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Abstract

In this article, we propose a black-box higher order fast multipole method for
solving boundary integral equations on parametric surfaces in three dimensions.
Such piecewise smooth surfaces are the topic of recent studies in isogeometric
analysis. Due to the exact surface representation, the rate of convergence of
higher order methods is not limited by approximation errors of the surface. An
element-wise clustering yields a balanced cluster tree and an e�cient numerical
integration scheme for the underlying Galerkin method. By performing the
interpolation for the fast multipole method directly on the reference domain,
we reduce the cost complexity in the polynomial degree by one order. This
gain is independent of the application of either H- or H2-matrices. In fact, we
point out several simplifications in the construction of H2-matrices, which are
a by-product of the surface representation. Numerical examples are provided in
order to quantify and qualify the proposed method.

Keywords: Non-local operators, parametric surfaces, higher order ansatz
functions, H2-matrices, fast multipole method.

1. Introduction

In many situations, practical problems arising from science and engineering
can be formulated in terms of di↵erential equations for an unknown function.
If a Green’s function of the underlying di↵erential equation is known, it may
be reformulated by means of boundary integral equations. A Green’s function
is, for instance, known in case of the Laplace equation, the Helmholtz equation
and the heat equation. The main advantage of considering boundary integral
equations is the reduction of the problem’s dimensionality.

Di↵erent approaches have been proposed to deal with the resulting, in gen-
eral non-local, boundary integral operators. Beside collocation and Nyström
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methods, the boundary element method (BEM) is commonly used for the nu-
merical discretization of such operators, see [1, 2, 3]. Due to their non-locality,
one usually ends up with large and densely populated system matrices and,
thus, the numerical solution of such problems is rather challenging.

Nevertheless, the system matrices exhibit very often a certain compressibility
property. Therefore, in the last decades, several ideas for the e�cient approx-
imation of the discrete linear system of equations have been developed which
exploit this compressibility. The most prominent examples of such methods
are the fast multipole method [4], the panel clustering method [5], the wavelet
Galerkin scheme [6, 7], and the adaptive cross approximation [8]. These dis-
cretization methods end up with linear or almost linear complexity, i.e. up to a
poly-logarithmic factor, with respect to the number of boundary elements.

In this article, we focus on the fast multipole method (FMM) for the solution
of boundary integral equations and cast it into the framework of parametric

surfaces. Parametric surfaces can be described piecewise by the images of a
certain reference domain under smooth di↵eomorphisms. The images of each of
these di↵eomorphisms are referred to as patches.

Many parametric surfaces are nowadays directly accessible as technical sur-
faces generated by tools from Computer Aided Design (CAD). Very common
surface representations in CAD are defined by the IGES (Initial Graphics Ex-
change Specification) and the STEP (Standard for the Exchange of Product
Model Data) standards, cf. [9, 10]. In both standards, the initial CAD object is
a solid, bounded by a closed surface that is given as a collection of parametric
surfaces which can be trimmed or untrimmed. An untrimmed surface is already
a four-sided patch, parameterized over a rectangle. Whereas, a trimmed surface
is just a piece of a supporting untrimmed surface, described by boundary curves.
There are several representations of the parameterizations including B-splines,
NURBS (nonuniform rational B-Splines), surfaces of revolution, and tabulated
cylinders, see [11]. The representation with NURBS is intensively studied in
the context of isogeometric analysis, see e.g. [12, 13, 14, 15]. Nevertheless, in
contrast to the isogeometric analysis framework, we do not restrict ourselves
to geometries that can be represented by NURBS, but allow any surface which
provides the requirements specified in the subsequent section.

One major advantage of parametric surfaces stems from the fact that more
geometric information is available, which can therefore be exploited in the dis-
cretization. Especially, no di�culties arise if geometric entities occur in the
kernel function of the integral operator under consideration, like the normal or
tangents, as for example in the double layer operator or the adjoint double layer
operator. Moreover, parametric surfaces provide an exact representation of the
surface which is in contrast to the common approximation of surfaces by panels.
There is no further approximation step required if the surface is given in this
form. As a consequence, the rate of convergence in a boundary element method
is not limited by the accuracy of the surface approximation.

We shall provide in this article a simple black-box version of the fast mul-
tipole method for higher order boundary elements in order to make use of the
features of parametric surfaces. In particular, we interpolate the Green’s func-
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tion directly on the reference domain. This is in contrast to the interpolation of
the kernel in space, as in e.g. [16, 17], and yields a remarkable speed-up of the
FMM, since we can fully exploit the dimension reduction due to the boundary
integral formulation of the underlying problem. In three spatial dimensions,
the surface is a two-dimensional manifold and so the problem is inherently
two-dimensional. This results in a dramatic reduction of the computational
e↵ort. Moreover, we can still profit from the H2-matrix techniques presented
in e.g. [16, 17]. Notably, since our particular realization of parametric surfaces
is based on four-sided patches, we can exploit the tensor product structure of
the reference domain to considerably simplify the construction of H2-matrices.
More precisely, we will see that, due to the special structure of our computa-
tional domain, the construction of H2-matrices only slightly di↵ers from that
of usual H-matrices. A further specialty of the presented FMM is that it can
also be regarded as black-box algorithm for the discretization of more general
Hilbert-Schmidt operators, see e.g. [18]. Then, the Green’s function function is
replaced by a more general integral kernel. In particular, there is no explicit
knowledge of the integral kernel presumed except for its smoothness apart from
the diagonal.

The rest of this article is structured as follows. At first, in Section 2, we
introduce the parametric surface representation under consideration. As a con-
sequence from this representation, the mesh generation is straightforward. In
Section 3, we discuss boundary integral equations together with their properties
in general. The respective Galerkin discretization with piecewise polynomial
(discontinuous) ansatz functions is performed in Section 4. Then, Section 5 is
dedicated to the FMM for parametric surfaces. Here, we present the algorithm
which perfectly fits the framework of parametric surfaces and extend it to the
H2-matrix variant. In Section 6, we provide a straightforward extension of the
FMM to higher order continuous ansatz functions. Finally, in Section 7, we per-
form numerical experiments to validate and quantify our numerical approach.

In the sequel, in order to avoid the repeated use of generic but not further
specified constants, we imply by C . D that C can be bounded by a multi-
ple of D, independently of other parameters which C and D may depend on.
Obviously, C & D is defined as D . C, and C ⇠ D as C . D and C & D.

2. Surface Representation

Let ⌦ ⇢ R3 denote a Lipschitz domain with piecewise smooth surface � :=
@⌦. Then, we construct a parametric representation of the surface � as follows.
Let ⇤ := [0, 1]2 denote the unit square, which serves as reference domain. We
subdivide the given surface � into several smooth patches

� =
M[

i=1

�i,
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Figure 2.1: Surface representation and mesh generation.

where the intersection �i\�i0 consists at most of a common vertex or a common
edge for i 6= i0. Then, for each patch, there exists a smooth di↵eomorphism

�i : ⇤ ! �i with �i = �i(⇤) for i = 1, 2, . . . ,M, (2.1)

as illustrated in Figure 2.1. For constructing regular surface meshes, we impose
the following matching condition: We demand the existence of a bijective and
a�ne mapping ⌅ : ⇤ ! ⇤ such that for each x = �i(s) on a common edge of
�i and �i,0 there holds holds �i(s) = (�i0 �⌅)(s). This means that the param-
eterizations �i and �i0 coincide on the common edge except for orientation.

In the sequel, we shall also refer to the surface measure of the di↵eomor-
phisms �i. On the patch �i, it is given by

i(s) :=
��@s1�i(s)⇥ @s2�i(s)

��
2
. (2.2)

Figure 2.2: Di↵erent parametric surfaces with their patch boundaries.

An algorithm to decompose a technical surface, described in the IGES for-
mat, into a collection of parameterized four-sided patches, fulfilling all the above
requirements, has been proposed in [19]. This algorithm has been extended in
[20, 21] to molecular surfaces. Figure 2.2 visualizes three parameterizations
which satisfy the present requirements.

Starting from this surface representation, it is straightforward to generate
a nested sequence of meshes for �. The mesh Qj on level j for � is induced
by dyadic subdivisions of depth j of the unit square into 4j congruent squares,
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each of which is lifted to � by the associated parameterization �i (see Figure 2.1
for a visualization). This procedure leads to a nested and especially quad-tree
structured sequence

Q0 ⇢ Q1 ⇢ · · · ⇢ QJ

of meshes consisting of Nj = 4jM elements on level j.
We will refer to the particular elements as �i,j,k where i is the index of

the underlying parameterization �i, j denotes the level of the element and k
is the index of the element in hierarchical order. For notational convenience
we shall also refer to the triple (i, j, k) by � := (i, j, k) with |�| := j. In view
of the fast multipole method, we will consider �i,j,k also as a cluster. In this
sense, we think of �i,j,k as the union {�i,J,k0 : �i,J,k0 ⇢ �i,j,k}, i.e. the set of
all tree leafs appended to �i,j,k or one of its sons. Furthermore, we denote the
hierarchical ordered collection of all clusters, the cluster tree, by T . A scheme for
the subdivisions of the patch �i up to level 2 is illustrated in Figure 2.3. Finally,
with respect to the tree structure of T , we define dad(�) := (i, j�1, bk/4c) and
sons(�) := {(i, j + 1, 4k + `) : ` = 0, . . . , 3}.

�i,0,0

level 0

�i,1,3

�i,1,0

�i,1,2

�i,1,1

level 1 level 2

�i,2,6

�i,2,5
�i,2,4

�i,2,7

Figure 2.3: Visualization of the cluster tree.

3. Problem Formulation

In this article, we focus on boundary integral equations defined on the closed,
parametric surface � := @⌦, i.e.

(Au)(x) =

Z

�
k(x,y)u(y) d�

y

= f(x). (3.3)

Herein, the boundary integral operator A is supposed to be of order 2q, which
means that it maps Hq(�) continuously and one-to-one onto H�q(�). The
kernel functions under consideration have to be smooth as functions in the
variables x and y apart from the diagonal {(x,y) 2 � ⇥ � : x = y} and may
have a singularity on the diagonal. Such kernel functions arise, for instance, by
applying a boundary integral formulation to a second order elliptic boundary
value problem, see e.g. [2, 3]. In general, they decay like a negative power of the
distance of the arguments which depends on the order 2q of the operator and the
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spatial dimension. More precisely, we suppose that the kernel is asymptotically

smooth, i.e. for all x,y 2 R3 holds

��@↵
x

@�
y

k(x,y)
��  ck

(|↵|+ |�|)!
r
|↵|+|�|
k

kx� yk�2�2q�|↵|�|�|
2 (3.4)

with some constants ck > 0 and rk > 0 which are independent of ↵ and �.
The variational formulation of the boundary integral equation (3.3) reads

now as follows:

Find u 2 Hq(�) such that (Au, v)L2(�) = (f, v)L2(�) for all v 2 Hq(�). (3.5)

If we insert the parametric representation (2.1) of �, the bilinear form reads

(Au, v)L2(�) =

Z

�

Z

�
k(x,y)u(y)v(x) d�

y

d�
x

=
MX

i,i0=1

Z

⇤

Z

⇤
ki,i0(s, t)u

�
�i0(t)

�
v
�
�i(s)

�
dt ds

and the linear form reads

(f, v)L2(�) =

Z

�
f(x)v(x) d�

x

=
MX

i=1

Z

⇤
f
�
�i(s)

�
v
�
�i(s)

�
i(s) ds.

Here, the kernels ki,i0 denote the transported kernel functions

ki,i0 : ⇤⇥⇤ ! R,
ki,i0(s, t) := k

�
�i(s),�i0(t)

�
i(s)i0(t)

�
i, i0 = 1, 2, . . . ,M. (3.6)

Definition 3.1. A kernel function k(x,y) is called analytically standard of

order 2q if constants ck > 0 and rk > 0 exist such that the partial derivatives of

the transported kernel functions ki,i0(s, t) are uniformly bounded by

��@↵
s

@�
t

ki,i0(s, t)
��  ck

(|↵|+ |�|)!
r
|↵|+|�|
k

���i(s)� �i0(t)
���(2+2q+|↵|+|�|)
2

(3.7)

provided that 2 + 2q + |↵|+ |�| > 0.

Note that, since the parametric representation is patch-wise smooth, all
kernels which satisfy (3.4) are also analytically standard of order 2q, see e.g. [22]
for a proof of this statement.

In the context of the Galerkin approximation, we will also refer to the local-

ized kernel functions. To that end, let ⇤j,k := ��1
i (�i,j,k) be the k-th element

of the subdivided unit square on level j and define the a�ne mapping

⌧ j,k : ⇤ ! ⇤j,k for j = 0, 1, . . . , J and k = 0, 1, . . . , 4jM � 1
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1

��

⌧ j,k
�i

Figure 3.4: Localized parameterization.

via dilatation and translation. Then, the localized kernel functions are given by

k�,�0(s, t) := k
�
��(s),��0(t)

�
�(s)�0(t) (3.8)

with the localized parameterizations �� := �i � ⌧ j,k and the corresponding
surface measures � := 2�2ji � ⌧ j,k with i defined in (2.2). An illustration of
the mappings �� is given by Figure 3.4.

In the following, we will only consider the localized kernel functions. The
next theorem is an immediate consequence of the definition (3.8) and the fact
that @↵

s

⌧ j,k(s) = 2�j if |↵| = 1 and @↵
s

⌧ j,k(s) = 0 if |↵| > 1.

Theorem 3.2. Let the kernel function k(x,y) be analytically standard of order

2q. Then, there exist constants ck > 0 and rk > 0 such that

��@↵
s

@�
t

k�,�0(s, t)
��  ck

(|↵|+ |�|)!
r
|↵|+|�|
k

2�|�|(|↵|+2)2�|�0|(|�|+2)

k��(s)� ��0(t)k2+2q+|↵|+|�|
2

(3.9)

holds uniformly for all �,�0
provided that 2 + 2q + |↵|+ |�| > 0.

4. Galerkin Discretization

In this section, we consider the Galerkin discretization of the variational
formulation (3.5). To this end, we fix a polynomial order d 2 N, a level of
refinement j 2 N, and define the ansatz space

V̂j :=
�
'̂ : ⇤ ! R : '̂|⇤j,k

is a polynomial of order d
 
⇢ L2(⇤) (4.10)

of discontinuous, element-wise polynomial ansatz functions on the reference do-
main. With the help of this space, we can introduce the ansatz space Vj in
accordance with

Vj :=
�
'̂ � ��1

i : '̂ 2 V̂j , i = 1, . . . ,M
 
⇢ L2(�).

This construction of the ansatz spaces obviously yields a nested sequence

V0 ⇢ V1 ⇢ · · · ⇢ VJ ⇢ Ht(�), (4.11)

7



where the Sobolev smoothness t depends on the global smoothness of the func-
tions ' 2 Vj . For arbitrary functions ' 2 Vj , we have t < 1/2, and for the
subset of globally continuous functions in Vj , we have t < 3/2.

By replacing the energy space Hq(�) in the variational formulation (3.5)
by the finite dimensional ansatz space VJ ⇢ Hq(�), we arrive at the Galerkin
discretization for the boundary integral equation (3.3):

Find uJ 2 VJ , such that
Z

�

Z

�
k(x,y)uJ(y)vJ(x) d�y

d�
x

=

Z

�
f(x)vJ(x) d�x

for all vJ 2 VJ .

(4.12)
By setting û� := uJ ��� and v̂� := vJ ���, we can rewrite (4.12) and arrive at
the equation

X

|�0|=J

Z

⇤

Z

⇤
k�,�0(s, t)û�0(t)v̂�(s) dt ds =

Z

⇤
f
�
��(s)

�
v̂�(s)�(s) ds (4.13)

for all � with |�| = J .

d Shape Functions Visualization

1 �(i)(x) = 1

0 0.5 1
0

0.5

1

2 �(i)(x) =

(
1� x

x

0 0.5 1
0

0.5

1

3 �(i)(x) =

8
><

>:

(1� x)2/2

�(x� 1/2)2 + 3/4

x2/2
0 0.5 1

0

0.5

1

Table 4.1: B-spline based shape functions on the interval.

A basis for VJ is obtained by tensorizing polynomial shape functions on [0, 1]
and applying the localized parameterizations ��. For d = 1, 2, 3, suitable shape
functions are depicted in Table 4.1. By choosing such a basis, (4.12) immediately
yields a system of linear equations:

AJuJ = fJ . (4.14)

To realize globally continuous B-splines as ansatz functions, enabling for ex-
ample the discretization of the hypersingular integral operator, we shall apply
suitable transformation matrices. The construction of these transformation ma-
trices is the topic of Section 6.
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Having the Galerkin solution uJ 2 VJ at hand, we obtain the following
well known error estimate by the use of the standard approximation property
for ansatz functions of polynomial order d. Note that the rate of convergence
doubles due to the Aubin-Nitsche lemma.

Theorem 4.1. Let u 2 Hq(�) be the solution of the boundary integral equation

(3.3) and uJ 2 VJ the related Galerkin solution of (4.12). Then, there holds the

error estimate

ku� uJkH2q�d(�) . 22J(q�d)kukHd(�)

provided that u and � are su�ciently regular.

5. Fast Multipole Method

In general, the system matrix AJ in (4.14) is densely populated. This yields
a rather high computational e↵ort for the assembly and for the matrix-vector
multiplication. Fortunately, the system matrix is block-wise of low rank, i.e. it
is compressible in terms of an H-matrix, cf. [23]. The computational complexity
can thus drastically be reduced by a block-wise compression scheme.

5.1. Block-Cluster Tree

For constructing the H-matrix representation, we consider the level-wise
Cartesian product T ⇥ T :=

�
�� ⇥ ��0 : ��,��0 2 T , |�| = |�0|

 
of the clus-

ter tree T . Compressible matrix blocks are then identified by the following
admissibility condition.

Definition 5.1. The clusters �� and ��0
with |�| = |�0| are called admissible

if

max
�
diam(��), diam(��0)

 
 ⌘ dist(��,��0) (5.15)

holds for a fixed ⌘ 2 (0, 1). The largest collection of admissible blocks �� ⇥
��0 2 T ⇥ T such that �dad(�) ⇥ �dad(�0) is not admissible forms the far-field
F ⇢ T ⇥ T of the operator. The remaining non-admissible blocks correspond to

the near-field N ⇢ T ⇥ T of the operator.

The far-field corresponds to the compressible matrix blocks, whereas the
near-field is treated by the classical boundary element method.

The block-cluster tree B := F [ N can be constructed by Algorithm 1. It
induces a block partitioning of the system matrix in quadratic blocks since
the cluster tree T is a balanced quad-tree. Hence, each block on a particular
level contains exactly the same number of element-element interactions, see also
Figure 5.5 for a visualization of this special block partitioning of an H-matrix.
Such a special structure is not available in general, cf. [23], and will explicitly
be exploited in our construction of the fast multipole method (FMM).
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Algorithm 1 Construction of the block-cluster tree B
procedure BuildBlockClusterTree(cluster ��,��0)

if (��,��0) is admissible then
sons(�� ⇥ ��0) := ;

else
sons(�� ⇥ ��0) := {�µ ⇥ �µ0 : µ 2 sons(�),µ0 2 sons(�0)}
for µ 2 sons(�),µ0 2 sons(�0) do

BuildBlockClusterTree(�µ,�µ0)
end for

end if
end procedure

Figure 5.5: The special block partitioning of the H-matrix.

5.2. Kernel Interpolation

To compress the admissible matrix blocks, we propose a black-box version
of the FMM based on the interpolation of the kernel k(x,y) as firstly proposed
in [16]. Note that, later on, this idea was also followed in [17] to construct H2

-

matrices. Nevertheless, in contrast to these works, our approach interpolates
the localized kernel (3.8) on the reference domain rather than the original kernel
in space.

For a given polynomial degree p 2 N, let {x0, x1, . . . , xp} ⇢ [0, 1] denote p+1
interpolation points. Furthermore, let Lm(s) for m = 0, . . . , p be the Lagrangian
basis polynomials with respect to these interpolation points. By a tensor prod-
uct construction, we obtain the interpolation points x

m

:= (xm1 , xm2) and the
corresponding tensor product basis polynomials L

m

(s) := Lm1(s1) ·Lm2(s2) for
m1,m2 = 0, . . . , p. In all admissible blocks �� ⇥ ��0 2 F , we approximate

k�,�0(s, t) ⇡
X

kmk1,km0k1p

k�,�0(x
m

,x
m

0)L
m

(s)L
m

0(t).

Hence, for two basis functions �̂`, �̂`0 2 V̂J�|�| of the ansatz space on level
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J � |�|, we derive the representation

[A�,�0 ]`,`0 ⇡
Z

⇤

Z

⇤

X

kmk1,km0k1p

k�,�0(x
m

,x
m

0)L
m

(s)L
m

0(t)�̂`(s)�̂`0(t) dt ds

=
X

kmk1,km0k1p

k�,�0(x
m

,x
m

0)

Z

⇤
L
m

(s)�̂`(s) ds

Z

⇤
L
m

0(t)�̂`0(t) dt

=:
⇥
M⇤

|�|K�,�0(M⇤
|�0|)

|⇤
`,`0

.

By construction, each cluster on a particular level contains the same num-
ber of basis functions, namely dim(V̂J�|�|). Additionally, the moment matrices

M⇤
|�| are independent of the particular parameterization. This yields the fol-

lowing

Theorem 5.2. For j = 1, 2, . . . , J and all |�| = |�0| = j, it holds

M⇤
|�| = M⇤

|�0|. (5.16)

As a consequence we have to compute and store only a single moment matrix

M⇤
|�| 2 Rdim(V̂J�|�|)⇥(p+1)2

for each particular level. This is in contrast to the classical fast multipole
method, where one has to compute the moment matrices for each cluster sepa-
rately.

Because of quadrangular meshes, we may exploit the tensor product struc-

ture of the ansatz functions. To that end, let �̂` = �̂
(1)
` ⌦ �̂

(2)
` and �̂`0 =

�̂
(1)
`0 ⌦ �̂

(2)
`0 , respectively. Then, the moment matrices M⇤

|�| can be decomposed
even further:

Z

⇤
L
m

(s)�̂`(s) ds =

Z 1

0

Z 1

0
Lm1(s1)�̂

(1)
` (s1)Lm2(s2)�̂

(2)
` (s2) ds1 ds2

=

Z 1

0
Lm1(s1)�̂

(1)
` (s1) ds1

Z 1

0
Lm2(s2)�̂

(2)
` (s2) ds2

=:
⇥
M|�|⌦M|�|

⇤
`,(p+1)m1+m2

.

Since
M|�| 2 R

p
dim(V̂J�|�|)⇥(p+1), (5.17)

we arrive at an improved storage complexity for the far-field.

5.3. Computational Complexity

In the sequel, we derive complexity estimates for the FMM under consider-
ation. In practice, it is convenient to impose a lower threshold for the far-field
in terms of the polynomial degree p and the polynomial order d of VJ . Assum-
ing p > d, we consider matrix blocks of size p2 ⇥ p2 as near-field. Thus, these
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blocks will not be compressed by the FMM. The proof of the next theorem
implies that this results in O

�
NJ(p/d)�2

�
near-field blocks with a storage cost

of O
�
NJ(pd)2

�
, where NJ is the number of elements on level J . Moreover, we

have the following result for the cost complexity of the far-field.

Theorem 5.3. The complexity for the computation and the storage of the far-

field is O
�
NJ(pd)2

�
.

Proof. At first, we show inductively that there are O(Nj) admissible and also
O(Nj) non-admissible clusters on level j. On level 0, this is clearly true. Thus,
let the assumption hold for level j � 1.

On level j � 1, for a fixed cluster, there exist O(1) neighbouring clusters
which do not satisfy the admissibility condition (5.15). For such clusters, we
have to consider the 4 son clusters on level j. Hence, we face 4O(Nj�1) = O(Nj)
non-admissible and also O(Nj) admissible cluster-cluster interactions on level
j. Furthermore, due to the lower threshold, the maximum level to be computed
is

dJ � 2 log4(p/d)e = J � b2 log4(p/d)c =: J � jmin.

Since Nj = 4jM , we may estimate

J�jminX

j=0

O(Nj) = O
�
M4J�jmin

�
= O

�
M4J(p/d)�2

�
= O

�
NJ(p/d)

�2
�
.

Thus, we end up with overall O
�
NJ(p/d)�2

�
far-field blocks and accordingly

O
�
NJ(p/d)�2

�
near-field blocks.

For each far-field block, we have to evaluate and store the localized ker-
nel function in O(p4) points. The complexity for assembly and storage of the
moment matrices is O

�p
NJpd

�
in total, cf. (5.17). Consequently, the far-field

complexity is

O
�
NJ(p/d)

�2
�
· O(p4) +O

�p
NJpd

�
= O

�
NJ(pd)

2
�
.

Remark 5.4. Due to the parametric surface representation, we obtain an im-

proved cost complexity. The standard interpolation-based FMM proposes to in-

terpolate the kernel in space. Thus, the polynomial degree enters with O(p3),
cf. [16, 17]. Since we only interpolate the transported kernel on the reference

domain, we can reduce the cost to O(p2).

The improved storage complexity also a↵ects the cost of the H-matrix-vector
multiplication. The complexity of the conventional H-matrix-vector multipli-
cation is O

�
NJ logNJp

3d2
�
, see e.g. [24, 25], whereas we obtain the following

result.

Theorem 5.5. The complexity of the matrix-vector multiplication for the FMM

is O
�
NJ logNJ(pd)2

�
.
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Proof. On level j, we have O(Nj) far-field blocks with a block size of d2NJ/Nj .
The complexity of the matrix-vector multiplication for the far-field is therefore

J�jminX

j=0

O(Nj) · O
✓
NJ

Nj
(pd)2

◆
=

J�jminX

j=0

O
�
NJ(pd)

2
�
= O

�
NJ logNJ(pd)

2
�
,

where jmin =
⌅
2 log4(p/d)

⇧
. Next, we look at the near-field blocks and recall that

we find in the near-field O
�
NJ(p/d)�2

�
blocks with with O

�
p4
�
entries. Thus,

the overall complexity of the matrix-vector multiplication is O
�
NJ logNJ(pd)2

�

as claimed.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

Figure 5.6: First Lagrange polynomials of son clusters and father cluster.

5.4. Nested Cluster Bases

We can improve the cost complexity of the matrix-vector multiplication to
O
�
NJ(pd)2

�
by exploiting the fact that the explicit computation of the moment

matrices M|�| for each particular level can be avoided by the concept of nested
cluster bases which amounts to the H2-matrix representation, cf. [17].

Since the polynomial degree for each cluster is p, we can obviously represent
the Lagrangian polynomials of the father cluster by those of the son clusters.
Let

{x(0)
m }pm=0 =

⇢
xm

2

�p

m=0

and {x(1)
m }pm=0 =

⇢
xm + 1

2

�p

m=0

,

respectively, be the interpolation points in the son clusters, see Figure 5.6. It

holds {x(0)
m }pm=0 ⇢ [0, 0.5] and {x(1)

m }pm=0 ⇢ [0.5, 1]. If we denote the related

Lagrangian polynomials by L
(0)
m (x) and L

(1)
m (x), respectively, we can now exactly

represent the Lagrangian polynomials of the father cluster according to

Lm(x) =
pX

i=0

Lm(x(0)
i )L(0)

i (x) for x 2 [0, 0.5]

and

Lm(x) =
pX

i=0

Lm(x(1)
i )L(1)

i (x) for x 2 [0.5, 1].

This gives rise to the transfer matrices

C(0) := [Li(x
(0)
j )]pi,j=0 and C(1) := [Li(x

(1)
j )]pi,j=0

13



and yields the representation

M|�| =


M|�|+1

�
C(0)

�|

M|�|+1

�
C(1)

�|
�
.

By tensor product construction, we then obtain the four transfer matrices

C⇤
2i+j := C(i) ⌦C(j), i, j = 0, 1,

for the reference domain ⇤. Here, we have the refinement relation

M⇤
|�| =

2

6664

M⇤
|�|+1

�
C⇤

0

�|

M⇤
|�|+1

�
C⇤

2

�|

M⇤
|�|+1

�
C⇤

3

�|

M⇤
|�|+1

�
C⇤

1

�|

3

7775
.

Notice that the peculiar order of the transfer matrices results from our hierar-
chical, counter clock-wise ordering of the elements, cf. Figure 2.3. Fortunately,
the transfer matrices C⇤

0 ,C
⇤
1 ,C

⇤
2 ,C

⇤
3 are independent of the respective cluster

and even independent of the level |�|. This is a major advantage compared to
the classical construction of H2-matrices as in e.g. [17]. Moreover, the trans-
fer matrices are independent of the ansatz functions chosen for the Galerkin
discretization.

In order to make use of the e�cient implementation of the H2-matrix-vector
multiplication, cf. [17, 24], we have only to store M⇤

J and C⇤
0 ,C

⇤
1 ,C

⇤
2 ,C

⇤
3 .

This leads together with the hierarchical ordering of the elements to some sim-
plifications in the H2-matrix-vector multiplication. The algorithm, tailored to
the framework of parametric surfaces, is split in three parts: Algorithms 2, 3
and 4.

Algorithm 2 H2-matrix-vector multiplication, y = y +H · x
procedure H2

-matrix-vector(H, x, y)
u = ForwardTransform(x) . Handle far-field
for �⇥ �0 2 F do

v� = v� +H|�⇥�0 · u�0

end for
y = y+BackwardTransform(v)
for �⇥ �0 2 N do . Handle near-field

y|� = y|� +H|�⇥�0 · x|�0

end for
end procedure

Theorem 5.6. The H2
-matrix-vector multiplication of the FMM as stated in

Algorithm 2 has a complexity of O
�
NJ(pd)2

�
.

14



Algorithm 3 Forward transformation of x to u

procedure ForwardTransform(x)
for (i, j0, k) 2 T , j0 = J do

u(i,J,k) =
�
M⇤

J

�|
x|(i,J,k)

end for
for j = J � 1, . . . 1 do

for (i, j0, k) 2 T , j0 = j do

u(i,j,k) =

2

664

C⇤
0 u(i,j+1,4k)

C⇤
2 u(i,j+1,4k+1)

C⇤
3 u(i,j+1,4k+2)

C⇤
1 u(i,j+1,4k+3)

3

775

end for
end for

end procedure

Algorithm 4 Backward transformation of v to y

procedure BackwardTransform(v)
for j = 1, . . . J � 1 do

for (i, j0, k) 2 T , j0 = j do2

664

v(i,j+1,4k)

v(i,j+1,4k+1)

v(i,j+1,4k+2)

v(i,j+1,4k+3)

3

775 =

2

664

�
C⇤

0

�|
�
C⇤

2

�|
�
C⇤

3

�|
�
C⇤

1

�|

3

775v(i,j,k)

end for
end for
for (i, j0, k) 2 T , j0 = J do

y|(i,J,k) = M⇤
J v(i,J,k)

end for
end procedure

Proof. To estimate the complexity of Algorithm 3, we remark that applying
NJ�jmin times the moment matrices with O

�
Njmin(pd)

2
�
entries takes at most

O
�
NJ(pd)2

�
operations, where jmin = b2 log4(p/d)c. The application of the

transfer matrices to level j+1 requires 4p4 operations for each of the Nj clusters
on level j. Hence, in a similar way as in the proof of Theorem 5.3 we conclude
that the overall complexity of Algorithm 3 is

O
�
NJ(pd)

2
�
+ 4p4

J�jminX

j=0

Nj = O
�
NJ(pd)

2
�
+ 4p4O

�
NJ(p/d)

�2
�
= O

�
NJ(pd)

2
�
.

In complete analogy, the complexity of Algorithm 4 is given by O
�
NJ(pd)2

�
.

The complexity of the multiplication with the far-field coincides with the com-
plexity of its memory consumption as derived in Theorem 5.3. The complexity
for the near-field is the same as in the classical H-matrix-vector multiplication,

15



which has been estimated in Theorem 5.5. We therefore end up with a total
complexity of O

�
NJ(pd)2

�
for the H2-matrix-vector multiplication.

5.5. Error Estimates

In view of Definition 3.1, we have the following result for the convergence
of our FMM. It refers to the situation, when Chebyshev nodes on I := [0, 1],
i.e. the points

xm :=
1

2


cos

✓
2m+ 1

2(p+ 1)
⇡

◆
+ 1

�
, m = 0, 1, . . . , p,

are used for the interpolation, cf. [17, 22].

Theorem 5.7. Let k(x,y) be an analytically standard kernel of order 2q. Then,
in an admissible block �� ⇥ ��0 2 F , it holds

����k�,�0(s, t)�
X

kmk1,km0k1p

k�,�0(x
m

,x
m

0)L
m

(s)L
m

0(t)

����
L1(⇤⇥⇤)

.
✓

⌘

rk

◆p+1

2�4|�|���(s)� �0(t)
���2(1+q)

L1(⇤⇥⇤)

with rk > 0 being the constant from Definition 3.1.

From this theorem, one immediately derives an error estimate for the bilinear
form which is associated with the variational formulation (3.5), cf. [16, 22].

Theorem 5.8. Let � > 0 be arbitrary but fixed. Then, for the integral operator

AJ which results from an interpolation of degree p > 0 of the kernel function

in every admissible block and the exact representation of the kernel in all other

blocks, there holds

��(Au, v)L2(D) � (AJu, v)L2(D)

�� . 2�J�kukL1(D)kvkL1(D)

provided that p ⇠ J(2 + 2q + �).

Hence, in order to maintain the approximation order of the Galerkin method,
we have to choose p ⇠ logNJ . Therefore, we end up with an over-all complex-
ity of O

�
NJ(logNJ)2d2

�
for the computation and the storage of the far-field.

Nevertheless, in view of singular kernels, one has to deal with singular integrals,
e.g. by the Du↵y trick, cf. [2, 26]. To that end, one has to increase the de-
gree of the quadrature for all singular integrals proportionally to | log hJ | where
hJ = 2�J is the mesh size and the constant depends on the order of the ansatz
functions. This yields an e↵ort of O

�
(logNJ)4

�
for each singular integral. Thus,

if the quadrature degree is properly decreased with the distance of the elements,
one ends up with a complexity of O

�
NJ(logNJ)4d2

�
for the near-field.
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6. Higher Order Continuous Ansatz Functions

One of the issues to address for continuous higher order ansatz functions
is the clustering strategy. In the classical H-matrix framework, usually a per
degree of freedom cluster strategy is employed, see e.g. [24, 25]. In the context
of higher order ansatz functions, this strategy has been applied to collocation
matrices in [15] to compress the system matrices by using adaptive cross ap-
proximation. However, a per degree of freedom cluster strategy requires to it-
erate over the degrees of freedom during the matrix assembly. For the Galerkin
scheme, this means for every degree of freedom that all elements in the sup-
port of the associated ansatz function have to be taken into account. Thus, for
continuous higher order ansatz functions, every element is visited several times
during the matrix assembly and function evaluations for a numerical quadrature
are possibly done multiple times for the same quadrature point.

In order to overcome this obstruction, one therefore often iterates over the
elements for the matrix assembly. To maintain this element-wise strategy for
the matrix assembly of a higher order FMM, we propose to keep the element-
wise cluster strategy introduced in Section 3. In the sequel, we provide an easy
means to extend the FMM for discontinuous, element-wise polynomial ansatz
functions from Section 5 to globally continuous ansatz functions. This means,
from now on, we consider ansatz spaces V c

j ⇢ Vj \ C(�). Clearly, there exists
then a transformation matrix T such that

TAJT
|uc

J = TfJ , (6.18)

where AJ is the system matrix and fJ is the right hand side with respect to
discontinuous, element-wise polynomial ansatz functions from (4.14) and uc

J are
the coe�cients of the globally continuous ansatz functions in V c

J . The transfor-
mation matrix T is a sparse matrix if the supports of the ansatz functions in
V c
j only contain a few elements, as it is e.g. the case for B-splines, which are

used in isogeometric analysis. This situation will be illustrated in the sequel.
We denote by V̂ c

j the space spanned by the tensor product B-splines of
order d on the reference domain. The tensor product B-splines are obtained by
tensorization of the B-spline basis of order d on the interval [0, 1]. To that end,
we introduce the partition

0 = t1 = · · · = td < · · · < tn+d+1 = · · · = tn+2d = 1.

Now, setting

Bj,1(x) =

(
1, if tj  x < tj+1,

0, otherwise,
j = 1, . . . , n+ 2d� 1,

and using the recursion formula

Bj,k(x) =
x� tj

tj+k�1 � tj
Bj,k�1(x) +

tj+k � x

tj+k � tj+1
Bj+1,k�1(x),

j = 1, . . . , n+ 2d� k,
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up to k = d will give us n + d B-spline basis functions of order d on [0, 1], cf.
[27]. The B-splines bases up to order 3 are depicted in Figure 6.7.

0 0.25 0.5 0.75 1
0

0.5
1

0 0.25 0.5 0.75 1
0

0.5
1

0 0.25 0.5 0.75 1
0

0.5
1

Figure 6.7: B-spline bases on the unit interval [0, 1] of order 1 (top), order 2 (middle), and
order 3 (bottom).

It holds V̂ c
j ⇢ V̂j , such that we can express every function in V̂ c

j as a linear

combination of functions in V̂j . Let Û = ['̂c
1, . . . , '̂

c
n̂c
j
] denote the tensor product

B-spline basis of V̂ c
j and V̂ = ['̂1, . . . , '̂n̂j ] the piecewise polynomial basis of V̂j ,

where we set n̂c
j = dim(V̂ c

j ) and n̂j = dim(V̂j). Then, the patchwise transforma-

tion matrix T̂ is uniquely determined by the relation Û = T̂V̂. Unfortunately,
the functions in the composed space

Ṽj =
�
'̂ � ��1

i : '̂ 2 V̂ c
j , i = 1, . . . ,M

 
⇢ L2(�)

are, in general, discontinuous on the boundaries of the patches @�i. Let therefore
I be the operator which glues the ansatz functions that are nonzero at the patch
boundaries @�i in a continuous way and let I be its discrete analogue. Then,
the ansatz space V c

j of globally continuous, tensorized B-splines on level j is
given by

V c
j := I(Ṽj) ⇢ Vj \ C(�).

Since V c
j ⇢ Vj , we can express every function in V c

j as a linear combination of
functions in Vj . For that purpose, let ['c

1, . . . ,'
c
nc
j
] with nc

j = dim(V c
j ) denote

the B-spline basis of V c
j and

a =

nc
jX

i=1

ai'
c
i 2 V c

j , b =
MX

i=1

n̂jX

k=1

bi,k('̂k � ��1
i ) 2 Vj .
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Setting bi = [bi,1, . . . bi,n̂j ], we obtain the relation

2

64
a1
...

anc
j

3

75 = I

2

64
T̂

. . .

T̂

3

75

2

64
b1
...

bM

3

75 = T

2

64
b1
...

bM

3

75 .

Since T̂ and I are sparse matrices, T is also a sparse matrix and the transfor-
mation from Vj to V c

j can be done in an e�cient way.
At first glance, the simplicity of the presented method comes at a high

price. The memory consumption of the uncompressed matrix AJ in (6.18)
is n2

J , where nJ = dim(VJ), instead of (nc
J)

2, i.e. the memory consumption
will grow like O

�
(nJ/n

c
J)

2
�
, whereas the number of degrees of freedom only

grows like O
�
nJ/n

c
J

�
. Although nowadays memory consumption can be consid-

ered as a minor problem, this also means that in case of uncompressed matri-
ces the computational e↵ort for the matrix-vector multiplication will grow like
O
�
(nJ/n

c
J)

2
�
. Compared to this, the FMM compression presented in the previ-

ous section reduces the growth of the memory consumption and the operations
for the H2-matrix-vector multiplication to O(nJ/n

c
J).

7. Numerical Results

Besides presenting numerical examples for the convergence of our fast multi-
pole method, this section contains also a comparison of the computational cost
versus accuracy. All computations of the following examples have been carried
out on a single core of a computing server with two Intel(R) Xeon(R) E5-2670
CPUs with a clock rate of 2.60 GHz and a main memory of 256 GB.

7.1. Problem Setting

We focus on the numerical solution of boundary integral equations which
amount from the reformulation of the Dirichlet boundary value problem for the
Laplacian in a three-dimensional Lipschitz domain ⌦ 2 R3:

�U = 0 in ⌦, U = f on �. (7.19)

The first boundary integral equation under consideration stems from the single
layer potential ansatz, where one makes the ansatz

U(x) =

Z

�

u(y)

4⇡kx� yk2
d�

y

= S̃u(x), x 2 ⌦. (7.20)

This leads to a Fredholm integral equation of the first kind

Su(x) =
Z

�

u(y)

4⇡kx� yk2
d�

y

= f(x), x 2 �, (7.21)
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for the unknown density u. The second boundary integral equation is obtained
from a double layer potential ansatz

U(x) =

Z

�

hx� y,n
y

iu(y)
4⇡kx� yk32

d�
y

= K̃u(x), x 2 ⌦, (7.22)

which leads to a Fredholm integral equation of the second kind

1

2
u(x)�Ku(x) =

1

2
u(x)�

Z

�

hx� y,n
y

iu(y)
4⇡kx� yk32

d�
y

= f(x), x 2 �, (7.23)

for the unknown density u.
We will employ B-splines of order d = 1, 2, 3 as ansatz functions, which are

glued together at the patch interfaces to achieve global continuity for d = 2, 3.
This means that the system of linear equations is computed with the help of the
transformation matrices which have been introduced in Section 6. To solve the
system (6.18) of linear equations, we use a conjugate gradient method (CG) for
the single layer operator and the generalized minimal residual method (GMRES)
with restart after 100 inner iterations for the double layer operator, cf. [28]. The
construction of an appropriate preconditioner for the CG exceeds the scope of
this article and is left as further work.

In view of Theorem 4.1, one obtains the following error estimate for the
approximate potential UJ .

Theorem 7.1. Let u 2 Hq(�) be the solution of (7.21) or (7.23). Moreover,

let U be the corresponding potential and UJ its numerical approximation. Then,

there holds the error estimate

|U(x)� UJ(x)| . 22J(q�d)kk(x, ·)kH�2q+d(�)kukHd(�), x 2 ⌦,

where 2q = �1 in case of (7.21) and 2q = 0 in case of (7.23).

Proof. Together with Theorem 4.1, there holds

|U(x)� UJ(x)| =
����
Z

�
k(x,y)

�
u(y)� uJ(y)

�
d�

y

����

 kk(x, ·)kH�2q+d(�)ku� uJkH2q�d(�)

. 22J(q�d)kk(x, ·)kH2q�d(�)kukHd(�)

for both, the single and the double layer potential.

7.2. Convergence

In our first example, we solve the Laplace equation (7.19) in the unit ball
with the spherical harmonic

Y 2
0 (x) =

r
5

16⇡

�
3x2

3 � 1
�
, x 2 �,
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Figure 7.8: The spherical harmonic Y 2
0 (left) and the related potential (right) for the unit

ball.

seen in Figure 7.8, as boundary condition f . The boundary of the unit ball is
represented by six patches.

Since the spherical harmonic on the sphere is an eigenfunction to the eigen-
value � = 1/5 in case of the single layer operator and � = �3/5 in case of the
double layer operator, we know the analytical solution of (7.21) and (7.23) and
can thus compute the L2(�)-error of the approximate density. Moreover, we
find for the potential the analytical solution

U(x) = kxk2Y 2
0

✓
x

kxk2

◆
.

Figure 7.9 validates that the proposed FMM provides the theoretical con-
vergence rates on smooth domains in case of the single layer potential ansatz.
Figure 7.10 validates this for the double layer potential ansatz. In both cases,
the l1-error of the potential is measured in the 18’999 vertices of 16’616 cubes
which lie in the interior of the ball, as depicted on the right of Figure 7.8. The
polynomial degree p for FMM is chosen such that the overall accuracy is main-
tained. Hence, in accordance with Theorem 5.8, the number of interpolation
points grows linearly with the discretization level J . The numbers of local and
global degrees of freedom nJ and nc

J , respectively, associated with the discretiza-
tion level J , are tabulated in Table 7.2. Note that both numbers coincide in
case of piecewise constant boundary elements, i.e. for d = 1.

In the second example, we want to deal with the more complex gear worm
geometry depicted in Figure 7.11, which is represented by 290 patches. For our
experiments, we prescribe the harmonic polynomial

U(x) = 4x2
1 � 3x2

2 � x2
3

as potential and restrict it to the boundary in order to get the boundary condi-
tions for (7.19). Since the density u is unknown, we fitted a grid of 83’437 cubes
inside the domain and measured the error of the potential inside the domain
on the 115’241 vertices of these cubes. A visualization of the cubes together
with the computed density for the single layer potential ansatz can be found in
Figure 7.11.
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Figure 7.9: l1-error (left) and L2-error (right) for the sphere for the single layer potential
with the corresponding theoretical convergence rates h3, h5 and h7 for the potential and h1,
h2 and h3 for the density. The accompanying numbers are the polynomial degrees of the
interpolation.
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Figure 7.10: l1-error (left) and L2-error (right) for the sphere for the double layer potential
with the corresponding theoretical convergence rates h2, h4 and h6 for the potential and h1,
h2 and h3 for the density. The accompanying numbers are the polynomial degrees of the
interpolation.

Since the gear worm only has a Lipschitz continuous boundary, the theoret-
ical convergence rates are limited to at most h3 for the single layer potential
ansatz and to h2 for the double layer potential ansatz. Figure 7.12 illustrates
that we achieve these convergence rates for all ansatz functions under consid-
eration. In fact, the higher order ansatz functions even seem to produce a
convergence rate about h5 for the single layer ansatz and up to h4 for the dou-
ble layer potential ansatz. Again, the numbers of local and global degrees of
freedom nJ and nc

J , respectively, associated with the discretization level J , are
tabulated in Table 7.2.

7.3. Computational Cost and Accuracy

First of all, we want to demonstrate the benefit of the H2-matrix-vector
multiplication compared to the H-matrix-vector multiplication. To that end,
we have measured the time for a matrix-vector multiplication of an H-matrix
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Figure 7.11: The approximate density of the single layer potential ansatz (left) and the
related potential (right) for the gear worm.
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Figure 7.12: l1-error on the gear worm for the single layer potential (left) and the double
layer potential (right) with the corresponding theoretical convergence rates h3 and h5 for
the single layer potential and h2 and h4 for the double layer potential. The accompanying
numbers are the polynomial degrees of the interpolation.

and of an H2-matrix, both stemming from the discretization of the double layer
operator on the sphere or on the gear worm. The polynomial degree for the
FMM is set to p = 2. Figure 7.13 illustrates that we reach an asymptotic
complexity of O

�
NJ(pd)2

�
for the H2-matrix-vector multiplication compared to

the complexity of O
�
NJ logNJ(pd)2

�
for the H-matrix-vector multiplication.

Second, we want to illustrate the e↵ectiveness of higher order ansatz func-
tions. To that end, we compare the l1-error of the potential with the compu-
tation time of the matrix and with the computation time of the matrix plus
the solving time using the H2-matrix-vector multiplication. The results with
respect to the sphere are depicted in Figure 7.14 and the results with respect
to the gear worm are depicted in Figure 7.15. They indicate that the higher
order ansatz functions achieve asymptotically a higher precision combined with
a faster computation time. Note that the increased solving times for the gear
worm geometry are due to a higher number of iterations in the solving process.
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Figure 7.13: Computation times for the H2-matrix-vector multiplication (blue) and the H-
matrix-vector multiplication (red) on the sphere (left) and on the gear worm (right). The
dashed lines illustrate the complexity rates O(NJ (pd)2) and O(NJ logNJ (pd)2).
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Figure 7.14: l1-error versus the computation time of the matrix (blue) and the computation
time of the matrix plus the solving time (red) for the single layer potential (left) and the
double layer potential (right) on the sphere.

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

computation time (s)

l∞

−
e

rr
o

r

 

 

Order 1
Order 2
Order 3

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

computation time (s)

l∞

−
e

rr
o

r

 

 

Order 1
Order 2
Order 3

Figure 7.15: l1-error versus the computation time of the matrix (blue) and the computation
time of the matrix plus the solving time (red) for the single layer potential (left) and the
double layer potential (right) on the gear worm.
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nJ = dimVJ nc
J = dimV c

J

J d = 1 d = 2 d = 3 d = 2 d = 3
1 24 96 216 26 (3.7) 56 (3.9)
2 96 384 864 98 (3.9) 152 (5.7)
3 384 1’536 3’456 386 (4.0) 488 (7.1)
4 1’536 6’144 13’824 1’538 (4.0) 1’736 (8.0)
5 6’144 24’576 55’296 6’146 (4.0) 6’536 (8.5)
6 24’576 98’304 24’578 (4.0)
7 98’304 393’216 98’306 (4.0)
8 393’216

sp
h
er
e

9 1’572’864
1 1’160 4’640 10’440 1’160 (4.0) 2’610 (4.0)
2 4’640 18’560 41’760 4’640 (4.0) 7’250 (5.8)
3 18’560 74’240 167’040 18’560 (4.0) 23’490 (7.1)
4 74’240 296’960 668’160 74’240 (4.0) 83’810 (8.0)
5 296’960 1’187’840 296’960 (4.0)

ge
ar

w
or
m

6 1’187’840

Table 7.2: Dimensions nJ and nc
J of the ansatz spaces VJ and V c

J , respectively, for the sphere
and the gear worm for di↵erent polynomial orders. The associated ratios nJ/nc

J are given in
the parentheses.

8. Conclusion

Parametric surfaces are easily accessible from computer aided design. They
are recently of interest in isogeometric analysis, the goal of which is the direct
integration of the finite element or even the boundary element analysis into
the design process. In this article, we have presented a fast boundary element
method, namely an H2-matrix fast multipole method based on the interpo-
lation of the related integral kernel on the reference domain. This approach
perfectly exploits the features of the parametric surface representation. By a
tensor product construction and appropriate transformation matrices, we can
easily deal with higher order ansatz functions. Our complexity estimates as
well as our numerical examples demonstrate the superior performance of the
presented method.
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