclude the proof as in [MZ2],[MZ3],[MZ4] by appealing to Silverman’s Specialization Theorem

[Si1]; however now the new abelian situation requires us to use a result of David [Davi] on degrees of torsion

points of the corresponding fibre of A. If this fibre is itself simple then we deduce by contrast that the

number of rational points is of order at least n� for some � > 0. But the fibre could well be non-simple.

Such obstacles did not arise in our earlier work. Perhaps this situation could be controlled with the help of

conjectures (or even theorems) of André-Oort type. However here we can avoid such problems by exploiting

an escape clause in [Davi] arising from the “obstruction subgroups” in the transcendence method. We can

then use some comparatively elementary estimates from the first author’s work [MW1] with Wüstholz to
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reduce to a pair of elliptic curves, which can be handled as in [MZ2],[MZ3],[MZ4] also to get n�. Comparison

of this lower bound with the above upper bound leads to an estimate for n which su�ces to prove the

Theorem.

Here is a brief section-by-section account of this paper.

In section 2 we show how to reduce our Theorem to a Proposition involving the special case of a curve

C in A = J
�✓

the Jacobian of the hyperelliptic curve H
�✓

of genus 2 defined by

Y 2 = X(X � 1)(X � �)(X � )(X � ✓). (1.11)

Then in section 3 we recall the main result of [Pil] on subanalytic sets. Our own set is constructed from

elliptic logarithms defined in section 4. The relevant algebraic independence result is then proved in section

5 (or Appendix A). This then leads in section 6 to the non-existence of Pila’s semialgebraic curves in our set.

Then in sections 7 and 8 we record the consequences of the work of David and Silverman for our purposes,

and the proof of the Proposition is completed in section 9.

Then in section 10 we check the example (1.3) and prove Theorem P1, explaining in more detail the

connexions with integration and continued fractions. In section 11 we prove Theorem P2, and finally in

section 12 we make some further remarks. The Appendix by Victor Flynn contains a proof of his results on

this equation.

We heartily thank both Daniel Bertrand for his interest in and help on these matters and Victor Flynn

for allowing us to include his work. We are grateful too to Olaf Merkert for the finite field calculations.

2. Reduction to a hyperelliptic curve. We noted in section 2 of [MZ3] that the above Conjecture is

isogeny invariant in the following sense. Let S,S 0 be semiabelian schemes defined over varieties over C and

suppose that there is an isogeny ◆ from S to S 0. Then the Conjecture for S 0 implies the Conjecture for S.
In fact the argument holds with C generalised to any algebraically closed field K of zero characteristic, and

for possible later use we maintain this generality for the present short section.

Now every simple abelian surface is isogenous to a Jacobian of a curve of genus 2 (see for example

[LB] p.348), and every such curve is well-known to be hyperelliptic. The latter can easily be put in the

form H
�✓

in (1.11) above (here �,, ✓ are sometimes called the Rosenhain coordinates). Thus we have an

isogeny ◆ from the S = A of our Theorem to some S 0 = J
�✓

as above. We may think of points of the

Jacobian as unordered pairs {P,Q} of points P = (X,Y ), Q = (U, V ) on H
�✓

corresponding to the divisor

(P ) + (Q)� 2(1), where 1 is the unique point at infinity on the curve, together with the unordered pairs

{P,1} and the group origin {1,1} = O. Here all {(X,Y ), (X,�Y )} are identified with O. This can be

compared with the analogous symbol in the book [CF] of Cassels and Flynn (p.3); however they have a sextic

polynomial on the left-hand side of (1.11).

Let V be a curve in S. Then ◆(V) in J
�✓

is a curve C in the a�ne space A7 with coordinates

X,Y, U, V,�,, ✓. We will regard it as being parametrized by (⇠, ⌘, µ, ⌫,�,, ✓) with ⇠, ⌘, µ, ⌫,�,, ✓ functions

in K(C).

If the points P = (⇠, ⌘), Q = (µ, ⌫) satisfy n{P,Q} = O for some positive integer n, then the whole of

◆(V) lies in the corresponding zero-dimensional abelian subscheme, so the Theorem is trivial for S 0. Thus

we are entitled to assume n{P,Q} 6= O for all such integers.
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If �,, ✓ are constant on C, then the base variety can be considered as a point and the Theorem for S 0

follows from Manin-Mumford as mentioned in the Introduction.

From all these considerations, we see that our Theorem for A is implied by the following statement.

Proposition. Let C in A7 be a curve defined over Q and parametrized by

c = (⇠, ⌘, µ, ⌫,�,, ✓)

in Q(C)7, and suppose that the Jacobian J
�✓

of the curve H
�✓

of genus 2 is simple and non-constant.

Suppose that the points

P = (⇠, ⌘), Q = (µ, ⌫)

lie on H
�✓

and the point {P,Q} is not identically torsion on J
�✓

. Then there are at most finitely many

points c in C(C) such that for

P (c) = (⇠(c), ⌘(c)), Q(c) = (µ(c), ⌫(c))

the point {P (c), Q(c)} is torsion on J
�(c)(c)✓(c).

We note that the functions

�,�� 1,,� 1, ✓, ✓ � 1,�� ,� ✓, ✓ � � (2.1)

are all identically non-zero by our genus assumption. In fact we can also assume the same about

⇠, ⇠ � 1, ⇠ � �, ⇠ � , ⇠ � ✓, µ, µ� 1, µ� �, µ� , µ� ✓. (2.2)

If say ⇠ = � identically then 2{P,Q} = {Q,Q} (the function X � � then having divisor 2(P )� 2(1)). This

is also not identically torsion and so by doubling the original point in the Proposition we end up with the

new ⇠ = µ. Now if say µ = 1 identically then {Q,Q} = O contradicting the fact that the original point is

not identically torsion.

3. Rational points. In this section we record the basic result of Pila [Pil] that we shall use in the algebraic

case. We recall from section 3 of [MZ2] that a naive-m-subanalytic subset of Rs is a finite union of ✓(D),

where each D is a closed ball in Rm and each ✓ is real analytic from an open neighbourhood of D to Rs.

We refer also there for the definition of Strans.

Lemma 3.1. Suppose S is a naive-2-subanalytic subset of Rs. Then for any ✏ > 0 there is a c = c(S, ✏) with

the following property. For each positive integer n there are at most cn✏ rational points of Strans in 1
n

Zs.

Proof. See Lemma 2.1 of [MZ2] (p.1680).

4. Functions. We will construct our naive-2-subanalytic subset S by means of the following functions.

With �,, ✓ in C(C) as in the Proposition and X,Y as in (1.11), we consider the standard integrals

✓Z
dX

Y
,

Z
XdX

Y

◆
(4.1)
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over loops. By the remark about (2.1) the set of c in C(C) not satisfying

�(c) 6= 0, 1,1, (c) 6= 0, 1,1, ✓(c) 6= 0, 1,1, �(c) 6= (c) 6= ✓(c) 6= �(c) (4.2)

is at most finite. We pick any c⇤ satisfying (4.2) and then pick four loops on H
�(c⇤)(c⇤)✓(c⇤) generating the

homology. These by (4.1) define functions f ,g,k, l to C2 at c⇤. We may extend them, at least locally, to

the set of all c in C with (4.2), and they are analytic in � = �(c), = (c), ✓ = ✓(c). It is well-known that

they are basis elements of a period lattice of J
�✓

respectively with respect to (dX
Y

, XdX
Y

). In particular, if

we write exp
�✓

for the associated exponential function from C2 to J
�✓

(C), we have

exp
�✓

(f) = exp
�✓

(g) = exp
�✓

(k) = exp
�✓

(l) = O.

Next let P = (⇠, ⌘), Q = (µ, ⌫) be as in the Proposition with ⇠, ⌘, µ, ⌫ in C(C). We would like to define

z =

 Z
P

1

dX

Y
+

Z
Q

1

dX

Y
,

Z
P

1

XdX

Y
+

Z
Q

1

XdX

Y

!
(4.3)

as an abelian logarithm of {P,Q} which is analytic in a suitable sense. This is also possible everywhere locally

apart from finitely many exceptional points. In fact the remarks about (2.2) together with the discussion

in section 4 of [MZ3], which replaces the curve integral with an X-integral, lead without di�culty to the

following.

Write Ĉ for the set of points c of C(C) with (4.2) and

⇠(c), µ(c) 6= 0, 1,1,�(c),(c), ✓(c)

as in (2.2). The points not in Ĉ still form at most a finite set. Then for any c⇤ in Ĉ and any su�ciently

near c in Ĉ we can express the first component of z in (4.3) as a quadruple power series in

�(c)� �(c⇤), (c)� (c⇤), ✓(c)� ✓(c⇤), ⇠(c)� ⇠(c⇤)

and the second component as a quadruple power series in

�(c)� �(c⇤), (c)� (c⇤), ✓(c)� ✓(c⇤), µ(c)� µ(c⇤).

Also

exp
�✓

(z) = {P,Q}. (4.4)

5. Algebraic independence. For this section we consider the point c⇤ of Ĉ as fixed. Then f ,g,k, l, z are

well-defined on a small neighbourhood N⇤ of c⇤. In order to prove Strans = S we will need the following

result.

Lemma 5.1. The coordinates of z are algebraically independent over C(f ,g,k, l) on N⇤.

Proof. This follows from Theorem 3 (p.16) of [An], which actually specifies the transcendence degree of

K(z, z̃) over K = C(C)(f ,g,k, l, f̃ , g̃, k̃, l̃), where the extra functions are the corresponding integrals of the
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second kind with respect to say X

2dX
Y

, X

3dX
Y

. It is the dimension of the Ũ appearing in Proposition 1 (p.5)

of [An], or at least its relative counterpart in the context of section 4 of [An]. The E there is J
�✓

over C,

for which our simplicity hypothesis implies that the only non-zero proper connected algebraic subgroup is O.

And because {P,Q} is not identically torsion the E0 there is also E, with rational homology isomorphic to

Q4. Further because of simplicity the F there is a division algebra. And u(X ) there is from Z to Z{P,Q}.
So F.u(X ) is isomorphic to F . Thus we find dimension 4; and the present lemma follows on throwing away

all the extra functions. See also the end of section 4 (p.2786) of Bertrand’s article [Bert1], as well as Theorem

4.3 (p.16) of [Bert2].

6. A naive-2-subanalytic set. We describe here our naive-2-subanalytic subset S. First we construct

local functions from C to R4. Recall that Ĉ is obtained from C(C) by the removal of at most a finite set of

points. Fix c⇤ in Ĉ, choose c in Ĉ and then a path from c⇤ to c lying in Ĉ. We can continue f ,g,k, l taking

care to keep a homology basis.

The continuation of the functions z, w is a bit more troublesome, and it is convenient to remove the

also the singular points of C. Let C0 be the finite subset which we have removed so far, and write bC for

what remains. We can then speak of functions analytic on bC. Now the discussion in section 6 of [MZ3], with

exp
�✓

instead of exp
�

and z2 = xf + yg + uk + vl + z1 instead of z2 = xf + yg + z1, shows that we can

continue the function (f ,g,k, l, z) from a small neighbourhood of c⇤ to a small neighbourhood Nc of c in bC.

The end result is a function (fc,gc,kc, lc, zc) analytic on Nc. Write ⌦c for the period lattice of J
�(c)(c)✓(c)

with respect to (dX
Y

, XdX
Y

).

Lemma 6.1. The coordinates of zc are algebraically independent over C(fc,gc,kc, lc) on Nc. Further we

have ⌦c = Zfc + Zgc + Zkc + Zlc on Nc.

Proof. We could continue an algebraic dependence relation backwards to get the same relation between

f ,g,k, l, z on a neighbourhood of c⇤; however this would contradict Lemma 5.1. The assertions about ⌦c

follow because we kept a homology basis during the continuation.

It follows that we can define xc, yc, uc, vc on Nc by the equation

zc = xcfc + ycgc + uckc + vclc (6.1)

and its complex conjugate

zc = xcfc + ycgc + uckc + vclc

so that xc, yc, uc, vc are real-valued.

Now we can define S. We use the standard maximum norm on C7. For small � > 0 (later to be specified)

we define C� as the set of c in C satisfying |c|  1
�

and

|c� c0| � �

for each c0 in the finite set C0.

Shrinking Nc if necessary, we can choose a local analytic isomorphism 'c from Nc to an open subset of

C (i.e. R2). Choose any closed disc Dc inside 'c(Nc) centred at c, and define

✓c = (xc, yc, uc, vc) � '�1
c

9



from Dc to R4. By compactness there is a finite set ⇧ of c such that the '�1
c (Dc) cover C�. Then our

naive-2-subanalytic subset S = S� in R4 is defined as the union of ✓c(Dc) over ⇧.

Lemma 6.2. We have Strans = S.

Proof. Because every semialgebraic surface contains semialgebraic curves, it will su�ce to deduce a contradic-

tion from the existence of a semialgebraic curve B
s

lying in S. Now B
s

is Zariski-dense in its Zariski-closure

B, a real algebraic curve. Thus we can find a subset B̂ of B, also Zariski-dense in B, contained in some

✓c(Dc). It will su�ce to know that B̂ is infinite. Then B̂ = ✓c(E) for some infinite subset E of Dc.

Now (6.1) shows that the components of zc lie in � = C(xc, yc, uc, vc, fc,gc,kc, lc). But if we re-

strict to '�1
c (E), then � has transcendence degree at most 1 over C(fc,gc,kc, lc). It follows that the

components of zc are algebraically dependent over C(fc,gc,kc, lc) on '�1
c (E). More precisely, with indepen-

dent variables Tf ,Tg,Tk,Tl,Tz, there exists a polynomial A in C[Tf ,Tg,Tk,Tl,Tz] such that the relation

A(fc,gc,kc, lc, zc) = 0 holds on '�1
c (E) and A(fc,gc,kc, lc,Tz) is not identically zero in C(fc,gc,kc, lc)[Tz].

By a standard principle for analytic functions (“Identity Theorem” or [L] p. 85) this relation persists on all

of Nc. And now we have a contradiction with Lemma 6.1. Thus the present lemma is proved.

We are all set up for an e�cient application of Lemma 3.1. It will turn out that every c in our Proposition

leads to many rational points on S, and of course we have to estimate their denominator. This we do in the

next short section.

7. Orders of torsion. We use the standard absolute Weil height

h(↵) =
1

[Q(↵) : Q]

X

v

logmax{1, |↵|
v

}

of an algebraic number ↵, where v runs over a suitably normalized set of valuations; and also the standard

extension to vectors using the maximum norm. See for example [Si2] (p. 208).

Lemma 7.1. There is a constant c = c(C) with the following property. Suppose for some a in Ĉ that the

point {P (a), Q(a)} on J
�(a)(a)✓(a) has finite order n. Then a is algebraic, and

n  c[Q(a) : Q]7(1 + h(a))6.

Proof. It is clear that a is algebraic, otherwise {P,Q} would be identically torsion on C contradicting a

hypothesis of the Proposition.

As for the upper bound, if the (principally polarized) J = J
�(a)(a)✓(a) is simple, then we can appeal to

a result of David [Davi]. Namely Théorème 1.2 (p.121) gives

n1/2

log n
 c1d⇧(d

3/2
J

log d
J

)max{1, h}3/2

where d
J

is the degree of a field of definition k of J over Q, d⇧ is the degree of a field of definition of

{P (a), Q(a)} over k, h is the semistable Faltings height of J , and c1 is an absolute constant. We can take

10



k = Q(�(a),(a), ✓(a)) and so d
J

 c2D for D = [Q(a) : Q] with c2 independent of a. Also since �,, ✓ are

not all constant, if for example �, then each of the coordinates ⇠, ⌘, µ, ⌫ of P and Q is algebraic over Q(�).

Thus at c = a we deduce d⇧  c2. And then h  c3(1 + h(a)) by well-known properties of the Faltings

height (see for example the discussion on p.123 of [Davi]). The required result follows, with slightly smaller

exponents.

But what if J is not simple? It may then be that certain conjectures of André-Oort type lead anyway

to at most finitely many possibilities for a, as required in our original Proposition. But in the absence of

proofs we can reduce to an elliptic situation as follows.

Our J , being a Jacobian of a curve of genus 2, can be embedded in projective P15; see for example [CF]

(p.8) after applying a fractional linear transformation to replace the quintic by a sextic. This is more or less

the same embedding that David uses for A(⌧) in his work (but the quintic itself gives embeddings in P8 - see

for example Grant [G] p.101). Thus consulting equation (28) of [Davi] (p.156) we find an algebraic subgroup

B 6= J of J . In fact Philippon’s multiplicity estimate used there (p.159) guarantees that B is connected.

If B = 0 then we can deduce equation (29) of [Davi] (p.156) and this leads to a much better bound, say

n  c[Q(a) : Q]4(1 + h(a))3. So it remains only to treat the case that B is an elliptic curve. We note by

Lemma 2.2 of [MW1] (p.414) that B is defined over an extension of k of degree at most 3256. And we get

the estimate T�L  c4(LN2)2 for the degree � of B in the embedding, where T, L,N are defined earlier

(p.152) and again c4 is absolute. We find �  c5(D logD)2h2 for absolute c5.

We can now apply Lemma 1.4 of [MW1] (p.413) to find another elliptic curve B0 in J (so also defined

over an extension of k of degree at most 3256) together with an isogeny � from B⇥B0 to J of degree at most

�2. The dual isogeny  from J to B ⇥ B0 has degree at most �6. Thus by standard properties of Faltings

heights we have

h(B)  h(B ⇥B0) + c7  h+
1

2
log(�6) + c7  c8(1 + logD + h(a)) (7.1)

with the same bound for h(B0). We can reduce B to Weierstrass form E without increasing the field of

definition; also h(E) = h(B). Now the argument of Lemma 7.1 of [MZ3] shows that the order m of the

projection of  ({P (a), Q(a)}) on E through B satisfies

m  c8(Dmax{1, h(j
E

)}+D logD)

for the corresponding j-invariant. It is well-known that h(j
E

) is of the same order of magnitude as h(E), so

appealing to (7.1) we deduce m  c9D(1 + h(a) + logD).

We get the same bound for the orderm0 of the projection of  ({P (a), Q(a)}) onB0. Thus  ({P (a), Q(a)})
has order at most mm0. Applying � back shows finally that n  �2mm0; and putting everything together

gives the required result.

We could use more directly the factorization estimates of [MW2] to get B,B0 and �, but the exponents

involved would be astronomical.

8. Heights. In view of the following result we can eliminate the height dependence in Lemma 7.1.

Lemma 8.1. There is a constant c = c(C) with the following property. Suppose for some a in Ĉ that the

point {P (a), Q(a)} has finite order. Then h(a)  c.
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Proof. This is a consequence of Silverman’s Specialization Theorem [Si1] (p.197), because {P (c), Q(c)} is not

identically of finite order; note that our family of abelian surfaces has no non-trivial constant part because

it is generically simple.

Another advantage of bounded height is the following easy remark, already to be found in [MZ4],

concerning the sets C0 and C� in section 6.

Lemma 8.2. Let K be a number field containing the coordinates of the points of C0. For any constant c

there is a positive � = �(C,K, c) depending only on C,K and c with the following property. Suppose a is

algebraic on C, not in C0, with h(a)  c. Then there are at least 1
2 [K(a) : K] conjugates of a over K lying

in C�.

Proof. See Lemma 8.2 of [MZ4].

9. Proof of Proposition. We will need the following result from [MZ3].

Lemma 9.1. Suppose f0, f1, . . . , fs are analytic in an open neighbourhood N of a compact set K in C and

f0 is linearly independent of f1, . . . , fs over C. Then there is c = c(f0, f1, . . . , fs) with the following property.

For any complex numbers a1, . . . , as the function F = f0 + a1f1 + · · · + a
s

f
s

has at most c di↵erent zeroes

on K.

Proof. See Lemma 9.1 of [MZ3] (p.463).

To prove our Proposition we fix any positive ✏ < 1
7 . We use c, c1, c2, . . . , for positive constants depending

only on C. We have to show that there are at most finitely many a such that ⇧(a) = {P (a), Q(a)} has finite

order on J
�(a)(a)✓(a). By Lemma 7.1 each such a is algebraic, say of degree D = [Q(a) : Q], and thanks to

Lemma 8.1 and the Northcott property it will su�ce to prove that D  c. We will actually argue with a

single a.

Next, Lemma 7.1 together with Lemma 8.1 shows that there is a positive integer

n  c1D7 (9.1)

such that

n⇧(a) = O. (9.2)

Fix a number field K containing a field of definition for the curve C. By Lemma 8.1 and Lemma 8.2 the

algebraic a has at least 1
2 [K(a) : K] conjugates over K in some C�; here � = c2. Now C� is contained in the

union of at most c3 closed sets '�1
c (Dc), and so there is c such that '�1

c (Dc) contains at least c4[K(a) : K]

conjugates �(a). And the corresponding conjugate point �(⇧(a)) = ⇧(�(a)) also satisfies n⇧(�(a)) = O.

We claim that each point ⇥
�

= ✓c('c(�(a))) lies in Q4 and even that n⇥
�

lies in Z4.

Now the function ✓c arises from continuations fc,gc,kc, lc, zc of the functions in section 6. We deduce

from (4.4) that

exp
�(c)(c)✓(c)(zc) = {P (c), Q(c)} (9.3)
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on Nc. At �(a) this implies

exp
�(�(a))(�(a))✓(�(a))(nzc(�(a))) = O. (9.4)

It follows that nzc(�(a)) lies in the period lattice ⌦
�(�(a))(�(a))✓(�(a)), which by Lemma 6.1 is just Zfc(�(a))+

Zgc(�(a)) + Zkc(�(a)) + Zlc(�(a)). Thus (6.1) shows that

nxc(�(a)), nyc(�(a)), nuc(�(a)), nvc(�(a))

lie in Z. Thus indeed n⇥
�

lies in Z4 as claimed.

So now each ⇥
�

in the set S of section 6 has common denominator dividing n. By Lemma 3.1 and

Lemma 6.2, the number of such values ⇥
�

is at most c5n✏. By (9.1) this is at most c6D7✏. Let ⇥ = (x, y, u, v)

be one of these values. For any � with ✓c('c(�(a))) = ⇥ the expression zc(�(a)) is

xc(�(a))fc(�(a)) + yc(�(a))gc(�(a)) + uc(�(a))kc(�(a)) + vc(�(a))lc(�(a))

which is

xfc(�(a)) + ygc(�(a)) + ukc(�(a)) + vlc(�(a)).

Lemma 6.1 implies that for example the first coordinate of zc is linearly independent of the first coordinates

of fc,gc,kc, lc. So Lemma 9.1 shows that the number of � for each ⇥ is at most c7.

Thus the total number of �(a) is at most c8D7✏. Now this contradicts the lower bound c4D noted just

after (9.2), provided D is su�ciently large. As observed near the beginning of this section, that su�ces to

prove our Proposition.

10. Examples and the Pell equation. It was shown in [M3] (p.294) that the Jacobian of (1.4) is

identically simple (and even that the endomorphism ring is Z). It has good reduction at all the points (1.2).

By the equivalence of (a),(b) in Theorem 1 of Serre-Tate [ST] (p.493) any torsion point is unramified outside

(1.2). However the point arising from (1.3) is ramified for example at � = 2; as this is already true of the

bisymmetric function p
2(2� �)(2� �2)(2� �4)

p
6(3� �)(3� �2)(3� �4).

Thus the point is not identically torsion and our result applies.

To deal with the Pell equation A2 � DB2 = 1 with squarefree D of degree 6 we choose any field K

(not of characteristic 2) over which D is defined, and we consider the hyperelliptic curve H
D

defined by

Y 2 = D(X). This is singular at infinity with two points 1+,1� on a non-singular model; we may fix

them by stipulating that the function X3 ± Y has a zero at 1±. We pass to a non-singular model in the

standard way by selecting any three zeroes of D, and finding the fractional linear transformation taking

them to 0, 1,1. With �,, ✓ as the other three images this gives a birational map � from H
D

to H
�✓

. Of

course this might no longer be defined over K, but certainly over a splitting field of D. We may then speak

of �(1±) as points on H
�✓

(whose Jacobian is J
�✓

as in the discussion of section 2). We now record the

following fairly well-known result.

Lemma 10.1. The following hold:
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(i) Suppose there are A,B in K[X] and c 6= 0 in K with A 6= 0 of degree d such that A2 �DB2 = c.

Then for n = ±d the function A(X) + Y B(X) on H
D

has a zero of order n at 1+ and a pole of order n at

1� and no other zeros or poles.

(ii) Suppose there are A,B in K(X) with A 6= 0 and n such that A(X) + Y B(X) on H
D

has a zero

of order n at 1+ and a pole of order n at 1� and no other zeros or poles. Then n = ±d and A,B are in

K[X] with A of degree d such that A2 �DB2 = c for some c 6= 0 in K.

(iii) Suppose D splits completely over K. Then there are A,B in K[X] with B 6= 0 and c 6= 0 in K

such that A2 �DB2 = c if and only if the point {�(1+),�(1+)} is torsion on J
�✓

.

Proof. In the situation of (i) then f+f� = c for the functions f+ = A(X) + Y B(X), f� = A(X)� Y B(X)

on H
D

. So the only possible zeroes and poles are at 1+,1�. Since the number of zeroes is the number of

poles, there is an integer n such that f+ has a zero of order n at 1+ and a pole of order n at 1�. Now

f+ + f� = 2A has poles of order |n| at 1+,1� and no other poles. Thus |n| = d, and this proves (i).

In the situation of (ii) with f+ = A(X) + Y B(X) we deduce that f� = A(X) � Y B(X) has a pole of

order n at 1+ and a zero of order n at 1�. Thus f+f� is a constant c, non-zero because A 6= 0. Also

f+ + f� = 2A has no poles at finite points, so it must be a polynomial. And finally because D is squarefree

we see from DB2 = A2 � c that B is also a polynomial. This brings us back to (i) and thereby completes

the proof of (ii).

Finally in the situation of (iii) the existence of A,B with B 6= 0 implies A is not constant, so this gives

from (i) a function f+ = A(X) + Y B(X) from which we derive a function g on H
�✓

with a zero of order

n at P+ = �(1+) and a pole of order n at P� = �(1�). Here d � 1 so n 6= 0. If P+ = (x, y) then

P� = (x,�y) so there is an obvious linear function l with simple zeroes at P+, P� and a double pole at 1
on H

�✓

. So looking at gln shows that n{P+, P+} = O. And conversely if n{P+, P+} = O for say n � 1

then going backwards we find a function on H
D

with a zero of order n at 1+ and a pole of order n at 1�.

This can be written as f+ = A(X) + Y B(X) 6= 0 for A,B in K(X); here both A 6= 0 and B 6= 0 otherwise

f+ could have no genuine zero at 1+, and so we are back to (ii). This completes the proof of the present

lemma.

Of course if K is algebraically closed then for any c 6= 0 the solvability of

A2 �DB2 = c, B 6= 0 (10.1)

is equivalent to the solvability of Pell (1.5). But actually this holds for any K, because (10.1) implies A 6= 0

and then A2
1 �DB2

1 = 1 for A1 = c�1(A2 +DB2) and B1 = 2c�1AB 6= 0.

We already noted in section 1 that the solvability is equivalent to the periodicity of the functional

continued fraction of
p
D; this was observed by Abel [Ab], where also the restriction to degree 6 is not

essential. See also Chapter XIV of [H] as well as [PT] and the works [AR] of Adams and Razar, [Berr] of

Berry, [P] of Paysant-Le Roux, [Schi] of Schinzel and [Schm] of Wolfgang Schmidt (however we could not

consult the paper [HL] of Hellegouarch and Lozach). See also [BC] of Bombieri and Cohen for connexions

with the arithmetic behaviour of Padé approximants.

And it is also equivalent to the existence of a non-zero polynomial E of degree at most 4 such that Ep
D

is integrable in elementary terms. In that case E must have degree 2, and it must be proportional to A

0

B

,
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and we have Z
E(X)p
D(X)

dX = log(A(X) +B(X)
p
D(X)). (10.2)

This also mutatis mutandis is not restricted to degree 6; see [Ab],[C1],[C2],[H] and again [PT].

Now to prove Theorem P1 for D = X6 + X + t. We start by showing that there are no A,B 6= 0 in

K[X] with A2 �DB2 = 1 for K = C(t) (see also Remark 3.4.2 (p.85) of [Za]).

Otherwise taking conjugates of the f+ = A+Y B of Lemma 10.1(i) over C(t) (over which H
D

,1+,1�

are defined) would give (f+)� = A� + Y B� with the same divisor. So (f+)� = cf+ for some non-zero c in

K. This implies (f�)� = cf�, and taking the product shows that c2 = 1. Writing (A+ Y B)2 = A1 + Y B1

for A1 = A2+DB2, B1 = 2AB we deduce that A1, B1 6= 0 are in C(t)[X] also with A2
1�DB2

1 = 1. Clearing

denominators we find A2, B2 6= 0 in C[t,X] and c2 in C[t] with A2
2�(X6+X+t)B2

2 = c2. If c2 is in C we get

an immediate contradiction on examining the coe�cients of the highest power of t. Otherwise specializing t

to a zero t0 of c2 would show that X6 +X + t0 is a square in C(X), clearly impossible.

It follows from Lemma 10.1(iii) that the point {�(1+),�(1+)} is not identically torsion. We are

all set up to apply our Theorem, or more conveniently the Proposition directly, with C a suitable curve

corresponding to the splitting field of X6+X + t (in fact a 720-fold cover of A deprived of the 5 points with

46656t5 = 3125). But first we should know that the Jacobian is generically simple, and it su�ces to show

that the Jacobian J
D

of Y 2 = X6 +X + t is generically simple. We will do this by showing that there are

infinitely many t0 such that the Jacobian of Y 2 = X6 +X + t0 is simple.

We use the criterion of Stoll [St] explained (with a misprint) in [CF] (p.158). The curve Y 2 = X6+X+1

has discriminant �43531 not divisible by 7. It has 9 points over the finite field F7 (including 1+,1�).

Similarly it has 67 points over F49. In the notation of [CF] we calculate a7 = �1, b7 = 9 leading to the test

polynomial

C(T ) = T 4 +
5

7
T 3 � 3

7
T 2 +

5

7
T + 1.

So a27 � 4(b7 � 14) = 21 is not a square in Q. And it is easily checked that C(⇣) 6= 0 for any root of

unity ⇣ with ⇣n = 1 for n = 1, 2, 3, 4, 5, 6, 8, 10, 12 (for example the resultants with Tn � 1 are non-zero).

Thus the Jacobian of Y 2 = X6 +X + 1 is simple. But the same calculation shows that this holds also for

any Y 2 = X6 + X + t0 with t0 congruent to 1 modulo 7. This su�ces for the identical simplicity (where

incidentally [ST] is implicitly used in the form of the isogeny-invariance of good reduction, as in Corollary 2

(p.493) there, to see that the possible elliptic curves whose product is isogenous to the Jacobian both have

good reduction themselves).

This completes the proof of Theorem P1 that there are at most finitely many complex values of t for

which the Pell equation for D = X6 +X + t is solvable. As pointed out in (1.6), this holds for t = 0. We

mentioned that it does not hold for t = 1; here is a proof.

When k is a finite field, the continued fraction method over k[X] does work just as for Z (see for example

[PT] p.157); the expansions of square roots are always periodic and the Pell equation (1.5) is always solvable.

Olaf Merkert has calculated the minimal solutions for k = F3 and k = F5 with D = X6 +X + 1. For F3 he

finds

A = 2X14 +X12 +X10 +X9 +X8 +X7 + 2X6 + 2X5 + 2X4 +X3 +X2 + 2

of degree 14 and

B = 2X11 +X9 +X7 + 2X4 +X.

15



For F5 he finds

A = 2X31 +X30 + 3X29 +X28 +X25 + 2X24 + 3X22 + 3X21 + 3X20 +X19 + 4X17 +X16

+4X15 + 4X13 + 2X12 + 2X11 +X10 +X8 + 3X7 +X6 + 3X5 + 2X4 + 3X3 + 2X2 + 4

of degree 31 and

B = 2X28 +X27 + 3X26 +X25 + 4X23 + 2X22 + 3X20 + 4X16 + 2X15 + 4X13

+2X12 + 2X11 +X10 +X8 + 3X7 + 3X6 + 4X5 + 2X3 +X2 + 4X.

Now suppose (1.5) is solvable over C[X] for D = X6+X+1. Then A is not constant and so by Lemma

10.1(i) with K = C the point ⇧0 on the Jacobian J
D

corresponding to the divisor (1+)� (1�) is torsion;

let n0 be its order.

Write n0 = 3em for a non-negative integer e and an integer m prime to 3, and consider the point

⇤0 = 3e28⇧0 on J
D

. As the discriminant �43531 above is not divisible by 3, we can reduce mod 3 to get

⇤̃0 = 3e(28⇧̃0) on the abelian variety J̃
D

. However by Merkert’s calculation and Lemma 10.1(i) with K = F3

we see that 28⇧̃0 = 0. Thus ⇤̃0 = 0. But ⇤0 has order dividing m which is prime to 3; hence again by [ST]

we deduce that ⇤0 = 0 (see for example Lemma 2 (p.495) and the short paragraph immediately following

the proof). Therefore the order n0 divides 3e28.

A similar argument over F5 shows that n0 divides 5f62 for some non-negative integer f .

It follows that n0 divides 2, so that 2⇧0 = 0. But then there is a function A(X) + Y B(X) on H
D

with

a zero of order 2 at 1+ and a pole of order 2 at 1� and no other zeros or poles. Now Lemma 10.1(ii)

with K = C yields A,B in C[X] with A of degree 2 such that A2 �DB2 = c for some c 6= 0 in C, a clear

impossibility.

We get the same conclusion for the t for which the continued fraction of

p
X6 +X + t = X3

1X

k=0

✓
1/2

k

◆
(X�5 + tX�6)k = X3 +

1

2
X�2 +

t

2
X�3 � 1

8
X�7 + · · · (10.3)

is periodic. In the usual notation [a0; a1, a2, . . .] it starts

a0 = X3, a1 = 2X2 � 2tX + 2t2, a2 = � 1

2t3
X � 1

2t2
, a3 = �8t6X + 16t7 (t 6= 0). (10.4)

(so it is not “continuous in t”). And we get the same conclusion for the t for which there exists a non-zero

complex polynomial E of degree at most 4 such that E(X)p
X

6+X+t

is integrable in elementary terms.

It is rather likely that similar arguments could be carried out for D = D(X) = F (X)(X � t) with fixed

quintic F defined over the field of algebraic numbers. The family Y 2 = D(X) is isomorphic to the family

y2 = f(x)(x� s) via

x =
1

X � ↵
, y =

Y

(X � ↵)3
, s =

1

t� ↵

for any zero ↵ of F , with quartic f(x) = x5F ( 1
x

+↵). In [EEHK] Ellenberg, Elsholtz, Hall and Kowalski show

for example that the Jacobian of the second family is identically simple (and even that the endomorphism

ring is Z).
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But what goes wrong for D = X6 +X2 + t? The argument above still shows that Pell’s equation is not

solvable identically. However by Theorem 14.1.1(i) of [CF] (p.155) we see that the Jacobian is not identically

simple. In fact there are maps �1,�2 defined by

�1(X,Y ) = (X1, Y1) = (X2, Y ), �2(X,Y ) = (X2, Y2) = (X2, XY )

from H
D

to elliptic curves E1, E2 defined respectively by

Y 2
1 = X3

1 +X1 + t, Y 2
2 = D2(X2) = X4

2 +X2
2 + tX2.

We have �1(1±) = 11, �2(1±) = 1±
2 for the point at infinity on E1 and the two points at infinity on E2.

Thus (1+)� (1�) projects down to something identically torsion on E1, and to (1+
2 )� (1�

2 ) on E2. This

enables us to use the arguments of Lemma 10.1 for genus 1 instead of 2. In fact if some A2(X2)� Y2B2(X2)

has suitable zeroes and poles at 1±
2 on E2 then we can pull it back to get A2(X2)�XY B2(X2) with suitable

zeroes and poles at 1±; and indeed from 1 = A2(X2)2 �D2(X2)B2(X2)2 we get

1 = A2(X
2)2 �D2(X

2)B2(X
2)2 = A2 � (X8 +X4 + tX2)B2(X

2)2 = A2 � (X6 +X2 + t)B2

for A = A2(X2), B = XB2(X2).

Incidentally it may be shown that the map ◆ from J
�✓

to E1 ⇥ E2 defined by

◆({P,Q}) = (�1(�
�1(P )) + �1(�

�1(Q)), �2(�
�1(P )) + �2(�

�1(Q)))

is an isogeny (compare p.155 of [CF]). A simple calculation shows it to be of degree 4. And the curves E1, E2

are not isogenous; for example their j-invariants are

j1 =
6912

27t2 + 4
, j2 = � 256

t2(27t2 + 4)

so j2 cannot be integral over C[j1] (as would be predicted by the classical theory) because of its pole at

t = 0.

It is not di�cult to see that there are infinitely many complex values of t for which (1+
2 ) � (1�

2 ) is

torsion on E2; several methods are discussed in the Notes to Chapter 3 of [Za] (p.92). So also infinitely many

complex values of t for which the Pell

A2 � (X6 +X2 + t)B2 = 1

is solvable. For example we can reduce to Weierstrass form with the map ⇣ defined by

⇣(X2, Y2) = (W,Z) =

✓
t

X2
+

1

3
,
tY2

X2
2

◆

from E2 to the curve E defined by Z2 = W 3 + uW + v for u = � 1
3 , v = t2 + 2

27 . We have ⇣(1±
2 ) = P± =

( 13 ,±t). In terms of the denominator B
n

(W,u, v) of the classical rational function describing multiplication

on E by n, the t are precisely the zeroes of B
n

( 13 ,� 1
3 , t

2 + 2
27 ) (n = 1, 2, 3, . . .)

A reasonable explicit value is t = i

2 with n = 5. This comes from the function g+ = a + bW + cW 2 +

Z(d+ eW ) with a zero of order 5 at P+ and a pole of order 5 at infinity, where

a = 10i, b = 3i, c = �18i, d = �24, e = 18.
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Thus g� = a+ bW + cW 2 �Z(d+ eW ) has a zero of order 5 at P� and a pole of order 5 at infinity. So g

+

g

�

has a zero of order 5 at P+ and a pole of order 5 at P�. Pulling this back to E2 and then to H
D

, we end

up with

A = 16iX10 + 16X8 + 12iX6 + 8X4 + 4iX2 + 1, B = 16iX7 + 16X5 + 4iX3 + 4X

satisfying

A2 �
✓
X6 +X2 +

i

2

◆
B2 = 1,

with A of degree 10 as predicted by Lemma 10.1. Or with continued fractions, which give with the usual

notation for the period

r
X6 +X2 +

i

2
= [X3; 2X, iX,�4iX3, iX, 2X, 2X3].

Truncating before the final 2X3 gives A,B as above. But truncating before the �4iX3 leads to the smaller

solution

A0 = (2� 2i)X5 � (1 + i)X3 + (1� i)X, B0 = (2� 2i)X2 � (1 + i)

of degree 5, and the solution above is up to sign the “square”.

And indeed

Z �(10X2 + 2i)q
X6 +X2 + i

2

dX = log

 
A+B

r
X6 +X2 +

i

2

!
= 2 log

 
A0 +B0

r
X6 +X2 +

i

2

!

(up to constants) as predicted by (10.2).

11. Almost the Pell equation. When solving a Pell equation a2 � db2 = 1 over Z one notes that a

b

must be a good rational approximation to
p
d. But constructing such good approximations by the Box

Principle gives infinitely many solutions only of the equation a2 � db2 = m for some fixed m: “almost the

Pell equation”. To obtain m = 1 an extra application of the Box Principle is needed.

Analogous considerations for A2 �DB2 = 1 over K[X] lead also to an equation A2 �DB2 = M ; but

here M is not fixed, merely of degree at most 2. See for example [PT] (p.157). Now there is no general way

to obtain M = 1, and indeed we have seen that this is impossible for D = X6 + X + t for all but finitely

many complex values of the parameter t.

Indeed in this parametric situation the resultingM , listed somehow asM
n

(n = 1, 2, . . .), can be assumed

to have the form c00
n

(t)X2 + c0
n

(t)X + c
n

(t) for c
n

(t), c0
n

(t), c00
n

(t) in K(t). Then we would have to solve the

equations c00
n

(t) = c0
n

(t) = 0 for t. This is another illustration of the term “unlikely intersection”, such as in

the very simplest example tn = (1 � t)n = 1 in G2
m, and does indeed lead to a solution set that is at most

finite.

However the equations c00
n

(t) = 0 alone, just like tn = 1, are not unlikely in this sense; and one would

expect them to have infinitely many solutions as n varies. For our special D above this leads to

A2 � (X6 +X + t)B2 = c0X + c. (11.1)
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For us this is “almost the Pell equation” over C[X], as in Theorem P2.

A simple example is t = 0 with A = X3, B = 1 and

A2 � (X6 +X)B2 = �X. (11.2)

Less simple is t = 5

q
1
12 with

A = 24t3X7 � 48t4X6 + 6X5 � 6tX4 + 6t2X3 + 12t3X2 � 12t4X + 1,

B = 24t3X4 � 48t4X3 + 6X2 � 6tX + 6t2,

and

A2 � (X6 +X + t)B2 = 12t4X � 2.

It may be shown that such values of t are precisely those that occur as poles of the partial quotients in

a1, a2, . . . in (10.4). We see at once t = 0 in a2, and also t = 5

q
1
12 by going further to

a4 = � X

2t3(12t5 � 1)
+

16t5 � 1

4t2(12t5 � 1)
.

Similar issues occurred in the problems considered in [MZ1], [MZ2]; the pencil of abelian surfaces of this

paper was there replaced by the square of the Legendre family. There the unlikely intersection corresponded

to the equations

n(2,
p
2(2� �)) = n(3,

p
6(3� �)) = 0

on the Legendre elliptic curve as in (1.1). And there we also considered a “likely intersection” with

n(2,
p
2(2� �)) = 0 alone. We proved that there are infinitely many � using a very special case of Siegel’s the-

orem on integral points on curves over function fields. Other proofs were later presented (see [Za] pp.92,93),

but the matter, although not di�cult, seemed not completely obvious.

In this case of a simple abelian surface family, things appear to be more complicated. The approach

through Siegel’s theorem seems to require a deeper analogue for integral points in a�ne subsets of abelian

variety. (This is due to Faltings in the number field case. Here we would need the function field analogue;

presumably, although less deep, this should be still much more di�cult compared to Siegel’s theorem.) On

the other hand, the elliptic case admitted also an analytical approach (working on complex tori rather than

on algebraic models), which was simple and moreover gave additional information. It is an approach of this

nature that we shall adopt here.

We now start the proof of Theorem P2. More precisely we shall prove that given any d0, there are

infinitely many complex t for which there exist complex c0 6= 0, c and A,B in C[X] with A of degree at least

d0 and (11.1).

We start with an analogue of Lemma 10.1 for (11.1), as there over K[X], where now D is squarefree of

degree 6. We embed H
�✓

in J
�✓

by taking R to

j(R) = {�(1+),�(1+)}� {�(1+), R}. (11.3)

Write V
�✓

for the image j(H
�✓

); it is an algebraic curve but we don’t need to know this. It contains the

origin j(�(1+)); and after removing this we write temporarily V̂
�✓

for what is left.
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Lemma 11.1. The following hold:

(i) Suppose there are A,B in K[X] and c0 6= 0, c in K with A 6= 0 of degree d such that A2 �DB2 =

c0X + c. Then for n = d or 1 � d the function A(X) + Y B(X) on H
D

has a zero of order n � 1 at 1+, a

pole of order n at 1� and one other zero �+ 6= 1+ at which c0X + c also vanishes.

(ii) Suppose there are A,B in K(X) and n such that A(X) + Y B(X) on H
D

has a zero of order n� 1

at 1+, a pole of order n at 1� and one other zero �+ 6= 1+. Then n = d or 1� d for some integer d � 0

and A,B are in K[X] with A 6= 0 of degree d such that A2 �DB2 = c0X + c for some c0 6= 0, c in K such

that c0X + c also vanishes at �+.

(iii) Suppose D splits completely over K. There are A,B in K[X] and c0 6= 0, c in K with A 6= 0 of

degree d such that A2 �DB2 = c0X + c if and only if d � 1 and the point d{�(1+),�(1+)} is in V̂
�✓

.

Proof. In the situation of (i) then f+f� = c0X + c for the functions f+ = A(X) + Y B(X), f� = A(X) �
Y B(X) on H

D

. So the only possible zeroes and poles are at 1+,1� and the two zeroes �+, �� (possibly

coincident) of c0X + c. Since the number of zeroes is the number of poles, there is an integer n such that f+

has a zero of order n� 1 at 1+, a simple zero at �+, and a pole of order n at 1�. Now f+ + f� = 2A has

poles of order n or 1� n at 1+,1� and no other poles. Thus this order is d, and that proves (i).

In the situation of (ii) with f+ = A(X) + Y B(X) we deduce that f� = A(X) � Y B(X) has a pole of

order n at 1+, a zero of order n� 1 at 1�, and a simple zero at ��. Thus f+f� = c0X + c for constants

c0 6= 0, c. Also f+ + f� = 2A has no poles at finite points, so it must be a polynomial, clearly non-zero

because c0 6= 0. And finally because D is squarefree we see from DB2 = A2 � c0X � c that B is also a

polynomial. This brings us back to (i) and thereby completes the proof of (ii).

We may note that in the above situations the points �± = (X0,⌥A(X0)
B(X0)

) for X0 = � c

c

0 are defined over

K.

Finally in the situation of (iii) the existence of A,B clearly implies d � 1 and gives from (i) a function

f+ = A(X)+Y B(X) from which we derive a function g on H
�✓

with a zero of order n�1 at P+ = �(1+),

a pole of order n at P� = �(1�), and a simple zero at Q+ = �(�+) 6= P+. Here n = d or 1 � d; but by

changing the sign of B we can assume n = d. Looking at gln as in the proof of Lemma 10.1 now shows that

n{P+, P+} = j(Q+). And conversely if n{P+, P+} = j(Q) for some n = d � 1 and some Q 6= P+ then going

backwards we find a function on H
D

with a zero of order n�1 at 1+, a simple zero at �+ = ��1(Q) 6= 1+,

and a pole of order n at 1�. This can be written as f+ = A(X) + Y B(X) for A,B in K(X), and we are

back to (ii). That completes the proof of the present lemma.

Now for the proof concerning (11.1) we see that we are in a situation like that of the Proposition, except

that the condition of the point {P (c), Q(c)} being torsion on J
�(c)(c)✓(c), that is n{P (c), Q(c)} = O, is

replaced by n{P (c), Q(c)} in the curve V̂
�(c)(c)✓(c) (for n � 1). Here of course P (c) = Q(c) = �(1+). The

latter curve being of positive dimension, the corresponding condition is much less stringent and we will prove

that for each n0 it holds for infinitely many c in C with some n � n0. In fact it would su�ce to land in the

hatless V
�(c)(c)✓(c) (subsequently written V (c) for brevity) in J

�(c)(c)✓(c) (subsequently written J(c) for

brevity) because of Theorem P1; however we prefer not to evoke this rather deeper result here. Incidentally

we do not need to assume anything for the generic point of C as we did in the Proposition, because some

n � 1 with n{P,Q} in V
�✓

identically now works in our favour: by specialization it gives infinitely many c

with the same n. In fact the identity (1.9), which for convenience we display again as

A2 � (X6 +X + t)B2 = �X � t (11.4)
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with A = X3, B = 1, is an example of this with n = 3. We will verify later on that this is essentially the

only generic example; thus one cannot obtain c with n � 4 simply by this sort of specialization (e.g. to t = 0

as in (11.2) above).

Our general strategy may be sketched as follows. We work near some suitable fixed point c⇤ on C.

First we find a large n with n{P (c⇤), Q(c⇤)} near zero in V (c⇤). Then we perturb c⇤ by an amount of order
1
n

, staying on C, to some c⇤⇤. As “nf(x + y

n

) is about nf(x) + yf 0(x)” we can by suitable choice of c⇤⇤

bring n{P (c⇤⇤), Q(c⇤⇤)} near a better behaved point of V (c⇤) and so near a better behaved point of V (c⇤⇤).

Then another perturbation to c lands n{P (c), Q(c)} exactly on V (c) (but non-zero) as required in Lemma

11.1(iii); this last step involves some form of implicit function theorem which requires the better behaviour.

In fact we linearize the procedure using tangent spaces. Thus we will need the period functions f ,g,k, l

of section 4 together with an abelian logarithm z of {P,Q} as in (4.3). These were defined first at all c near

some c⇤ as in (4.2). For each c these periods generate over Z the lattice ⌦ = ⌦(c). We will work with the

inverse image Z(c) of V (c) under the exponential map; by (11.3) and (4.3) this consists of

z
R

(c) =

 Z
P (c)

R

dX

Y
,

Z
P (c)

R

XdX

Y

!

taken over all possible R and all possible paths. By Riemann’s Theorem it is the zero-set of a suitable

theta-function #. In fact we have

#

✓
1

2
z1(c)� 1

2
z
R

(c); T
◆

= 0 (11.5)

for some matrix T = T (c) in the Siegel upper half space (see for example [G] p.98). Thus Z(c) is a complex

analytic curve in C2 containing ⌦(c), and it is everywhere smooth being locally analytically isomorphic to

V (c) and so to H(c) = H
�(c)(c)✓(c) (or by Riemann’s Singularity Theorem for genus 2). It is known to be

connected.

For the moment we will work with just J(c⇤), V (c⇤),⌦(c⇤), Z(c⇤), which for further brevity we will

denote by J⇤, V⇤,⌦⇤, Z⇤ respectively. By adjusting c⇤ we can assume that J⇤ is simple (for example we could

use the t0 obtained from Stoll’s criterion in section 10, or a general result [M2] of the first author). Later on

we will make another adjustment of this type.

Lemma 11.2. Given u 6= 0 in C2 there is z⇤ in Z⇤ not in ⌦⇤, and also in the topological closure of Cu+⌦⇤,

such that the tangent space of Z⇤ through z⇤ does not contain z⇤ + u.

Proof. The closure U of Cu + ⌦⇤ in C2 (i.e. R4), as for any group in a real vector space, must have the

form G+ S for a group G and a real vector subspace S, of dimension say s, with G discrete in R4/S. As U

contains ⌦⇤ we see that S contains a subgroup of ⌦⇤ of rank s. As U contains Cu we must have s � 2. But

s = 2 would give an elliptic curve in J⇤ contradicting its simplicity.

First we want to show that Z⇤ \ S modulo ⌦⇤ is infinite. This is clear if s = 4, so we assume s = 3.

Now the removal of S (i.e. R3) disconnects C2 (i.e. R4). As Z⇤ is connected and contains ⌦⇤, it follows

that Z⇤ \ S is not empty. If this was finite modulo ⌦⇤ then it would be a discrete set of points in C2, and

removing these from Z⇤ would still leave a connected set Ẑ⇤. This still contains some translate of ⌦⇤, and

the argument above would give something in the empty set Ẑ⇤\S. Thus indeed Z⇤\S modulo ⌦⇤ is infinite;

and we can find an infinite subset T of Z⇤ \ S lying in a compact subset of C2.

21



Now if the complex tangent line of Z⇤ through t contains t+ u for all t in T not in ⌦⇤ then this would

be the case identically in z on the complex analytic curve Z⇤. That would imply that Z⇤ is a complex line.

But then it cannot contain ⌦⇤ (for example by the simplicity of J⇤). This completes the proof.

We will choose u (and so z⇤ in Z⇤) later on; they will depend only on the choice of c⇤. We choose in a

similar way also a small " > 0, say with "  1. The lemma implies that there is a period w⇤ in ⌦⇤ and ⌧ in

C with

|z⇤ � ⌧u�w⇤| < ". (11.6)

As 0 is a cluster-point of Nu modulo ⌦⇤, we can adjust ⌧ by an integer so that |⌧ | � 1.

Now Nz(c⇤) also clusters near 0 modulo ⌦⇤, and so there are infinitely many natural numbers n for

which a period w]

⇤n in ⌦⇤ exists with

|nz(c⇤)�w]

⇤n| < ". (11.7)

We can assume that n � n0 for our prescribed n0, and we can also assume that

n � 1 + |⌧ |2
"

. (11.8)

We are now going to move c on C slightly away from c⇤; we do this by choosing any non-constant

function on C - the coe�cient in X6+X + t will do perfectly well - and regarding c = c(t) as a function of t

near t⇤ = t(c⇤). Thus we shall write z̃(t) = z(c(t)) etc. The point is that a first approximation to nz̃(t⇤+
⌧

n

)

is nz̃(t⇤)+ ⌧ z̃0(t⇤), where the dash denotes d

dt

; thus although the perturbation ⌧

n

on t may be small the e↵ect

on nz̃ may not be. We have in fact

nz̃
⇣
t⇤ +

⌧

n

⌘
= nz̃(t⇤) + ⌧ z̃0(t⇤) +O

✓ |⌧ |2
n

◆
(11.9)

where the implicit constant, as in all such constants below, is independent of ⌧, " and especially n. In fact it

will be seen that they can be taken as absolute constants, provided t⇤ is chosen in a fixed way (and we can

almost certainly take t⇤ = 2, for example).

This enhanced perturbation will enable us to deduce from (11.7) that nz̃(t⇤+
⌧

n

) is close not to zero but

to z⇤ in Z⇤; at least up to periods. However we must take into account the e↵ect of perturbing the lattice.

Writing

w]

⇤n = p
n

f̃(t⇤) + q
n

g̃(t⇤) + r
n

k̃(t⇤) + s
n

l̃(t⇤)

for integers p
n

, q
n

, r
n

, s
n

we therefore define

w]

n

= p
n

f̃
⇣
t⇤ +

⌧

n

⌘
+ q

n

g̃
⇣
t⇤ +

⌧

n

⌘
+ r

n

k̃
⇣
t⇤ +

⌧

n

⌘
+ s

n

l̃
⇣
t⇤ +

⌧

n

⌘

in ⌦̃(t⇤ +
⌧

n

). To estimate w]

n

�w]

⇤n we have to be careful of the sizes of p
n

, q
n

, r
n

, s
n

. In fact we can write

z̃(t⇤) = xf̃(t⇤) + yg̃(t⇤) + uk̃(t⇤) + vl̃(t⇤) (11.10)

for real x, y, u, v, and from (11.7) it follows (since period lattices are discrete) that

p
n

= nx+O("), q
n

= ny +O("), r
n

= nu+O("), s
n

= nv +O("). (11.11)
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We find that

w]

n

= w]

⇤n + ⌧h+O

✓ |⌧ |2
n

◆
+O

✓ |⌧ |
n
"

◆
(11.12)

where

h = xf̃ 0(t⇤) + yg̃0(t⇤) + uk̃0(t⇤) + vl̃0(t⇤) (11.13)

may possibly be related to quasi-periods. An analogous construction produces w
n

in ⌦̃(t⇤ +
⌧

n

) from w⇤ in

(11.6) but now with coe�cients O(|⌧ |) instead of as in (11.11), and we find

w
n

= w⇤ +O

✓ |⌧ |2
n

◆
. (11.14)

We now choose

u = z̃0(t⇤)� h. (11.15)

By bad luck it may happen that u = 0, but if so we can just modify the choice of t⇤ to get u 6= 0. We

postpone the details of this step until later; they rely on our algebraic independence result Lemma 5.1.

Anyway, when we combine (11.7) with (11.6),(11.9),(11.12),(11.14) we see that nz̃(t⇤ + ⌧

n

) is close to z⇤

modulo ⌦̃(t⇤ +
⌧

n

); and using (11.8) to tidy up the error terms we end up with

nz̃
⇣
t⇤ +

⌧

n

⌘
= z⇤ +w]

n

�w
n

+O("). (11.16)

Here z⇤ was on Z⇤ = Z̃(t⇤). The last step is to make an additional perturbation from t⇤ +
⌧

n

to

t
n

= t⇤ +
⌧

n
+
⇣
n

n
(11.17)

so as to make nz̃(t
n

) actually on Z̃(t
n

); at first modulo periods but then since the Z̃(t) are periodic this is

good enough. Here |⇣
n

|  1 to start with.

For this we use the fact that near (z⇤, t⇤) the set of (z, t) in C2 ⇥ C with z in Z̃(t) is defined locally

by an analytic equation f(z, t) = 0. This seems to be well-known; for example the T = T (c) in (11.5) is

analytic in c (see also [G] p.97) and so in t. Again we must adjust the lattice, and so first we define the

periods

w]

n

(⇣) = p
n

f̃ (t
n

) + q
n

g̃ (t
n

) + r
n

k̃ (t
n

) + s
n

l̃ (t
n

)

and analogously w
n

(⇣) in ⌦̃(t
n

). Then we define

F
n

(⇣) = f(nz̃ (t
n

)�w]

n

(⇣) +w
n

(⇣), t
n

).

Note that the estimates (11.9),(11.12),(11.14) with ⌧ + ⇣ in place of ⌧ , together with (11.16), show that the

first expression in f is

nz̃ (t
n

)�w]

n

(⇣) +w
n

(⇣) = z⇤ +O(|⇣|) +O("); (11.18)

and the second expression is even t⇤ +O("). So F
n

is well-defined provided ⇣, " are su�ciently small.

We wish to find ⇣
n

with F
n

(⇣
n

) = 0. We do this with Rouché (see for example [L] p.158) applied to the

functions F
n

(⇣) and F
n

(⇣)�F
n

(0); if we can verify |F
n

(0)| < |F
n

(⇣)�F
n

(0)| on |⇣| = ⇢ for a suitable radius

⇢  1 then because the second function has the zero ⇣ = 0 we get the required zero of the first function.
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To start with we have by (11.16)

F
n

(0) = O("). (11.19)

Next with the first derivative g
n

of F
n

(⇣) at ⇣ = 0 we can verify that

F
n

(⇣)� F
n

(0) = ⇣g
n

+O(|⇣|2) (11.20)

when for safety |⇣|  1
2 ; for example by using the Cauchy Integral Formula ⇣

2

2⇡i

R
Fn(z)dz
z

2(z�⇣) over |z| = 3
4 and

estimating F
n

(z) = O(1). Here g
n

is given by

df
⇣
nz̃
⇣
t⇤ +

⌧

n

⌘
�w]

n

+w
n

, t⇤ +
⌧

n

⌘
·
⇣
z̃0
⇣
t⇤ +

⌧

n

⌘
� (w]

n

)0(0) +w0
n

(0)
⌘
+

1

n
f
t

⇣
t⇤ +

⌧

n

⌘
,

where df is the gradient with respect to v, f
t

the derivative with respect to t, and the dot is the scalar

product. By (11.16) and (11.8) we have

df
⇣
nz̃
⇣
t⇤ +

⌧

n

⌘
�w]

n

+w
n

, t⇤ +
⌧

n

⌘
= df(z⇤, t⇤) +O(").

And again using (11.11) and the definition (11.15) of u we get

z̃0
⇣
t⇤ +

⌧

n

⌘
� (w]

n

)0(0) +w0
n

(0) = u+O(").

Thus we find g
n

= ✓ +O(") for ✓ = df(z⇤, t⇤) · u.
Now by Lemma 11.2 we know that ✓ 6= 0. Thus if " is small enough we have |g

n

| � 1
2 |✓|, and now (11.19)

and (11.20) yield for |⇣| = ⇢  1
2 the inequality

|F
n

(⇣)� F
n

(0)|� |F
n

(0)| � 1

2
|✓|⇢�O(")�O(⇢2).

Here the right-hand side can be made strictly positive by choosing ⇢ as a su�ciently large multiple of " and

then again " small enough.

Thus indeed there exists ⇣
n

with F
n

(⇣
n

) = 0, and by the definition of f this means that nz̃(t
n

) lies on

Z̃(t
n

). Exponentiating, we see that n{P (c
n

), Q(c
n

)} lies in V (c
n

) for c
n

= c(t
n

). As n � n0 this seems at

first sight to complete the proof.

But at second sight why is n{P (c
n

), Q(c
n

)} 6= 0? If this were false then nz̃(t
n

) would be in ⌦̃(t
n

).

Then by (11.18) the point z⇤ would be within O(") of a period of ⌦̃(t
n

). Writing this period as an integral

linear combination of f̃(t
n

), g̃(t
n

), k̃(t
n

), l̃(t
n

) we see easily that the coe�cients are O(1). It follows that z⇤

is within O(") of the corresponding linear combination of f̃(t⇤), g̃(t⇤), k̃(t⇤), l̃(t⇤). But if " is small enough

this contradicts the choice of z⇤ in Lemma 11.2.

And at third sight why do we get infinitely many di↵erent t
n

as n varies, as required in (11.1)? Simply

because in (11.17) we had |⌧ | � 1 and ⇣
n

= O("), so ⌧

n

dominates if " is su�ciently small.

And finally why was u 6= 0 in (11.15)? Well, the x, y, u, v in (11.10) are real-analytic functions

x(t), y(t), u(t), v(t) at t = t⇤, and (11.15) and (11.13) give u = u(t⇤) for

u(t) = z̃0(t)� x(t)f̃ 0(t)� y(t)g̃0(t)� u(t)k̃0(t)� v(t)̃l0(t).
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Of course here

z̃(t) = x(t)f̃(t) + y(t)g̃(t) + u(t)k̃(t) + v(t)̃l(t). (11.21)

If now by some bad luck u(t⇤) = 0 then we just move t⇤ slightly. We can do this provided u(t) is not

identically zero. But if it were, then from (11.21) we would deduce

�(x(t))f̃(t) + �(y(t))g̃(t) + �(u(t))k̃(t) + �(v(t))̃l(t) = 0,

where � denotes the derivative with respect to either the real or the imaginary part of t. From this it would

follow that the real coe�cients �(x(t)), �(y(t)), �(u(t)), �(v(t)) are zero, and so x(t), y(t), u(t), v(t) would be

constant. But then (11.21) would contradict Lemma 5.1 on algebraic independence. This really does finish

the proof of Theorem P2 in the slightly stronger form with A of arbitrarily large degree.

If we use cluster-points of Nz(c⇤) other than 0, then the argument proves more about the set of integers

n such that some c exists. We leave it to the interested reader to explore what can be extracted from the

proof.

As anticipated, we now start on the proof that (11.4) is essentially the only example of (11.1), even

when A,B, c0, c are defined over the algebraic closure C(t); that is, up to multiplication by non-zero elements

of this field.

Lemma 11.3. Suppose that ', are in C(t) with  2 = '6 + '+ t. Then ' = �t,  = ±t3.

Proof. We easily deduce ' = U

W

, = V

W

3 for U, V,W in C[t] with both U,W and V,W coprime. Thus

V 2 = U6 + (U + tW )W 5. (11.22)

Now if degU  degW then tW 6 would dominate on the right-hand side of (11.22), incompatible with

the left-hand side V 2. So degU � 1 + degW . Now U6 dominates on the right, and so deg V = 3degU �
3 + 3degW . Thus the maximal degree of the three terms in (11.22) is N = 2deg V .

If U, V are coprime then we can apply abc to (11.22). The number of distinct zeroes is at most

deg V + degU + deg(U + tW ) + degW  1

2
N +

1

3
N +

1

3

✓
N

2
� 3

◆
< N,

a contradiction.

Thus we can assume that U, V have a common factor, which must be t up to units. So t does not divide

W . Writing U = tU1, V = tV1 we obtain from (11.22)

V 2
1 = t4U6

1 +
U1 +W

t
W 5,

where here U1+W

t

must be a polynomial. Now deg V1 = 2 + 3degU1 � 2 + 3degW . Certainly U1, V1 are

coprime; and if further t, V1 are coprime, then we can again apply abc. With now N1 = 2deg V1 as the

maximal degree we find the number of distinct zeroes is at most

deg V1 + (1 + degU1) + (deg(U1 +W )� 1) + degW  1

2
N1 +

2

3

✓
N1

2
� 2

◆
+

1

3

✓
N1

2
� 2

◆
< N1
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another contradiction.

Next suppose t divides V1 but t2 does not, so V1 = tV2 with t, V2 coprime and

V 2
2 = t2U6

1 +
U1 +W

t3
W 5

where again U1+W

t

3 must be a polynomial. Now deg V2 = 1+3degU1 � 1+3degW , and with N2 = 2deg V2

the zero count is

deg V2 + (1 + degU1) + (deg(U1 +W )� 3) + degW  1

2
N2 +

2

3

✓
N2

2
� 4

◆
+

1

3

✓
N2

2
� 1

◆
< N2

yet another contradiction.

Finally if t2 divides V1 so V1 = t2V3 then

V 2
3 = U6

1 +
U1 +W

t5
W 5

with coprime terms and deg V3 = 3degU1 � 3 degW , and with N3 = 2deg V3 the zero count is

deg V3 + degU1 + (deg(U1 +W )� 5) + degW  1

2
N3 +

2

3

✓
N3

2
� 15

2

◆
+

1

3

✓
N2

2

◆
< N2

apparently yet another contradiction. But now there is a way out: all the terms could be constant (this

was not possible for the first three applications of abc). But then U1,W would be constant. As U1 +W is

divisible by t it must vanish. This leads back to ' = �t,  = ±t3, and the present lemma is proved.

Now we can prove indeed that (11.1) must be essentially (11.4). Clearly A 6= 0. By the generic

insolvability of Pell over C(t) proved in section 10 just after (10.2), we can assume that c0 6= 0.

In fact by Proposition 3.6 (p.161) of [PT] with g = 2 the quotient A

B

is a convergent in the continued

fraction expansion of (10.3) over C(t). Thus we can suppose that A,B (and so c0, c) are over C(t) (and even

Q(t) but we won’t use this). Substituting X = � c

c

0 we obtain ', in C(t) with  2 = '6+'+ t. By Lemma

11.3 we deduce ' = �t. Thus c0X + c = c0(X + t).

Now we go back to Lemma 11.1 with K = C(t). By (i) the function A(X) + Y B(X) has for some n a

zero of order n � 1 at 1+, a pole of order n at 1� and one other zero �+ 6= 1+ at which c0(X + t) also

vanishes. So �+ = (�t,±t3); and by changing the sign of B we may suppose that �+ = (�t, t3).

Also X3 + Y has a zero of order 5 at 1+, a pole of order 6 at 1� and one other zero at this �+. So

g = A(X)+Y B(X)
X

3+Y

has a zero of order n� 6 at 1+, a pole of order n� 6 at 1� and no other zeros or poles.

By Lemma 10.1(ii) this forces n = 6 because of generic Pell insolvability. Thus g must be constant, showing

indeed that A,B are constant multiples of X3, 1 as claimed. The above sign change means that also X3,�1

turns up.

12. Further remarks. We close this paper with more comments on “likely intersections”.

We have shown in Theorem P2 the infinitude of the set T of complex t for which (11.1) is solvable for

some A,B in C[X] with the degree of A not 3 and some c0 6= 0, c in C. Equivalently the set of complex t for

which there exists a non-negative integer n 6= 6 such that

np(t) lies in V̂ (t), (12.1)
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where p(t) is a certain point on the Jacobian of a certain hyperelliptic curve and V̂ (t) is a certain embedding

of the curve in the Jacobian (omitting the origin), all depending algebraically on t. This is an analogue of

the second sentence of the very first paper [BMZ1] on the subject of likely and unlikely intersections. There

it was easy to see that there are infinitely many t for which there exist r, s in Z, not both zero, with

tr(1� t)s = 1; (12.2)

so easy, in fact, that we did not say how. And without much di�culty we went further to determine some

structure and found explicitly the t in Z and the t in Q; also we considered the t in some fixed number field

using Faltings’s Theorem, and noted the “sparseness” of the t with fixed degree over Q using a general result

of the first author [M1].

Surprisingly, none of these structure results seems to be clear for our present infinite set T . It is at least

obvious that T is in Q. But it is not at all obvious even that T 6= Q!

In this connexion we may note that for any specific t = t⇤ (apart from those in the finite set for which

Pell is solvable) there are at most finitely many A,B, c0, c in (11.1) up to proportionality. For otherwise by

(12.1) we would get infinitely many points in V (t⇤) defined over Q(t⇤), also contradicting Faltings. Now

these points have a special cyclic group structure, and for such small rank simpler results of Chabauty may

su�ce for the same finiteness conclusion.

These results of Chabauty are proved with p-adic methods and so we asked Victor Flynn if perhaps

similar arguments could be applied with varying t⇤, maybe p-adically constrained. He replied very quickly

in the a�rmative; he shows for example that no non-zero element of 7Z is in T (by (1.6) and (11.2) we see

that t = 0 is in T ). His work appears in our Appendix.

The first main result of [BMZ1] implies that the t in (12.2) have absolute height bounded from above.

Thus for us the next natural question is whether this holds for the elements of T . It is of course obvious

for the very simplest problem tn = 1; but already for n(2,
p
2(2� t)) = 0 it requires Silverman’s Theorem,

unfortunately not applicable to our T or (12.1).

One may ask several related questions: for example does T contain only finitely many roots of unity?
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[P] R. Paysant-Le Roux, Périodicité des fractions continues dans un corps de fonctions hyperelliptiques,

Arch. Math. 61 (1993), 46-58.

[Pil] J. Pila, Integer points on the dilation of a subanalytic surface, Quart. J. Math. 55 (2004), 207-223.

[PZ] J. Pila and U. Zannier, Rational points in periodic analytic sets and the Manin-Mumford conjecture,

Rendiconti Lincei Mat. Appl. 19 (2008), 149-162.

[Pin] R. Pink, A common generalization of the conjectures of André-Oort, Manin-Mumford, and Mordell-
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Appendix

.

An Application of Chabauty’s Theorem to a Family of Curves.

E.V. Flynn

2010 MSC codes. Primary 11G30; Secondary 11G10, 14H40 (Jacobian Varieties, Chabauty’s Theorem).

In this appendix, we shall consider the family of genus 2 curves

H
t

: Y 2 = X6 +X + t, (1)

where t 2 C is such that X6+X+ t has only simple roots. Since the discriminant of this sextic with respect

to X is 3125 � 46656t5, this condition is equivalent to requiring that t avoids any 5th root of 3125/46656,
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and in particular is satisfied by any t 2 Q. Any such H
t

is of genus 2; let J
t

denote the Jacobian of H
t

.

The above curve is defined over K = Q(t). Let 1+,1� denote the points on the non-singular curve that

lie over the singular point at infinity, which should be regarded as members of H
t

(K), since the coe�cient

of X6 is in (K⇤)2. We shall adopt the customary shorthand notation {P1, P2} to denote the divisor class

[P1+P2�1+�1�], which is in J
t

(K) when P1, P2 are points on H
t

and either P1, P2 are both K-rational

or P1, P2 are quadratic over K and conjugate. Consider the following embeddings:

µ : H
t

(K) ,! J
t

(K) : P 7! [P �1+] = {P,1�},
µ0 : H

t

(K) ,! J
t

(K) : P 7! [P �1�] = {P,1+}.
(2)

Further define

q
t

:= [1� �1+] = {1�,1�} 2 J
t

(K), (3)

which is in the image of µ. Making use of the divisor of the function Y + X3, it is straightforward to

compute 2q
t

, and then all nq
t

for �3  n  3

�3q
t

= {(�t, t3),1+}, �2q
t

= {(�t, t3),1�}, �1q
t

= {1+,1+},
0q

t

= {1+,1�},
1q

t

= {1�,1�}, 2q
t

= {(�t,�t3),1+}, 3q
t

= {(�t,�t3),1�}.
(4)

Clearly nq
t

2 imµ for n = �2, 0, 1, 3 and nq
t

2 imµ0 for n = �3,�1, 0, 2.

We are interested in finding su�cient conditions on t (which we wish to include infinitely many t 2 Q)

such that nq
t

62 imµ for |n| > 3. It turns out to be more elegant to rephrase this as: nq
t

62 imµ [ imµ0 for

|n| > 3.

When t is algebraic over Q, so that K is a number field, this is a problem that should be amenable

to constructive Chabauty techniques, which provide explicit bounds on the order of the intersection of an

embedding of a curve C of genus g into its Jacobian J , and a rank r subgroup of the Mordell-Weil group

J(K), provided that r < g. In this case, the genus of H
t

is g = 2 and we are trying to find the intersection of

µ
�H

t

(K)
�
with the rank 1 subgroup of J

t

(K) generated by q
t

. There is a substantial literature on applications

of Chabauty techniques, which we shall not attempt to list here; for genus 2, there are di↵erent styles used

to find explicit bounds, such as those in [1],[2],[4],[5].[6] and there is an implementation for numerical genus 2

examples, due to Michael Stoll, in Magma [8] (see also [3] for the original article of Chabauty). We shall

follow the methodology of [6] and Chapter 13 of [2] using explicit local parameters to find power series

over Z
p

. We shall give the details below, and have provided a Maple file mzf.map at [7] which checks all of

the following steps.

The first step towards applying these techniques is to find a multiple of q
t

which is in the kernel of the

reduction map modulo some prime p. Using the multiples of q
t

in (2) and adding 2q
t

+ 3q
t

, we find

E
t

:= 5q
t

= {(�t,�t3), (�t,�t3)}. (5)

We now impose the condition that

t = t0 6= 0, where t0 is algebraic over Q and there exists p > 5

and an embedding of Q(t0) into Q
p

, with |t0|p < 1.
(6)
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We represent this by setting

t = t0 = u0p
k, where |u0|p = 1 and k � 1. (7)

This forces E
t

to be in the kernel of reduction modulo p. Note that this condition on t0 includes all a/b 2 Q,

with a 6= 0, b 2 Z and hcf(a, b) = 1 such that there exists a prime p > 5 with p|a (which in turn include all

members of Z outside a set of density 0). It also includes algebraic numbers t0 of arbitrary degree over Q

such as, for any k 2 N not divisible by 11, t0 = 121/k � 1, which is of degree k over Q and for which there

is an embedding into Q11 with |t0|11 < 1.

What is somewhat surprising is that we shall find condition (6), which merely places E
t

in the kernel

of the reduction map modulo p, already to be su�cient to give our desired result about multiples of q
t0

using a p-adic Chabauty technique, when normally one might expect further congruence conditions to be

required. Although there are a number of worked examples using these techniques in the literature, we shall

nevertheless give an outline of the details here, on the grounds that the naive bound is insu�cient, and so

there is a finesse required towards the end of the argument, for which it is helpful to see the actual power

series.

Recall from Chapter 2 of [2] that for a general curve of genus 2

Y 2 = f6X
6 + f5X

5 + f4X
4 + f3X

3 + f2X
2 + f1X + f0, (8)

there is an embedding of the Jacobian variety into P15, where D = {(x1, y1), (x2, y2)} is mapped to a =

(a0, . . . a15), and where a0, . . . a15 are as follows:

a15 = (x1 � x2)
2, a14 = 1, a13 = x1 + x2, a12 = x1x2, a11 = x1x2(x1 + x2),

a10 = (x1x2)
2, a9 = (y1 � y2)/(x1 � x2), a8 = (x2y1 � x1y2)/(x1 � x2),

a7 = (x2
2y1 � x2

1y2)/(x1 � x2), a6 = (x3
2y1 � x3

1y2)/(x1 � x2),

a5 = (F0(x1, x2)� 2y1y2)/(x1 � x2)
2,

a4 = (F1(x1, x2)� (x1 + x2)y1y2)/(x1 � x2)
2,

a3 = (x1x2)a5, a2 = (G0(x1, x2)y1 �G0(x2, x1)y2)/(x1 � x2)
3,

a1 = (G1(x1, x2)y1 �G1(x2, x1)y2)/(x1 � x2)
3, a0 = a25,

(9)

where
F0(x1, x2) = 2f0 + f1(x1 + x2) + 2f2(x1x2) + f3(x1x2)(x1 + x2)

+ 2f4(x1x2)
2 + f5(x1x2)

2(x1 + x2) + 2f6(x1x2)
3,

F1(x1, x2) = f0(x1 + x2) + 2f1(x1x2) + f2(x1x2)(x1 + x2) + 2f3(x1x2)
2

+ f4(x1x2)
2(x1 + x2) + 2f5(x1x2)

3 + f6(x1x2)
3(x1 + x2),

G0(x1, x2) = 4f0 + f1(x1 + 3x2) + f2(2x1x2 + 2x2
2) + f3(3x1x

2
2 + x3

2)

+ 4f4(x1x
3
2) + f5(x

2
1x

3
2 + 3x1x

4
2) + f6(2x

2
1x

4
2 + 2x1x

5
2),

G1(x1, x2) = f0(2x1 + 2x2) + f1(3x1x2 + x2
2) + 4f2(x1x

2
2) + f3(x

2
1x

2
2 + 3x1x

3
2)

+ f4(2x
2
1x

3
2 + 2x1x

4
2) + f5(3x

2
1x

4
2 + x1x

5
2) + 4f6(x

2
1x

5
2).

(10)

32



With respect to this embedding,

0q
t

= [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

1q
t

= [0, 0, 0, 0, 0, 0, 0,�1, 0, 0, 1, 0, 0, 0, 0, 0],

2q
t

= [0, 0, 0, 0, 0, 0, 0, t2,�t, 1, t2,�t, 0, 0, 0, 1],

E
t

= 5q
t

= [
(12t5 � 1)2

16t12
,
40t10 � 16t5 + 1

8t8
,
�(56t10 � 18t5 + 1)

8t9
,
�(12t5 � 1)

4t4
,

10t5 � 1

4t5
,
�(12t5 � 1)

4t6
,
1

2
,
2t5 � 1

2t
,
�(4t5 � 1)

2t2
,
6t5 � 1

2t3
,

t4,�2t3, t2,�2t, 1, 0].

(11)

We recall from Chapter 7 of [2] that s1 = a1/a0 and s2 = a2/a0 give a pair of local parameters; there is

a formal group law, defined over Z[f0, . . . , f6], and the formal logarithm power series log1, log2 and formal

exponential power series exp1, exp2 (available at local/log and local/exp in [7]), up to terms of total degree 5

in s1, s2 are, when specialised to our curve H
t

in (1):

log1 = s1 +
1

3
s32 + 12ts31s

2
2 + 5s41s2 + terms of degree � 7,

log2 = s2 + 4s31s
2
2 + 12ts21s

3
2 + terms of degree � 7,

exp1 = s1 � 1

3
s32 � 5s41s2 � 12ts31s

2
2 + terms of degree � 7,

exp2 = s2 � 4s31s
2
2 � 12ts21s

3
2 + terms of degree � 7.

(12)

For each of these power series, the denominator occurring in any term of total degree n divides n!. Computing

the local parameters s1(Et

) = a1/a0 and s2(Et

) = a2/a0 for E
t

in (11) and using the condition on t in (7),

we see that

s1(Et

) = 2t4(40t10 � 16t5 + 1)/(12t5 � 1)2

= 2u4
0p

4k(1 + 8u5
0p

5k + 88u10
0 p10k +O(p15k)),

s2(Et

) = �2t3(56t10 � 18t5 + 1)/(12t5 � 1)2

= �2u3
0p

3k(1 + 6u5
0p

5k + 56u10
0 p10k +O(p15k)),

(13)

where O(pr) denotes upr for some u 2 Z
p

with |u|
p

 1. Applying exp(mlogE
t

), by combining (12),(13) and

taking account of the denominators in (12), gives the following pair of local parameters for mE:

s1(mE
t

) =
2

3
mu4

0p
4k(3 + 4m2u5

0p
5k + 20u05p5k

+ 72m2u1
00p

10k + 192u1
00p

10k +O(p15k)),

s2(mE
t

) = � 2mu3
0p

3k(1 + 6u5
0p

5k + 56u1
00p

10k +O(p15k)).

(14)

Using the local power series local/local.coordinates at [7] (and described in Chapter 7 of [2]), we can find the

P15 embedding of any point in the kernel of reduction, given a pair of local parameters; substituting (14)
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into these, gives the following P15 embedding [a0(mE
t

), . . . , a15(mE
t

)] for mE
t

.

a0(mE
t

) = 1,

a1(mE
t

) =
2

3
mu4

0p
4k(3 + 4m2u5

0p
5k + 20u5

0p
5k

+ 72m2u10
0 p10k + 192u10

0 p10k +O(p15k)),

a2(mE
t

) = � 2mu3
0p

3k(1 + 6u5
0p

5k + 56u10
0 p10k +O(p15k)),

a3(mE
t

) =
4

9
m2u8

0p
8k(9� 12m2u5

0p
5k + 120u5

0p
5k

� 272m2u10
0 p10k + 1552u10

0 p10k + 16m4u10
0 p10k +O(p15k)),

a4(mE
t

) = � 4

3
m2u7

0p
7k(3 + 4m2u5

0p
5k + 38u5

0p
5k

+ 480u10
0 p10k + 96m2u10

0 p10k +O(p15k)),

a5(mE
t

) = � 4m2u6
0p

6k(�1� 12u5
0p

5k � 148u10
0 p10k + 4m2u10

0 p10k +O(p15k)),

a6(mE
t

) = 8m3u12
0 p12k(1 + 20u5

0p
5k + 4m2u5

0p
5k +O(p15k)),

a7(mE
t

) = � 8

3
m3u11

0 q11k(3 + 8m2u5
0p

5k + 58u5
0p

5k +O(p10k)),

a8(mE
t

) =
8

3
m3u10

0 p10k(3 + 56u5
0p

5k + 4m2u5
0p

5k +O(p10k)),

a9(mE
t

) = � 8m3u9
0p

9(1 + 18u5
0p

5k +O(p10k)),

a10(mE
t

) = 16m4u1
06p

16k(1 +O(p5k)),

a11(mE
t

) = 32u1
05p

15km4(�1 +O(p5k)),

a12(mE
t

) = 16m4u14
0 p14(1 +O(p5k)),

a13(mE
t

) = � 32u13
0 p13km4(1 +O(p5k)),

a14(mE
t

) = 16m4u12
0 p12k(1 +O(p5k)),

a15(mE
t

) =m6u20
0 O(p20k).

(15)

We also recall, from Chapter 3 of [2], that for D = {(x1, y1), (x2, y2)} there is an embedding of the Kummer

surface given by (k1, k2, k3, k4), where

k1 = 1, k2 = x1 + x2, k3 = x1x2, k4 = a5, (16)

where a5 is the function given in (9). We observe that any D in the image of either µ or µ0 must have k1 = 0.

We also recall from Chapter 3 of [2] (available from jacobian.variety/bilinear.forms at [7]) that if a,b are on

the Jacobian variety, given as members of P15 using the embedding in (9), there are bilinear forms �
ij

(a,b)

which give k
i

(a� b)k
j

(a+ b). The bilinear form �31(a,b), when specialised to our curve H
t

in (1) is

�31 =� 2a8b1 + 2a7b2 � 4a4b4 + 2b7a2 � 2b8a1 + b0a12 + a5b3 + a3b5

+ a0b12 + 2ta5b14 + a13b5 + a5b13 � 4ta9b9 + 2ta14b5 � 2a4b14

� 2a8b9 � 2a14b4 � 2a9b8 + 16tb15a12 + 68ta12b12 + 4ta15b15

+ 2b10a3 + 4a6b6 + 2a10b3 + 8b11a12 + 8b12a11 � 2a13b10

+ 2a15b11 � 2a10b13 + 2a11b15 � 2a14b14 � 4ta13b11

+ 16ta15b12 � 4ta11b13.

(17)

34



Now define
 0(m) = �31(0qt,mE

t

) = m4u14
0 p14k

�
16 +O(p5k)

�
,

 1(m) = �31(1qt,mE
t

) = mu3
0p

3k
�
4 +O(p5k)

�
,

 2(m) = �31(2qt,mE
t

) =
8

3
mu5

0p
10k
�
u5
0(m+ 1)(2m+ 1) +O(p5k)

�
,

(18)

all of which are members of Z
p

[[m]], for which the coe�cient of mr tends to 0 in Z
p

as r ! 1. From the

above discussion, we see that, for any ` = 0, 1, 2,

`q
t

+mE
t

2 imµ [ imµ0 =)  
`

(m) = 0. (19)

We are now in a position to prove our main result.

Theorem. Let H
t

be as in (1), let µ, µ0 be as given in (2), let q
t

be as in (3) and let t = t0 satisfy the

condition given in (6),(7) for some prime p > 5. Then for n 2 Z and n > 3, we have nq
t

62 imµ [ imµ0.

Proof. First note that any nq
t

, for n 2 Z, must be one of: mE
t

, q
t

+mE
t

, 2q
t

+mE
t

,�q
t

+mE
t

,�2q
t

+mE
t

,

for some m 2 Z. We wish to show that nq
t

2 imµ[ imµ0 (for n 2 Z) only when |n|  3. Since E
t

= 5q
t

, and

since this condition is invariant under ±, this is equivalent to showing that (for m 2 Z): mE
t

2 imµ[ imµ0

only when m = 0, q
t

+ mE
t

2 imµ [ imµ0 only when m = 0, and 2q
t

+ mE
t

2 imµ [ imµ0 only when

m = 0,�1. The first two of these follow immediately from (18),(19), since the power series 16 + O(p5k),

4 + O(p5k) each have constant term with | |
p

= 1, which is strictly greater than for the coe�cients of all

subsequent powers of m, and so there are no further roots m 2 Z
p

(and so no further roots m 2 Z) of

 0(m), 1(m) apart from m = 0.

The interesting case is that of  2(m). We know m = 0,�1 to be solutions (since 2q
t

, 2q
t

� E
t

are

indeed in imµ [ imµ0), so that  2(m) = 8
3m(m+ 1)u5

0p
10k
�
u5
0(2m+ 1) +O(p5k)

�
. In this case, the number

of possible solutions m 2 Z
p

is bounded above by 3, which is strictly greater than the number of known

solutions m = 0,�1 2 Z, and the Chabauty bound fails in this case. However, there is a finesse in this case

which allows us to identify this third solution m 2 Z
p

. By Hensel’s Lemma (keeping in mind that t = t0

satisfies the condition (6)(7)), there is a root w
t

2 Z
p

of the sextic X6 +X + t with w
t

⌘ �t (mod p) and so

D
t

:= {(�t,�t3), (w
t

, 0)} is in the kernel of reduction mod p, and satisfies 2D
t

= E
t

. This can be regarded

as 1
2Et

(within the kernel of reduction), in the sense that m = 1/2 gives D
t

when inserted into exp(mlogE
t

).

This means that 2q
t

� 1
2Et

= {1+, (�t,�t3)}+ {(w, 0), (�t, t3)} = {1+, (w, 0)} 2 imµ0, and so �1/2 2 Z
p

must be a root of  2(m). Therefore  2(m) = 8
3m(m+1)(2m+1)u5

0p
10k
�
u5
0 +O(p5k)

�
, and the complete list

of solutions in Z
p

is given by m = 0,�1,�1/2. Therefore the only solutions in Z are m = 0,�1, as required.
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