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Abstract

Local mesh refinement severly impedes the e�ciency of explicit time-stepping methods for nu-
merical wave propagation. Local time-stepping (LTS) methods overcome the bottleneck due to
a few small elements by allowing smaller time-steps precisely where those elements are located.
Yet when the region of local mesh refinement itself contains a sub-region of even smaller ele-
ments, any local time-step again will be overly restricted. To remedy the repeated bottleneck
caused by hierarchical mesh refinement, multi-level local time-stepping methods are proposed,
which permit the use of the appropriate time-step at every level of mesh refinement. Based on
the LTS methods from [1], these multi-level LTS methods are explicit, yield arbitrarily high ac-
curacy and conserve the energy. Numerical experiments illustrate the theoretical properties and
the usefulness of these methods.

Keywords: wave propagation, finite element methods, adaptivity, explicit time integration,
leap-frog method, local time-stepping, multirate methods

1. Introduction

Second-order wave equations are ubiquitous across a wide range of applications from acous-
tics, electromagnetics, and elasticity. Their spatial discretization by standard finite di↵erence
or finite element methods tyically leads to a large system of second-order ordinary di↵erential
equations. When explicit time integration is subsequently used, the time-step will be governed
by the smallest elements in the mesh for numerical stability. Near corners, material interfaces or
other small-scale geometric features, adaptive mesh refinement is certainly key for the accurate
simulation of wave phenomena [2]. Local mesh refinement, however, severely impedes the e�-
ciency of explicit time-marching methods because of the overly small time-step dictated by but
a few tiny elements. When mesh refinement is restricted to a small portion of the computational
domain, the use of implicit methods or a small time-step everywhere, is rather high a price to
pay.

Local time-stepping (LTS) methods overcome the bottleneck due to local refinement by di-
viding the mesh into two distinct regions: the ”coarse” region, which contains the larger elements
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pliquées, UMR CNRS 5142. Université de Pau et des Pays de l’Adour - Bât. IPRA, BP 1155, 64013 PAU Cedex,
France

2Department of Mathematics and Computer Science, University of Basel, Spiegelgasse 1, 4051 Basel, Switzerland
Preprint submitted to CMAME April 29, 2015



and is integrated in time using an explicit method, and the ”fine” region, which contains the
smaller elements and is integrated in time using either smaller time-steps or an implicit scheme.

Locally implicit methods build on the long tradition of hybrid implicit-explicit (IMEX) al-
gorithms for operator splitting in computational fluid dynamics – see [3, 4] and the references
therein. Here, a linear system needs to be solved inside the refined region at every time-step,
which becomes not only increasingly expensive with decreasing mesh size, but also increasingly
ill-conditioned as the grid-induced sti↵ness increases [5]. Moreover, even when each individual
method has order two, the implicit-explicit component splitting can reduce by one the overall
space-time convergence rate of the resulting scheme [6, 7]. Recently, Descombes, Lanteri and
Moya [7] remedied that unexpected loss in accuracy and hence recovered second-order conver-
gence, by using the LF/CN-IMEX approach of Verwer [8] instead, yet at the price of a signifi-
cantly larger albeit sparse linear system.

In contrast, locally explicit time-stepping methods remain fully explicit by taking smaller
time-steps in the “fine” region, that is precisely where the smaller elements are located. In the
mid- to late 80’s, Berger and Oliger [9] and Berger and Collela [10] proposed a space-time
adaptive mesh refinement (AMR) strategy for nonlinear hyperbolic conservation laws. Based on
a hierarchy of rectangular finite-di↵erence grids, it was later extended to hyperbolic equations not
necessarily in conservation form by using wave propagation algorithms [11]. Higher accuracy
was achieved more recently by combining the AMR approach with weighted essentially non-
oscillatory (WENO) reconstruction techniques [12], [13].

Because they easily accomodate unstructured meshes, finite element methods (FEM) are usu-
ally more e↵ective in the presence of complex geometry or adaptive mesh refinement. For hyper-
bolic conservation laws, discontinuous Galerkin (DG) FEM are particularly well-suited because
they are locally conservative. In [16], Flaherty et al. proposed probably the first local time-
stepping (LTS) strategy for a DG-FEM, where each element selects its time-step according to the
local Courant-Friedrichs-Lewy (CFL) stability condition. By using the Cauchy-Kovalevskaya
procedure within each element, arbitrary high-order (ADER) DG schemes achieve high-order
accuracy both in space and time [18] and also permit each element to use its optimal time-step
determined by the local stability condition. They were also successfully applied to electromag-
netic [15] and elastic wave propagation [14].

The standard method of lines approach leaves much flexibility in the choice of the spatial
discretization, as it applies not only to DG but also to continuous (conforming) FE or even finite
di↵erence methods. Local time-stepping methods then integrate the resulting system of ODEs
by taking larger time-steps for larger elements, thus concentrating work on the smaller ones. In
[17], a local time-stepping scheme based on a second-order Runge-Kutta method was proposed
for nonlinear conservation laws. Also known as multirate or multiple time-stepping methods in
the ODE literature [19], various high order LTS methods have been proposed for numerical wave
propagation based on classical Adams-Bashforth multistep methods [20]; they can also be inter-
preted as particular approximations of exponential-Adams multi-step methods [21]. Recently,
Runge-Kutta based explicit LTS of arbitrarily high-order were proposed for wave propagation in
[22].

In the absence of forcing and dissipation, the classical wave equation conserves the total
energy. When a symmetric spatial FD or FE discretization is combined with a centered time-
marching scheme, such as the standard leap-frog (LF) (also known as Newmark or Störmer-
Verlet) method, the resulting fully discrete formulation will also conserve (a discrete version of)
the energy. Highly e�cient in practice, centered time discretizations also display remarkably
high accuracy over long times and remain even nowadays probably the most popular methods
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for the time integration of wave equations. In [23] Collino, Fouquet and Joly proposed an LTS
method for the wave equation in first-order form, which conserves a discrete energy yet requires
every time-step the solution of a linear system on the interface between the coarse and the fine
mesh. It was analyzed in [24, 25] and later extended to elastodynamics [26] and Maxwell’s
equations [27]. By combining a symplectic integrator with a DG discretization of Maxwell’s
equations in first-order form, Piperno [28] proposed a second-order explicit local time-stepping
scheme, which also conserves a discrete energy. Starting from the standard LF method, the
authors proposed energy conserving fully explicit LTS integrators of arbitrarily high accuracy
for the wave equation [1]; that approach was extended to Maxwell’s equations in [29]. An
hp-version, where not only the time-step but also the order of approximation is adapted within
di↵erent regions of the mesh, was proposed in [30] and later applied to a realistic geological
model [31].

When a region of local refinement itself contains sub-regions of further refinement, those
“very fine” elements yet again will dictate the time-step, albeit local, to the entire “fine” region.
Then, it becomes more e�cient to let the time-marching strategy mimic the multilevel hierarchy
of the mesh organized into tiers of “coarse”, “fine”, “very fine”, etc. elements by introducing
a corresponding hierarchy into the time-stepping method. Hence, the resulting multi-level local
time-stepping (MLTS) method will advance in time by using within each tier of equally sized
elements the corresponding optimal time-step.

The outline of our paper is as follows. Starting from a semi-discrete Galerkin finite element
formulation of the wave equation, we derive in Section 2 local time-stepping (LTS) methods
of arbitrarily high order based on the leap-frog (LF) method; we also recall some of their key
properties from [1]. Although first presented in [1], the present derivation is di↵erent and crucial
for the derivation of the multi-level local time-stepping (MLTS) methods in Section 3. In Section
4, we prove that the second-order MLTS method conserves a discrete energy regardless of the
number of intermediate levels. Finally, in Section 5, we present numerical experiments in one and
two space dimensions which illustrate the stability and convergence properties of these MLTS
schemes.

2. Local time-stepping

We consider the acoustic wave equation

1
µ

utt � r ·
✓

1
⇢
ru
◆
= 0 in (0,T ) ⇥⌦, (1)

u = 0 on (0,T ) ⇥ @⌦, (2)

u|t=0 = u0, ut |t=0 = v0 in ⌦, (3)

a standard model for second-order hyperbolic problems. Here ⌦ is a bounded domain in Rd,
whereas u0 2 H1

0(⌦) and v0 2 L2(⌦) are prescribed initial conditions. For simplicity, we impose
homogeneous Dirichlet conditions at the boundary, @⌦, and assume that ⌦ is source-free. The
density, ⇢, and the bulk modulus, µ, are piecewise smooth, strictly positive and bounded, and
hence so is the wave speed, c =

p
µ/⇢. Because sources are absent, the (continuous) energy,

E[u](t) =
1
2

(����
1p
µ

ut(t, .)
����

2

+

����
1p
⇢
ru(t, .)

����
2
)

, t � 0, (4)
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is conserved for all time.
Various finite element methods (FEM) are available for the spatial discretization of (1)–(3).

For instance, the standard H1-conforming FEM with mass-lumping starts from the weak formu-
lation: Find u : [0,T ]! H1

0(⌦) such that
✓

1
µ

utt, v
◆
+

✓
1
⇢
ru, crv

◆
= 0 8 v 2 H1

0(⌦), t 2 (0,T ),

u|t=0 = u0 in ⌦, (5)
ut |t=0 = v0 in ⌦,

where (·, ·) denotes the standard inner product on L2(⌦).
Next, we consider a family of shape-regular meshes {Th}h that each partition ⌦ into disjoint

elements K, i.e. ⌦ = [K2Th K; for simplicity, we assume that ⌦ is polygonal. The diameter of
element K, a triangle or a quadrilateral in two space dimensions, and a tetrahedron or hexahedron
in three dimensions, is denoted by hK ; hence, the mesh size, h, is given by h = maxK2Th hK . Let
Vh ⇢ H1

0(⌦) denote the finite dimensional subspace

Vh = {v 2 H1
0(⌦) : v|K 2 S`(K), 8K 2 Th}, ` � 1,

where S`(K) corresponds to the space P`(K) of polynomials of total degree at most `, if K is
a triangle or tetrahedron, or to the space Q`(K) of polynomials of maximal degree ` in each
variable, if K is a quadrilateral or hexahedron.

The semi-discrete Galerkin approximation, uh(t) 2 Vh, is then defined for 0 < t < T by the
restriction of (5) to Vh. Let y(t) 2 RN denote the coe�cients of uh(t) with respect to the standard
Lagrangian basis {�i}i=1,...,N of Vh. Then, y(t) satisfies

M
d2y
dt2 (t) + K y(t) = 0 , t 2 (0,T ),

M y(0) = uh
0, M

dy
dt

(0) = vh
0,

(6)

where uh
0, vh

0 are suitable approximations to the initial conditions. Moreover, the mass matrix, M,
and the sti↵ness matrix, K, are given by

Mi j =

✓
1
µ
� j, �i

◆
, Ki j =

✓
1
⇢
r� j,r�i

◆
, 1  i, j  N.

The matrix M is sparse, symmetric and positive definite, whereas the matrix K is sparse, sym-
metric but, in general, only positive semi-definite.

Even though explicit numerical time integration may be applied directly to (6), every time-
step then requires the solution of a linear system involving M. To avoid that computational
work, various mass-lumping techniques have been developed [32, 33, 34], which replace M by a
diagonal approximation while retaining the rate of convergence [35]. Alternatively, the spectral
element method [36] and the symmetric interior penalty discontinuous Galerkin (DG) method
[37] both waive the need for mass-lumping altogether: The former inherently leads to a diagonal
mass matrix, whereas the latter leads to a block-diagonal mass matrix with block size equal to
the number of degrees of freedom per element. Thus, both alternative FE discretizations also
lead to (6) with an essentially diagonal mass matrix M,
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so that M�1 can be explicitly computed with little e↵ort independently of the mesh size.
Next, we multiply (6) by M�

1
2 which yields

d2z
dt2 + M�

1
2 KM�

1
2 z = 0, (7)

with z = M
1
2 y. If we let A denote the matrix M�

1
2 KM�

1
2 , which is also sparse and symmetric

positive semidefinite, we can rewrite (7) as

d2z
dt2 + Az = 0 . (8)

This equivalent formulation of (6) is useful for the analysis; in practice, however, we apply our
LTS schemes directly to

d2y
dt2 + By = 0 , (9)

with B = M�1K.

2.1. Global time-stepping
To discretize (8) in time, we opt for the popular leap-frog (LF) scheme,

zn+1 � 2zn + zn�1

�t2 = �Azn, (10)

where zn represents an approximation of z(n�t). Not only explicit and thus easy to implement, it
also conserves the discrete energy

En+ 1
2 =

1
2

⌧✓
I��t2

4
A
◆

zn+1 � zn

�t
,

zn+1 � zn

�t

�
+

1
2

D
A

zn+1 + zn

2
,

zn+1 + zn

2

E
, (11)

which approximates E[u]((n + 1/2)�t). For �t su�ciently small, that is

�t  � h,

where � depends on the type of FE discretization used, but not on h, En+ 1
2 is positive and the LF

method is stable.
High-order LF type schemes of order 2s, s � 1 can be derived via the modified equation

(ME) technique [38, 39]:

zn+1 � 2zn + zn�1

�t2 = 2
sX

i=1

�t2(i�1)

(2i)!
(�A)izn. (12)

They also conserve a discrete approximation of the energy,

En+ 1
2 =

1
2

* 

I � �t2

4

sX

i=1

�t2(i�1)

(2i)!
(�A)i

!
zn+1 � zn

�t
,

zn+1 � zn

�t

+

+
1
2

*
sX

i=1

�t2(i�1)

(2i)!
(�A)i zn+1 + zn

2
,

zn+1 + zn

2

+

.

(13)

Again, En+ 1
2 is positive under a CFL (Courant-Friedrichs-Lewy) condition, that is

�t  ↵s� h,

where ↵s depends on the time accuracy [40]. For instance, ↵1 = 1, ↵2 =
p

3 ⇡ 1.73 and
↵3 = 1.38; thus, higher order methods actually allow larger time-steps
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2.2. Local time-stepping method
We now assume that the underlying finite element mesh consists of both ”coarse” and ”fine”

elements and let hcoarse and hfine, respectively, denote the characteristic length of the smallest ele-
ment in each sub-region of the mesh. Hence, the time-step of any global explicit time-marching
scheme would be dictated by hfine through the stability condition �t  ↵s� hfine. To circumvent
that severe stability restriction, we shall instead use a larger time-step, �t = ↵s� hcoarse, inside
the “coarse” part and a smaller time-step, �⌧ = �t/p1  ↵s� hfine, inside the “fine” part of mesh,
where p1 denotes the integer mesh size ratio defined by

hcoarse/(p1 � 1) < hfine  hcoarse/p1.

However, in doing so we must ensure that the resulting LTS method retains the accuracy of the
original global time-marching scheme.

To derive an LTS method, we first consider for any fixed time t the auxiliary function

zt(⌧) =
z(t � ⌧) + z(t + ⌧)

2
, 0  ⌧  �t. (14)

Clearly, it satisfies

zt(0) = z(t),
dzt

d⌧
(0) = 0,

d2zt

d⌧2 (⌧) = �1
2

A (z(t � ⌧) + z(t + ⌧)) = �Azt(⌧).

Therefore, zt(⌧) is equivalently defined as the solution of
8
>><

>>:

d2zt

d⌧2 (⌧) = �Azt(⌧), 0 < ⌧ < �t,

zt(0) = z(t),
dzt

d⌧
(0) = 0.

(15)

Since (14) with t = tn = n�t and ⌧ = �t implies that

z((n + 1)�t) = �z((n � 1)�t) + 2zn�t(�t), (16)

we can advance z(t) until time tn+1 once zn�t is known, which we shall compute by solving (15)
with t = tn numerically.

Next, we partition the unknowns in zn�t(⌧) into a “coarse” and a “fine” subset,

zn�t(⌧) = (I � P)zn�t(⌧) + Pzn�t(⌧) = zn�t,[coarse](⌧) + zn�t,[fine](⌧) ,

where the partitioning matrix, P, is diagonal: its diagonal entries, equal to zero or one, identify
the unknowns associated with the locally refined region, that is where smaller time-steps are
needed. Then, we rewrite (15) with t = tn as

8
>><

>>:

d2zn�t

d⌧2 (⌧) = �Azn�t,[coarse](⌧) � Azn�t,[fine](⌧), 0 < ⌧ < �t,

zn�t(0) = z(n�t),
dzn�t

d⌧
(0) = 0.

(17)

To circumvent the severe CFL restriction on �t caused by the smaller elements, we shall now
treat zn�t,[fine](⌧) di↵erently from zn�t,[coarse](⌧), depending on the required accuracy.
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2.2.1. Second-order local time-stepping
To derive a second-order LTS scheme, we approximate in (17) the function zn�t,[coarse](⌧) by

its value at ⌧ = 0 and denote by zn(⌧) the solution of the modified problem
8
>><

>>:

d2zn

d⌧2 (⌧) = �A(I � P)z(n�t) � APzn(⌧), 0 < ⌧ < �t,

zn(0) = z(n�t),
dzn

d⌧
(0) = 0.

(18)

Since zn(⌧) ' zn�t(⌧) for 0  ⌧  �t, we shall approximate zn�t(�t) by solving (18) with the
standard LF method yet with a smaller time-step �⌧ = �t/p. Because of (16), we thus obtain
zn+1 as

zn+1 = �zn�1 + 2 LTS2(zn,�A(I � P)zn,�t, P, p), (19)
where the function LTS2, defined by Algo. 1, corresponds to the standard LF method applied to
(18) with time-step �⌧ = �t/p. For simplicity, we henceforth assume that A is globally defined.

Function ynew = LTS2(yinter,w,�t, P, p)

ynew := yinter +
1
2

⇣
�t
p

⌘2
(w � APyinter)

for m = 1 to p � 1 do

yold := yinter, yinter := ynew

ynew := 2yinter � yold +
⇣
�t
p

⌘2
(w � APyinter)

end

Algorithm 1: Second-order local time-stepping

To compute zn+1 in (19), the LTS2 method requires in Algo. 1 a single multiplication by
A(I�P) (to compute w) and p multiplications by AP. Because P vanishes outside the fine region,
those p multiplications only a↵ect the unknowns in the refined region, or immediately next to
it. The successive updates of the coarse unknowns involving (�t/p)2w during sub-steps reduce
to a single standard LF step of size �t and, in fact, can be replaced by it. In that sense, Algo. 1
together with (19) yields a local time-stepping method. In [1], we have proved the following
result.

Proposition 2.1. The LTS2 method (19) is equivalent to

zn+1 = �zn�1 + 2zn � �t2Apzn,

where the matrix Ap is defined by

Ap = A � 2
p2

p�1X

j=1

✓
�t
p

◆2 j

↵p
j (AP) jA (20)

with ↵p
j constant. Moreover, it is second-order accurate and conserves the discrete energy,

En+ 1
2 =

1
2

⌧✓
I � �t2

4
Ap

◆
zn+1 � zn

�t
,

zn+1 � zn

�t

�
+
D

Ap
zn+1 + zn

2
,

zn+1 + zn

2

E�
, (21)

for �t su�ciently small.
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The coe�cients ↵p
j are explicitly given in [1] but are never needed in practice, as (20) is

only used to prove the symmetry of Ap. In fact, Ap itself is never needed, except to numerically
determine the stability range of the scheme. Instead of (20), however, it is often more convenient
to directly use algorithm LTS2 to compute Ap. Indeed since

(2I � �t2Ap)zn = zn+1 + zn�1 = 2 LTS2(zn,�A(I � P)zn,�t, P, p)),

we can compute Ap merely by replacing in (19) zn by successive columns of I, which yields

Ap =
2
�t2 (I � LTS2(I,�A(I � P),�t, P, p)).

2.2.2. High-order local time stepping
To obtain an LTS scheme of arbitrarily high order 2s, s � 1, we now approximate in (17) the

function zn�t,[coarse](⌧) through Taylor expansion as

zn�t,[coarse](⌧) =
2s�2X

i=0

⌧i

i!
dizn�t,[coarse]

d⌧i (0) + O(⌧2s�1)). (22)

By successive di↵erentiation of (15) with t = n�t, we infer that

d2izn�t,[coarse]

d⌧2i (0) = (I � P)
d2izn�t

d⌧2i (0) = (I � P)(�A)iz(n�t),

and
d2i+1zn�t,[coarse]

d⌧2i+1 (0) = (I � P)
d2i+1zn�t

d⌧2i+1 (0) = (I � P)(�A)i dzn�t

d⌧
(0) = 0;

therefore, all terms with odd indices vanish in (22). Again we denote by zn(⌧) the solution of the
corresponding modified problem:

8
>><

>>:

d2zn

d⌧2 (⌧) = �
s�1X

i=0

⌧2i

(2i)!
A(I � P)(�A)iz(n�t) � APzn(⌧),

zn(0) = z(n�t),
dzn

d⌧
(0) = 0,

(23)

Since zn(⌧) ' zn�t(⌧) for 0  ⌧  �t, we shall approximate zn�t(�t) by solving (23) with the
standard ME method of order 2s but with a smaller time-step �⌧ = �t/p.

For s = 2, we thus obtain the fourth-order LTS method

zn+1 = �zn�1 + 2LTS4(zn,w1,w2, w̃,�t, P, p), (24)

where w1, w2, and w̃ are defined as

w1 = �A(I � P)zn, w2 = �APzn, w̃ = A(I � P)Azn = �A(I � P)(w1 + w2),

and the function LTS4, defined by Algo. 2, corresponds to the standard ME method applied to
(23) with time-step �⌧ = �t/p. To compute zn+1 in (24), the LTS4 method requires in Algo. 2
two multiplications by A(I � P) (to compute w1 and w̃) and 2p multiplications by AP. Because
P vanishes outside the fine region, those 2p multiplications only a↵ect the unknowns in the
refined region, or immediately next to it. In that sense, Algo. 2 together with (24) yields a local
time-stepping method. In [1], we have proved the following result.
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Function ynew = LTS4(yinter,w1,w2, w̃,�t, P, p)
⌧ := 0

ynew := yinter +
1
2

✓
�t
p

◆2

(w1 + w2) +
1

24

✓
�t
p

◆4

(w̃ � AP (w1 + w2))

for m = 1 to p � 1 do

yold := yinter, yinter := ynew, ⌧ := ⌧ + �t/p

v := w1 +
⌧2

2
w̃ � APynew

ynew := 2yinter � yold +

✓
�t
p

◆2

v +
1
12

✓
�t
p

◆4

(w̃ � APv)

end

Algorithm 2: Fourth-order local time-stepping

Proposition 2.2. The LTS4 method (24) is fourth-order accurate. For �t su�ciently small, it
conserves the discrete energy

En+ 1
2 =

1
2

⌧✓
A � �t2

4
AAp

◆
zn+1 � zn

�t
,

zn+1 � zn

�t

�
(25)

+
D

AAp
zn+1 + zn

2
,

zn+1 + zn

2

Ei
, (26)

where the matrix Ap is defined by

Ap = A � �t2

12
A2 � 2

p2

2(p�1)X

j=1

✓
�t
p

◆2( j+1)

� j,p(AP) jA2, (27)

with � j,p constant. Moreover, the matrix AAp is symmetric.

Again, the constants � j,p are explicitly given in (Prop. 4.3, [1]), but never needed in prac-
tice. If need be, the matrix Ap can easily be computed by applying the LTS4 algorithm, with zn
replaced by the identity matrix, as

Ap =
2
�t2 (I � LTS4(I,�A(I � P),�AP,�A(I � P)A,�APA,�t, P, p)).

3. Multilevel local time-stepping

If the refined part of the mesh itself contains a small subregion of even further local space
refinement, it becomes more e�cient to introduce yet another level of local time-stepping asso-
ciated with it. Thus, we let P1 denote the diagonal partitioning matrix whose diagonal entries,
equal to zero or one, identify the unknowns associated with the first level of local mesh refine-
ment. Similarly, we let P2 denote the diagonal partioning matrix associated with the second level
of local mesh refinement. Since that subregion of “very fine” elements lies inside the former
subregion of “fine” elements, we have P1P2 = P2. Hence the solution z(t) now separates into
three distinct non-overlapping parts as

z = (I � P1)z + (P1 � P2)z + P2z,
9



associated with the “coarse”, the “fine”, and the “very fine” elements, respectively, while exclud-
ing unknowns that also pertain to any subsequent finer level.

Next, we denote by p1, p2 � 2 the relative mesh size ratio associated with the first and second
level of local refinement, respectively. To advance the solution from tn to tn + �t, we shall again
solve (15) for t = tn and 0  ⌧  �t with time-step �⌧ = �t/p1 in the “fine” part of the mesh.
Inside the embedded “very fine” subregion, however, we shall use a new, even smaller time-step
�✓ = �⌧/p2. Clearly, in doing so we must preserve both the accuracy and energy conservation
properties of the original time-stepping method. In analogy to (14), we thus define for a fixed
value of ⌧ the auxiliary function

zn,⌧(✓) =
zn(⌧ � ✓) + zn(⌧ + ✓)

2
, 0  ✓  �⌧. (28)

Hence, (28) with ⌧ = m�⌧ and ✓ = �⌧ yields zn((m + 1)�⌧), once zn,m�⌧(�⌧) is known. To
calculate zn,m�⌧(✓) at ✓ = �⌧, we first derive a di↵erential equation satisfied by zn,m�⌧ and then
approximate its solution numerically.

3.1. Second-order multilevel local time-stepping method
Since zn is the solution of (18), we deduce from (28) that

d2zn,⌧

d✓2
(✓) =

1
2

✓
d2zn

d⌧2 (⌧ � ✓) + d2zn

d⌧2 (⌧ + ✓)
◆

= �A(I � P1) z(n�t) � 1
2

AP1 (zn(⌧ � ✓) + zn(⌧ + ✓))

= �A(I � P1) z(n�t) � AP1zn,⌧(✓), ��⌧ < ✓ < �⌧.

By setting ⌧ = m�⌧, we thus find that zn,m�⌧(✓) is equivalently defined as the solution of
8
>><

>>:

d2zn,m�⌧

d✓2
(✓) = �A(I � P1) z(n�t) � AP1zn,m�⌧(✓),

zn,m�⌧(0) = zn (m�⌧) ,
dzn,m�⌧

d✓
(0) = 0.

(29)

Note that the first term on the right of (29) does not depend on ✓.
Next, we introduce the partitioning

zn,m�⌧(✓) = (I � P2) zn,m�⌧(✓) + P2zn,m�⌧(✓) =: zn�t, m
p1
�t,[coarse](✓) + zn�t, m

p1
�t,[fine](✓),

and rewrite (29) as
8
>><

>>:

d2zn,m�⌧

d✓2
(✓) = �A(I � P1)z(n�t) � A(P1 � P2)zn,m�⌧(✓) � AP2zn,m�⌧(✓),

zn,m�⌧(0) = zn (m�⌧) ,
dzn,m�⌧

d✓
(0) = 0,

(30)

In (30), we now use that (zn,m�⌧)0(0) = 0 to approximate the second term on the right by Taylor
expansion as

A(P1 � P2)zn,m�⌧(✓) = A(P1 � P2)zn,m�⌧(0) + O(✓2),
10



and denote by zn, m
p1 (✓) the solution of the resulting di↵erential equation:

8
>><

>>:

d2zn, m
p1

d✓2
(✓) = �A(I � P1)z(n�t) � A(P1 � P2)zn(m�⌧) � AP2zn, m

p1 (✓), 0 < ✓ < �⌧

zn, m
p1 (0) = zn(m�⌧),

dzn, m
p1

d✓
(0) = 0.

(31)

Finally, we use the LF method with time-step �✓ to solve (31) until ✓ = �⌧ and update the
solution zn for m � 1 as

zn ((m + 1)�⌧) = �zn ((m � 1)�⌧) + 2zn, m
p1 (�⌧),

and for m = 0 as zn(�⌧) = zn,0(�⌧), since zn(⌧) is an even function. Successive application for
m = 0, . . . , p1 � 1 yields Algorithm 3, which computes zn+1, approximation of z((n+ 1)�t), given
zn and zn�1, by

zn+1 = �zn�1 + 2 TLTS2(zn,�A(I � P1)zn,�t, P1, P2, p1, p2).

It requires a single multiplication by A(I � P1) at the coarsest level, p1 multiplications by
A(P1 � P2) at the “fine” level, and p1 p2 multiplications by AP2 at the “very fine” level.

Function ynew = TLTS2(yinter,w,�t, P1, P2, p1, p2)
ynew := LTS2(yinter,w � A(P1 � P2)yinter,�t/p1, P2, p2)
for m = 1 to p1 � 1 do

yold := yinter, yinter := ynew
ynew := �yold + 2LTS2(yinter,w � A(P1 � P2)yinter,�t/p1, P2, p2)

end

Algorithm 3: Two-level second-order local time-stepping

We are now in position to define a multilevel LTS algorithm for any number of refinement
levels. Assume that the first locally refined subgrid, T1, itself contains a hierachy of increasingly
finer grids {T`}, such that T` ⇢ T`�1 for ` = 2, . . . ,Nlevel. To each level ` � 1, we associate a di-
agonal projection matrix, P`, so that left multiplication with P` selects precisely those unknowns
that belong to T`. At the top level, ` = 0, we set T0 = Th and P0 = I. Next for ` = 0, ..,Nlevel �1,
we denote by h` the size of the smallest element of subgrid T` \ Tl+1, and by hNlevel the size of the
smallest element of TNlevel , and hence across the entire mesh Th. Moreover for ` = 1, . . . ,Nlevel,
we denote by p` the mesh size ratio between two subsequent grids, that is the integer such that
h`�1/(p` � 1) < h`  h`�1/p`, and set p0 = 1.

Recursive application of the above derivation then yields Algorithm 4, which computes zn+1
as

zn+1 = �zn�1 + 2 MLTS2(zn,�A(I � P1)zn,�t, 1). (32)

Here for simplicity, we assume that the number of levels, Nlevel, the mesh size ratios, p`, and the
projection matrices, P`, ` = 0, . . . ,Nlevel, are global variables.

3.2. Higher order multilevel local time-stepping method
Since zn now is the solution of (23), we deduce from (28) that for ��⌧ < ✓ < �⌧

11



Function ynew = MLTS2(yinter,w,�t, l)
if l < Nlevel then

ynew := MLTS2(yinter,w � A(Pl � Pl+1)yinter,�t/pl, l + 1)
for m = 1 to pl � 1 do

yold := yinter, yinter := ynew
ynew := �yold + 2MLTS2(yinter,w � A(Pl � Pl+1)yinter,�t/pl, l + 1)

end

else

ynew := LTS2(yinter,w,�t, PNLevel , pNLevel )
end

return ynew

Algorithm 4: Multi-level second-order local time-stepping.

d2zn,⌧

d✓2
(✓) = �1

2

s�1X

i=0

(⌧ � ✓)2i + (⌧ + ✓)2i

(2i)!
A(I � P1)(�A)iz(n�t) � AP1

1
2

(zn(⌧ � ✓) + zn(⌧ + ✓)) .

By setting ⌧ = m�⌧, we thus find that zn,m�⌧(✓) is equivalently defined as the solution of

d2zn,m�⌧

d✓2
(✓) = �1

2

s�1X

i=0

(m�⌧ � ✓)2i + (m�⌧ + ✓)2i

(2i)!
A(I � P1)(�A)iz(n�t) � AP1zn,m�⌧(✓),

zn,m�⌧(0) = zn (m�⌧) ,
dzn,m�⌧

d✓
(0) = 0. (33)

Both terms on the right of (33) now depend on ✓.
Again, we introduce the partitioning

zn,m�⌧(✓) = (I � P2) zn,m�⌧(✓) + P2zn,m�⌧(✓) =: zn�t, m
p1
�t,[coarse](✓) + zn�t, m

p1
�t,[fine](✓),

and rewrite (33) as

d2zn,m�⌧

d✓2
(✓) = �1

2

s�1X

i=0

(m�⌧ � ✓)2i + (m�⌧ + ✓)2i

(2i)!
A(I � P1)(�A)iz(n�t)

�A(P1 � P2)zn,m�⌧(✓) � AP2zn,m�⌧(✓), (34)

zn,m�⌧(0) = zn (m�⌧) ,
dzn,m�⌧

d✓
(0) = 0.

In (34), we now approximate the second term on the right by Taylor expansion of order 2s,

A(P1 � P2)zn,m�⌧(✓) = A(P1 � P2)
2s�1X

i=0

✓i

i!
dizn,m�⌧

d✓i
(0) + O(✓2s),

12



and denote by zn, m
p1 (✓) the solution of the resulting di↵erential equation. Since zn,m�⌧(✓) is even

in ✓, all odd derivatives vanish at ✓ = 0 and zn, m
p1 (✓) thus satisfies

d2zn, m
p1

d✓2
(✓) = �1

2

s�1X

i=0

(m�⌧ � ✓)2i + (m�⌧ + ✓)2i

i!
A(I � P1)(�A)iz(n�t)

�A(P1 � P2)
s�1X

i=0

✓2i

(2i)!
d2izn, m

p1

d✓2i (0) � AP2zn, m
p1 (✓), (35)

zn, m
p1 (0) = zn(m�⌧),

dzn, m
p1

d✓
(0) = 0.

Finally, we use the ME approach of order 2s to solve (35) with time-step �✓ until ✓ = �⌧. Then,
we update the solution for m � 1 as

zn ((m + 1)�⌧) = �zn ((m � 1)�⌧) + 2zn, m
p1 (�⌧),

and for m = 0 as zn(�⌧) = zn,0(�⌧), since zn(⌧) is an even function.

3.3. Fourth-order multilevel local time-stepping algorithm
In practice, the case s = 2 is probably most relevant. Then, (35) reduces to

d2zn, m
p1

d✓2
(✓) = �A(I � P1)z(n�t) +

(m�⌧)2 + ✓2

2
A(I � P1)Az(n�t)

�A(P1 � P2)zn(m�⌧) � ✓
2

2
A(P1 � P2)

d2zn, m
p1

d✓2
(0) � AP2zn, m

p1 (✓). (36)

zn, m
p1 (0) = zn(m�⌧),

dzn, m
p1

d✓
(0) = 0.

To simplify notation, we now define the auxiliary variables wn
1, wn,m

2 , and w̃n
1 by

wn
1 = �A(I � P1)z(n�t), wn,m

2 = �A(P1 � P2)zn(m�⌧), w̃n
1 = A(I � P1)Az(n�t),

and thus rewrite (36) as

d2zn, m
p1

d✓2
(✓) = wn

1 + wn,m
2 +

(m�⌧)2 + ✓2

2
w̃n

1 �
✓2

2
A(P1 � P2)

d2zn, m
p1

d✓2
(0) � AP2zn, m

p1 (✓). (37)

Next, we compute
d2zn, m

p1

d✓2
(0) by setting ✓ = 0 in (37) and using (36) in the resulting expression,

which yields:
d2zn, m

p1

d✓2
(0) = wn

1 + wn,m
2 � AP2zn(m�⌧) +

(m�⌧)2

2
w̃n

1.

We now define wn,m
3 = �AP2zn(m�⌧) and

w̃n,m
2 = �A(P1 � P2)

d2zn, m
p1

d✓2
(0) = �A(P1 � P2)

✓
wn

1 + wn,m
2 + wn,m

3 +
(m�⌧)2

2
w̃n

1

◆
,

13



and thus rewrite (36) as

d2zn, m
p1

d✓2
(✓) = wn

1 + wn,m
2 +

(m�⌧)2

2
w̃n

1 +
✓2

2
�
w̃n

1 + w̃n,m
2
�
� AP2zn, m

p1 (✓), (38)

zn, m
p1 (0) = zn(m�⌧),

dzn, m
p1

d✓
(0) = 0.

Finally, we discretize (38) by using the fourth-order ME approach with time-step �✓ = �⌧/p2,
which is based on the approximation:

zn, m
p1 (✓ + �✓) � 2zn, m

p1 (✓) + zn, m
p1 (✓ � �✓)

�✓2
⇡ d2zn, m

p1

d✓2
(✓) +

�✓2

12
d4zn, m

p1

d✓4
(✓).

The second-order derivative follows immediately from (38) whereas the fourth-order derivative
is obtained by first di↵erentiating it twice:

d4zn, m
p1

d✓4
(✓) = w̃n

1 + w̃n,m
2 � AP2

d2zn, m
p1

d✓2
(✓).

After p2 steps of the ME method, we update the solution zn for m � 1 as

zn ((m + 1)�⌧) = �zn ((m � 1)�⌧) + 2zn, m
p1 (�⌧),

and for m = 0 as zn(�⌧) = zn,0(�⌧), since zn(⌧) is an even function. Successive application for m =
0, . . . , p1 � 1 yields a two-level fourth-order LTS method, which computes zn+1, approximation
of z((n + 1)�t), given zn and zn�1, by

zn+1 = �zn�1 + 2TLTS4(zn,w1,w2,w3, w̃,�t, P1, P2, p1, p2),

where w1, w2, w3 are defined as

w1 = �A(I � P1)zn, w2 = �A(P1 � P2)zn, w3 = �AP2zn,

and w̃ is defined as
w̃ = A(I � P1)Azn = �A(I � P1)(w1 + w2 + w3),

– see Algo. 5. It requires two multiplications by A(I � P1) at the coarsest level, 2p1 multipli-
cations by A(P1 � P2) at the “fine” level, and 2p1 p2 multiplications by AP2 at the “very fine”
level.

Again, we can extend the above derivation to any number of refinement levels {T`}, T` ⇢
T`�1, ` = 2, . . . ,Nlevel, each associated with its diagonal projection matrix P` and local mesh
size ratio p`. This yields the following fourth-order MLTS algorithm, which first requires the
definition of the auxiliary variables

1. For k = 1, . . . ,Nlevel, wk = �A(Pk�1 � Pk)zn
2. wNLevel+1 = �APNLevel zm

3. w̃ = �A(I � P1)
PNLevel+1

k=1 wk

and then calls the recursive MLTS4 function listed in Algo. 6:

zn+1 = zn�1 � 2MLTS4(zn,w1, w̃,�t, 1). (39)

For simplicity, we assume that the number of levels, Nlevel, the mesh size ratios, p`, and the
projection matrices, P`, ` = 0, . . . ,Nlevel, together with w`, ` = 1..NLevel + 1, are globally defined.

14



Function ynew = TLTS4(yinter,w1,w2,w3, w̃,�t, P1, P2, p1, p2)
⌧ := 0
v := w1 + w2 + w3
ynew := LTS4(yinter,w1 + w2,w3, w̃ � A(P1 � P2)v,�t/p1, P2, p2)
for m = 1 to p1 � 1 do

yold := yinter, yinter := ynew, ⌧ := ⌧ + �t/p1
w2 := �A(P1 � P2)ynew, w3 := �AP2ynew
v := w1 + w2 + w3 + ⌧2/2w̃
ynew := �yold + 2LTS4(yinter,w1 + w2 + ⌧2/2w̃,w3, w̃ � A(P1 � P2)v,�t/p1, P2, p2)

end

Algorithm 5: Two-level fourth-order local time-stepping

Function ynew = MLTS4(yinter,w, w̃,�t, l)
if l < Nlevel then

⌧ := 0

v := w +
NLevel+1X

k=l+1

wk

ynew := MLTS4(yinter,w + wl+1, w̃ � A(Pl � Pl+1)v),�t/pl)
for m = 1 to pl � 1 do

yold := yinter, yinter := ynew, ⌧ := ⌧ + �t/pl
for k = l + 1 to Nlevel do

wk := �A(Pk�1 � Pk)yinter
end

wNLevel+1 := �APNLevel yinter

v := w +
NLevel+1X

k=l+1

wk + ⌧
2/2w̃

ynew := �yold + 2MLTS4(yinter,w + wl+1 + ⌧2/2w̃, w̃ � A(Pl � Pl+1)v,�t/pl, l + 1)
end

else

ynew := LTS4(yinter,w,wNLevel+1, w̃,�t, APNLevel , pNLevel )
end

return ynew.
Algorithm 6: Multi-level fourth-order local time-stepping
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4. Energy conservation

In [1], we proved that both the second-order and the fourth-order two-level LTS methods
conserve a discrete energy – see Prop. 2.1 and 2.2. To extend that analysis to an arbitrary
number of levels N = Nlevel, we first rewrite the MLTS2 algorithm (32) in LF fashion:

Proposition 4.1. The MLTS2 algorithm (32) is equivalent to

zn+1 � 2zn + zn�1

�t2 + Ap1 p2...pN zn = 0,

where Ap1 p2...pN is a symmetric matrix.

The proof follows directly from the next two lemmas, which are proved in the appendix.

Lemma 4.1. Let z = LTS2

⇣
z̃,w, �t

p1 p2...pN�1
, PN , pN

⌘
. Then

z = z̃ + BpN (w � APNz̃),

with

BpN =
�t2

p2
1 p2

2...p
2
N�1

 
I
2
+

pN�1X

i=1

�i,N
�t2i

p2i
1 p2i

2 ...p
2i
N�1

(APN)i

!

, �i,N 2 R, i = 1, . . . , pN�1.

Note that the matrix BpN A is symmetric, since

((APN)iA)> = A(PN A)i = (APN)iA

by the symmetry of A and PN .

Lemma 4.2. Let z = MLTS2(z̃,w, �t
p1 p2...pN�2

,N � 1). Then,

z = z̃ + BpN�1 pN (w � APN�1z̃),

with

BpN�1 pN = p2
N�1BpN +

pN�1�1X

i=1

�i,N�1BpN (APN�1BpN )i, �i,N�1 2 R, i = 1, . . . , pN�1 � 1.

Again the matrix BpN�1 pN A is symmetric, since

(BpN (APN�1BpN )iA)> = (BpN A(PN�1BpN A)i)> = (BpN APN�1)iBpN A = BpN (APN�1BpN )iA

by the symmetry of PN�1 and BpN A.

Proof. First, we show by induction that

z = MLTS2(z̃,w,
�t

p1 p2...pi�1
, i) = z̃ + Bpi pi+1...pN (w � APiz̃), 1  i  N � 1, (40)

where the matrix Bpi pi+1...pN is defined as

Bpi pi+1...pN = p2
i Bpi+1...pN +

pi�1X

j=1

� j,iBpi+1...pN (APiBpi+1...pN ) j, � j,i 2 R. (41)
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Moreover, the matrix Bpi pi+1...pN A is symmetric.
For i = N � 1, (40) indeed holds by Lemma 4.2.
Next, we assume that (40) holds for any fixed i, 2  i  N � 1. To show that (40) also holds

for i � 1, we now let

z = MLTS2(z̃,w,
�t

p1 p2...pi�2
, i � 1). (42)

Following Algo. 4 with l = i � 1 < N � 1 and yinter = z̃, we thus obtain

ynew = MLTS2(z̃,w � A(Pi�1 � Pi) z̃,�t/(p1 p2...pi�2 pi�1), i)
= z̃ + Bpi pi+1...pN (w � A(Pi�1 � Pi) z̃ � APiz̃)
= z̃ + Bpi pi+1...pN (w � APi�1z̃), (43)

where we have used the induction hypothesis (40) for the second equality.
Similarly, entering the loop over m = 1 to pi�1 � 1, we deduce that

ynew = z̃ +
�
4Bpi pi+1...pN � 2Bpi pi+1...pN APi�1Bpi pi+1...pN

�
(w � APi�1z̃)

after the first iteration. In fact, after m � 1 iterations, we have

ynew = z̃ +

0

@(m + 1)2Bpi pi+1...pN +

mX

j=1

� j,mBpi pi+1...pN

�
APi�1Bpi pi+1...pN

� j

1

A (w � APi�1z̃),

as one can easily show by induction over m; see also the proof of Lemma 4.2 in the Appendix.
In particular, for m = pi�1 � 1 we have

ynew = z̃ +

0

@p2
i�1Bpi pi+1...pN +

pi�1�1X

j=1

� j,pi�1�1Bpi pi+1...pN

�
APi�1Bpi pi+1...pN

� j

1

A (w � APi�1z̃)

= z̃ + Bpi�1 pi pi+1...pN (w � APi�1z̃),

by definition (41) of Bpi�1 pi pi+1...pN with � j,i�1 = � j,pi�1�1.
Again the matrix Bpi�1 pi pi+1...pN A is symmetric, since

�
Bpi pi+1...pN (APi�1Bpi pi+1...pN ) jA

�>
=
�
Bpi pi+1...pN A(Pi�1Bpi pi+1...pN A) j�>

= (Bpi pi+1...pN APN�1) jBpi pi+1...pN A = Bpi pi+1...pN (APi�1Bpi pi+1...pN ) jA,

by the symmetry of PN�1 and Bpi pi+1...pN A. This concludes the proof of (40).
Finally, we use (40) with i = 1 in (32) to infer that

zn+1 = �zn�1 + 2 MLTS2(zn,�A(I � P1)zn,�t, 1)

= �zn�1 + 2
�
zn + Bp1...pN [�A(I � P1)zn � AP1zn]

�
,

= �zn�1 + 2 zn � 2Bp1...pN Azn.

This concludes the proof with Ap1...pN = (2/�t2) Bp1...pN A, which is symmetric.
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Corollary 4.1. The MLTS2 algorithm (32) is second-order accurate and conserves the discrete
energy

En+ 1
2 =

1
2

⌧✓
I � �t2

4
Ap1...pN

◆
zn+1 � zn

�t
,

zn+1 � zn

�t

�

+
1
2

D
Ap1...pN

zn+1 + zn

2
,

zn+1 + zn

2

E (44)

for �t su�ciently small.

Proof. By Prop. 4.1, the MLTS2 algorithm (32) can be rewritten in LF fashion (10) with A
replaced by the symmetric matrix Ap1...pN . Therefore, it also conserves the energy in (11) with A
replaced by Ap1...pN , which corresponds to (44). To ensure that the energy in (44) is positive for
�t su�ciently small, we still need to show that the matrices I� �t2

4 Ap1...pN and Ap1...pN are positive
definite for �t su�ciently small.

From Lemma 4.1 we immediately obtain that

BpN =
�t2

p2
1...p

2
N�1

✓
I
2
+ O(�t2)

◆
, �t ! 0,

and similarly from Lemma 4.2 that

BpN�1 pN =
�t2

p2
1...p

2
N�2

✓
I
2
+ O(�t2)

◆
, �t ! 0.

From the recursive definition (41) of Bpi...pN , we thus easily infer by induction that for i � 1

Bpi...pN =
�t2

p2
1...p

2
i�1

✓
I
2
+ O(�t2)

◆
, �t ! 0.

In particular, for i = 1 we have

Bp1...pN = �t2
✓

I
2
+ O(�t2)

◆
, �t ! 0,

and hence
Ap1...pN =

2
�t2 Bp1...pN A = A + O(�t2), �t ! 0.

Therefore, since A is positive definite, so are both Ap1...pN and I � �t2

4 Ap1...pN for �t su�ciently
small. Moreover, the e↵ective sti↵ness matrix Ap1...pN of the MLTS2 algorithm corresponds to an
O(�t2) perturbation of the original sti↵ness matrix A. Hence, it is second-order accurate, which
completes the proof.

Proposition 4.1 implies that the MLTS2 method is equivalent to the standard LF method with
A replaced by the matrix Ap1 p2...pNlevel

. Because Ap1 p2...pNlevel
is also symmetric, the MLTS2 method

conserves a discrete energy and is stable when I � (�t2/4) Ap1...pN is positive definite. Hence, the
MLTS2 method is stable for any particular �t, if all eigenvalues of (�t2/4) Ap1...pN lie between
zero and one; otherwise, it is unstable.
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hcoarse h1

0 1 1.25 1.75 2 3

h2 h2
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Figure 1: One-dimensional computational mesh: the “coarse”, “fine” and “very fine” regions have mesh size hcoarse, h1
and h2, respectively.

Remark 1. Although the matrix Ap1...pN is never used in practice, it is useful for determining
the range of values �t for which the MLTS2 method is stable. To determine Ap1...pN , we simply
apply once Algorithm 4 with zn�1 = 0 and zn replaced by the n ⇥ n identity matrix. According to
Proposition 4.1, the matrix Ap1...pN is then immediately given by

Ap1...pN =
1
�t2 [2I � zn+1].

5. Numerical Results

We shall now present numerical experiments that confirm the expected order of convergence
and demonstrate the versatility of the multilevel local time-stepping (MLTS) methods from Sec-
tion 3. First, we consider a simple one-dimensional test problem to show that the di↵erent MLTS
schemes are stable and indeed yield the expected overall rate of convergence when combined
with a spatial finite element discretization of comparable accuracy. Then, we consider wave
propagation in two space dimensions with hierarchical local mesh refinement to illustrate the
usefulness of MLTS in the presence of complex geometry.

5.1. Stability and CFL condition
We consider the one-dimensional wave equation (1) with constant ⇢ = µ = 1 on the interval

⌦ = [0 ; 3] with periodic boundary conditions, which we divide into three equal parts. The two
outer intervals, ⌦c = [0 ; 1] [ [2 ; 3], are discretized with an equidistant mesh of size hcoarse:
they correspond to the “coarse” region. Next, we divide the inner interval [1 ; 2] itself into
three parts: the two intervals ⌦1 = [1 ; 1.25] [ [1.75 ; 2] are discretized with an equidistant
mesh of size h1 = hcoarse/p1 and hence correspond to the first level of refinement. Finally, the
innermost interval, ⌦2 = [1.25 ; 1.75], is discretized with an even finer equidistant mesh of size
h2 = h1/p2 = hcoarse/(p1 p2); it corresponds to the second level of local refinement. Hence
⌦ = ⌦c [⌦1 [⌦2, as shown in Fig.1.

During every time-step �t, we take p1 steps of size �⌧ = �t/p1 inside ⌦1 and p1 p2 steps of
size �✓ = �⌧/p2 inside ⌦2. In the absence of local refinement, i.e. p1 = p2 = 1, the mesh is
equidistant throughout ⌦. Then, the (local) time-stepping algorithm corresponds to the standard
leap-frog (LF) method and we denote by �tLF the largest time-step allowed. Else if either p1 � 2
or p2 � 2, we denote by �tp1,p2 the maximal time-step of the considered MLTS method. If
�tp1,p2 = �tLF , the MLTS algorithm imposes no further restriction on �t and we then call the
CFL condition of the new scheme optimal.

19



We now consider the interior point (IP) DG discretization from [37] with P1–elements and
(small) penalization, ↵ = 2. At the coarsest level we set hcoarse = 0.2, which yields the maximal
time-step �tLF = 0.55 hcoarse = 0.11 for the equidistant mesh. We then refine by a factor p1 = 2
those elements that lie inside the interval [1, 2], that is set h1 = 0.1 and to one all corresponding
entries in P1. Next, we refine once again by a factor p2 = 2 those elements that lie inside the
interval [1.25, 1.75], that is set h2 = 0.5 and to one all corresponding entries in P2. Hence for
every time-step �t, we shall take two steps of size �⌧ = �t/2 inside ⌦1 and four steps of size
�✓ = �t/4 inside ⌦2.

To determine the range of time-steps for which the MLTS2 method is stable, we verify for
any particular �t whether all eigenvalues of (�t2/4)A2,2 lie between zero and one – see Remark 1.
As shown in the left frame of Fig. 2, the smallest eigenvalue dips below zero for �t ⇡ 0.65�tLF ;
hence, the largest time-step allowed, though more than twice that dictated by h2 = hcoarse/4, still
falls short of the optimum at �tLF .
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Figure 2: The eigenvalues of (�t2/4)A2,2: without overlap (left); with an overlap by one element (right).

To increase the maximal permissible time-step, we now slightly enlarge the set of unknowns
where each local time-step is used by adding those degrees of freedom that are associated with
elements directly adjacent to the refined region. By setting the corresponding entries in P1 and
P2 to one, we easily realize this overlap by one element in zn�t,[fine] and zn�t, m

p1
�t,[fine]. In the

right frame of Fig. 2 we observe that all eigenvalues now lie essentially between zero and one.
However, a thousand-fold magnification of that same figure, shown in the left frames of Figs. 3
and 4, reveals that some eigenvalues still transgress the strict stability limit at one. As shown
in the right frames of Figs. 3 and 4, further extension of the overlap by one additional element
removes all unstable values below 0.9�tLF , while narrow bands of (barely) unstable values be-
tween 0.91  �t/�tLF  0.98 remain. Here we shall not attempt to elucidate that peculiar and
somewhat sensitive behavior, due to weak resonances caused by the underlying regular, one-
dimensional grid.

5.2. Convergence study
Again, we consider an IP-DG discretization of (1) with ⇢ = µ = 1 on ⌦ = (0, 3) using P1

elements and (small) penalty parameter ↵ = 2. The initial conditions u0, v0 are set to yield the
exact solution

u0 = cos
✓

8⇡
3

(t � x)
◆
.
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Figure 3: The eigenvalues of (�t2/4)A2,2: overlap by one element (left); overlap by two elements (right). The vertical
scale is strongly magnified on the right: �0.00004 < �min < .00004.
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Figure 4: The eigenvalues of (�t2/4)A2,2: overlap by one element (left); overlap by two elements (right). The vertical
scale is strongly magnified on the right: 0.99999 < �max < 1.00001.
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As described in Section 5.1, we let ⌦ = ⌦c [ ⌦1 [ ⌦2 and denote the mesh size inside ⌦1
by h1 = hcoarse/p1 and inside ⌦2 by h2 = h1/p2 – see Fig.1. For time integration, we use the
three-level MLTS2 method, which takes p1 steps of size �⌧ = �t/p1 inside ⌦1 and p1 p2 steps
of size �✓ = �⌧/p2 inside ⌦2 during each global time-step �t. In all cases, we use an overlap
of two which enables us to set �t = �tLF , the largest time-step allowed by the LF method on an
equidistant mesh with h = hcoarse.

We now systematically reduce the global mesh size, hcoarse = 0.1, 0.05, 0.025, 0.0125,
0.00625 together with �t, while monitoring the L2 space-time error in the numerical solution,
ku � uexkL2(0,T ;L2(⌦)) until time T = 60. In Fig. 5, the numerical error is shown vs. the mesh
size, h = hcoarse, for the di↵erent mesh size ratios (p1, p2) = (1, 1), (2, 2) (2, 3), (3, 2), (3, 5);
for (p1, p2) = (1, 1), the mesh is equidistant throughout ⌦ and the time integration reduces to
the standard LF method. Regardless of the number of local time-steps, or their mutual ratio, the
MLTS2 method yields overall second-order space-time convergence, as expected.

Next, we repeat the above numerical experiment but now opt for an IP-DG spatial discretiza-
tion with P3 elements and penalty parameter ↵ = 10. To reach overall fourth-order space-time
convergence with respect to the L2 norm, we combine it with the MLTS4 method for time inte-
gration. Again, we choose an overlap of two and let �t = �tME , the largest possible time-step
allowed by the modified equation approach on an equidistant mesh with h = hcoarse. We now
systematically reduce the global mesh size, hcoarse = 0.1, 0.05, 0.025, 0.0125, together with �t,
while monitoring the L2 space-time error in the numerical solution. As shown in Fig. 5, the
MLTS4 method leads to fourth-order space-time convergence, regardless of p1 or p2.
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Figure 5: Error vs. h = hcoarse with (p1, p2) = (1, 1), (2, 2) (2, 3), (3, 2), (3, 5) : MLTS2 (left) and MLTS4(right).

5.3. Two-dimensional example
To illustrate the usefulness of the MLTS methods in the presence of complex geometry, we

now consider (1) with constant ⇢ = µ = 1 in a square domain ⌦ = (�1, 1) ⇥ (�1, 1) with
four rectangular slots. Located at (±0.5,±0.5), the four slots are 0.1 in length each but become
increasingly narrow, as their width successively decreases from 0.05 to 0.00625 – see Fig. 6. We
impose homogeneous Neumann conditions on the boundary of ⌦ and set the initial conditions to
a circular Gaussian of radius r = 0.025 centered at the origin:

u0(x) =
⇢

exp(kxk2/r2), kxk 
p

2 r,
0, else,

, v0(x) = 0, x 2 ⌦. (45)

Inside ⌦, we now generate a triangular mesh, shown in Fig. 7, by using the program Tri-
angle [41]. To avoid a loss of mesh quality due to the increasingly high aspect ratio, the mesh
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surrounding each slot is organized into tiers of like-sized triangles, as shown in Figs. 7 and 8.
Next to the widest slot in the upper left corner, the mesh size h1 = 3.9E � 3 in the locally re-
fined (blue) region is about 3.2 times smaller than that of the coarse mesh, hcoarse = 1.26E � 2;
thus, we set p1 = 4 inside the upper left locally refined region, which dictates the local time-
step �⌧ = �t/p1. In the vicinity of the slot in the lower left corner, the locally refined mesh is
divided into two tiers with mesh size h1 = 4.37E � 3 in the outer (blue) and h2 = 1.45E � 3
in the inner (green) region. According to the respective mesh size ratios h1/hcoarse = 2.88 and
h2/hcoarse = 8.69, we thus select the time-step ratios p1 = 3 and p2 = 3. Note that p1, and
therefore �⌧, may have a di↵erent value in the upper and in the lower left corner, as the four
regions are completely independent of each other within any of our MLTS algorithms. Similarly,
the locally refined mesh surrounding the lower right slot leads to the time-step ratios p1 = 5,
p2 = 2 and p3 = 6, whereas that surrounding the narrowest slot in the upper right yields p1 = 4,
p2 = 2, p3 = 5, as summarized in Table 1.

2

2 x0

0.1

0.1

0.1

0.1

0.05

0.025 0.0125

0.00625

Figure 6: Two-dimensional example: computational do-
main ⌦.

Figure 7: Finite element mesh

Figure 8: Locally refined mesh sourrounding the lower right slot at increasingly higher magnification. Each color
designates a tier of like-sized elements.

For spatial discretization, we opt for the IP-DG method with P3 triangular elements and
penalty parameter ↵ = 11. It leads to the CFL condition �t  0.15 hmin, where hmin denotes
the smallest element size of the mesh. To circumvent that stability restriction across the entire
mesh hierarchy shown in Fig. 7 and Fig. 8, while maintaining overall fourth-order space-time
accuracy, we combine it with the MLTS4 method from Section 3.3 . Hence for every global
time-step �t, the MLTS4 method will take p1 = 4 steps inside the outer (blue) region, p1 p2 = 8
steps inside the next (green) region, p1 p2 p3 = 40 steps inside the subsequent (yellow) region,
and p1 p2 p3 p4 = 160 local time-steps inside the innermost “red” region. In Fig. 9, obtained with
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Corner Region hmin hmin/hc p

top-left blue 3.90E-3 3.23 4

bottom-left blue 4.37E-3 2.88 3
green 1.45E-3 8.69 9

bottom-right
blue 3.91E-3 3.22 5
green 1.75E-3 7.2 10
yellow 4.30E-4 29.3 30

top-right

blue 3.94E-3 3.19 4
green 1.67E-3 7.54 8
yellow 3.31E-4 38 40

red 8.02E-5 157.1 160

Table 1: Properties of the four locally refined regions: smallest element size hmin, ratio to the coarse mesh size hmin/hc,
ratio to the global time step p.

the program Paraview [42], we observe how the circular Gaussian wave expands until it impinges
upon the four slots. Each slot then generates a circular wave, the smaller the hole, the weaker the
reflection, while the main wave front reaches the outer square boundary, without any spurious
reflection from mesh interfaces.

Figure 9: Two-dimensional example: the solution is shown at times t = 0.23, 0.46, 0.69, 0.92, 1.15, 1.38.

To validate the numerical solution obtained with the MLTS4 method, we now compare it
to a reference solution computed without local time-stepping on the same mesh. In Fig. 10,
we display its departure in absolute value from a reference solution obtained with the standard
fourth-order ME method (12) with s = 2 using a 160 times smaller single time-step everywhere.
Both solutions essentially coincide, as illustrated in Fig. 10 – note that the color scale has been
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Figure 10: Two-dimensional example: the di↵erence between the numerical solutions with and without local time-
stepping is shown at times t = 0.23, 0.46, 0.69, 0.92, 1.15, 1.38.

magnified a hundredfold. Upon comparison of Fig. 9 and Fig. 10, we observe at all times that
the maximal departure from the reference solution lies at the center of ⌦. Not suprisingly, that
location coincides with the support of the initial condition where the mesh is coarsest and the
time-step used by the ME method therefore is 160 times smaller. More importantly, however,
we observe that the MLTS4 method does not generate any spurious reflections as the wave front
crosses the various boundaries between coarser and fine regions in the mesh.

Although we have not proved that the MLTS4 method with more than two levels conserves
(a discrete approximation of) the energy, Proposition 2.2 and the theory from Section 4 suggest
that the MLTS4 method in fact is equivalent to

zn�1 � 2zn + zn�1

�t2 + Ap1...pN zn = 0, (46)

with AAp1...pN symmetric, and hence that it does conserve the discrete energy

En+ 1
2 =

1
2

⌧✓
A � �t2

4
AAp1...pN

◆
zn+1 � zn

�t
,

zn+1 � zn

�t

�
(47)

+
D

AAp1...pN

zn+1 + zn

2
,

zn+1 + zn

2

Ei
.

As illustrated in Fig. 11, the MLTS4 method indeed conserves to machine precision the discrete
energy in (47). Note that it is not necessary to explicitly compute Ap1...pN , since the product
Ap1...pN zn can be computed from (46) by using three subsequent time-steps.

Finally, we compare the performance at run time of the MLTS4 method with that of the
standard ME method with a 160 times smaller single global time-step. Both algorithms were
programmed in Fortran 90 and run sequentially on an Intel Xeon W3520 Processor (2.66 GHz
with 8MB cache). While the fourth-order ME method required 3 days 22 hours and 3 minutes,
the MLTS4 method required only 2 days 22 hours and 46 minutes: a reduction by a factor of 1.66
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of wall-clock time. Although that gain might at first seem rather modest, one must keep in mind
that in this last example about 50% of all cells reside in the finest part of the mesh.

6. Concluding remarks

Starting from the local time-stepping (LTS) methods in [1], we have derived multi-level lo-
cal time-stepping methods (MLTS) of arbitrarily high order for second-order wave equations.
When the elements of the underlying mesh are naturally organized into tiers of “coarse”, “fine”,
“very fine”, etc. elements, our MLTS methods apply the same multi-level structure to the time-
stepping, without sacrificing accuracy or explicitness. Hence they permit inside every tier of
like-sized elements the use of the appropriate time-step dictated by the local CFL condition. In
particular, when the local mesh refinement occupies only a small portion of the entire computa-
tional mesh, such as in the vicinity of corners, point sources or material interfaces, our MLTS
methods permit to overcome the stringent CFL stability restriction dictated by but a few elements
at each level of refinement.

The second-order MLTS2 method is given by (32), whereas the fourth-order MLTS4 method
is given by (39). Higher-order versions are derived in Section 3.2 . Although the algorithms
are formulated recursively, they are nonetheless fully explicit and thus inherently parallel. In
particular, any multiplication involving a projection matrix Pi is in fact performed elementwise;
thus, it only a↵ects the i-th sub-tier of like-sized elements and those elements right next to it.

We have proved that the MLTS2 method conserves a discrete energy and hence is stable for �t
su�ciently small. Our numerical results also indicate that the resulting CFL condition is optimal
in the sense that it corresponds to the minimal CFL condition at the i-th level multiplied by the
mesh refinement ratio pi. Moreover, our numerical experiments demonstrate that the MLTS 4
method also conserves the energy in (47) down to machine precision. Again, the MLTS4 method
achieves an optimal (global) CFL condition, even when the smallest elements are up to 160 times
smaller than those at the coarsest level. Both yield the expected, optimal space-time convergence
rates when combined with an appropriate (P1 or P3) finite element spatial discretization.

Our MLTS methods also apply to other second-order (vector) wave equations, such as in
electromagnetics or elasticity, as long as the underlying semi-discrete formulation coincides with
(6) with a (block-)diagonal mass matrix and a sparse symmetric sti↵ness matrix.
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Appendix A. Proof of Lemma 4.1

Let z1 denote the value of ynew prior to the loop in Algo. 1 and zm+1 the value of ynew after m
iterations. We first show by induction over m that zm satisfies

zm = z̃ +
�t2

p2
1 p2

2...p
2
N�1

 
m2

2 p2
N

I +
m�1X

i=1

�m,i
�t2i

p2i
1 p2i

2 ...p
2i
N�1

(APN)i

!

(w � APNz̃), m � 1,

(A.1)
where the constants �m,i 2 R are independent of �t.

For m = 1, we clearly have

z1 = z̃ +
1
2

�t2

p2
1 p2

2...p
2
N�1 p2

N
(w � APNz̃) ,

which corresponds to (A.1) with an empty sum.
For m = 2, we infer following Algo. 1 that

z2 = z̃ + 2
�t2

p2
1 p2

2...p
2
N�1 p2

N
(w � APNz̃) � 1

2
�t4

p2
1 p4

2...p
4
N�1 p4

N
APN(w � APNz̃),

which corresponds to (A.1) with �2,1 = �1/(2p4
N).

Next, we proceed by induction and assume that (A.1) holds for m � 1 and m. From Algo. 1,
we have for m � 2 that

zm+1 = 2zm � zm�1 +
�t2

p2
1 p2

2...p
2
N�1 p2

N
(w � APNzm) .

By using the induction hypothesis, we now replace zm�1 and zm in the above by (A.1) to obtain

zm+1 = z̃ +
�t2

p2
1 p2

2...p
2
N�1

 
(m + 1)2

2 p2
N

I +
mX

i=1

�m+1,i
�t2i

p2i
1 p2i

2 ...p
2i
N�1

(APN)i

!

(w � APN) z̃,

where the constants �m+1,i, i = 1, . . . ,m + 1 are determined recursively through �m,i and �m�1,i.
Hence (A.1) holds for arbitrary m � 1. Finally, we set m = pN in (A.1) and let �i,N = �pN ,i, which
concludes the proof.

Appendix B. Proof of Lemma 4.2

We consider Algo. 4 with l = N � 1 and let z1 denote the value of ynew prior to the loop
and zm+1 denote the value of ynew after m iterations. We first show by induction over m that zm
satisfies

zm = z̃ +

 
m�1X

i=0

�m,iBpN (APN�1BpN )i

!

(w � APN�1z̃), m � 1, (B.1)

where the constants �m,i 2 R are independent of �t and �m,0 = m2.
For m = 1, we have

z1 = MLTS2

✓
z̃,w � A(PN�1 � PN) z̃,

�t
p1 p2...pN�1

,N
◆
,
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so that
z1 = LTS2

✓
z̃,w � A(PN�1 � PN) z̃,

�t
p1 p2...pN�1

, PN , pN

◆
.

By using Lemma 4.1, we find that

z1 = z̃ + BpN (w � A(PN�1 � PN)z̃ � APNz̃) = z̃ + BpN (w � APN�1z̃), (B.2)

For m = 2, we infer following Algo. 4 that

z2 = �z̃ + 2 MLTS2

✓
z1,w � A(PN�1 � PN) z1,

�t
p1 p2...pN�1

,N
◆
,

so that
z2 = �z̃ + 2 LTS2

✓
z1,w � A(PN�1 � PN) z1,

�t
p1 p2...pN�1

, PN , pN

◆
.

Again by using Lemma 4.1, we have

z2 = �z̃ + 2
�
z1 + BpN (w � A(PN�1 � PN)z1 � APNz1)

�
.

We now use (B.2) to replace z1 and thus obtain

z2 = z̃ + 4BpN (w � APN�1z̃) � 2BpN APN�1BpN (w � APN�1z̃),

which corresponds to (B.1) with m = 2 and �2,0 = 4.
Next, we proceed by induction and assume that (B.1) holds for m � 1 and m. From Algo. 4,

we have for m � 2 that

zm+1 = �zm�1 + 2 LTS2

✓
zm,w � A(PN�1 � PN)zm,

�t
p1 p2...pN�1

, PN , pN

◆
,

where zm�1, zm and zm+1 correspond to yold, yinter and ynew, respectively. We now use (B.2) to
replace zm�1 and zm, which after some calculations yields

zm+1 = z̃ +

 
mX

i=0

�m+1,iBpN (APN�1BpN )i

!

(w � APN�1z̃), (B.3)

where the constants �m+1,i are determined recursively through �m,i and �m�1,i. In particular, we
have

�m+1,0 = 2�m,0 � �m�1,0 + 2 = 2m2 � (m � 1)2 + 2 = (m + 1)2.

Hence (B.2) holds for arbitrary m � 1. Finally, we set m = pN�1 in (B.2) and let �i,N�1 = �pN�1,i,
which concludes the proof.
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