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Preperiodic points for rational functions defined over a

rational function field of characteristic zero

Jung Kyu Canci

Abstract. Let k be an algebraic closed field of characteristic zero. Let K be the rational
function field K = k(t). Let � be a non–isotrivial rational function in K(z). We prove a
bound for the cardinality of the set of K–rational preperiodic points for � in terms of the
number of places of bad reduction and the degree d of �.

1. Introduction

Let k be an algebraically closed field of characteristic zero. Let K be the rational func-
tion field K = k(t). Let � : P1 ! P1 be an algebraic endomorphism of the projective line
defined over K. For each non–negative integer m we denote with �m the m–iterate of �,
where �0 denotes the identity map. We say that P 2 P1(K) is periodic for � with minimal
period n if �n(P) = P, n > 0 and �e(P) , P for each 0 < e < n. We say that P is preperi-
odic for � if there exist n,m 2 N with n > 0 such that �n+m(P) = �m(P). In other words, P
is preperiodic if its orbit with respect �, i.e.

O�(P) = {�n(P) | n 2 N},
is finite. We denote by PrePer(�,K) the set of K–rational prepepriodic points in P1(K) for
�. For each endomorphism � and each element A 2 PGL2(K) (the group of automorphisms
of P1 defined over K) we denote by �A the conjugate A � � � A�1 of � by A. We consider
this action of PGL2(K) because it does not change the dynamics, in the sense that � and �A

determine the same orbits for each A 2 PGL2(K).
Let us denote by K the algebraic closure of K. An endomorphism � of P1, defined over

K, is said to be isotrivial if there exists an automorphism A 2 PGL2(K) such that the map
�A is defined over k. We say that � is isotrivial over K if there exists an automorphism
A 2 PGL2(K) such that the map �A is defined over k. The fact that k is algebraically closed
implies that the set PrePer(�,K) is an infinite set if � is defined over k (see for example
[1]). Therefore in order to obtain a finiteness result for the set PrePer(�,K), � should be
non–isotrivial (over K).

In the present work we shall take in consideration the notion of good reduction for
endomorphisms of P1 introduced by Morton and Silverman in [10]. In literature, it is
sometimes called simple good reduction in order to distinguish this notion of good reduc-
tion from other notions of good reduction. In the present work we shall consider a slightly
modified definition of good reduction. We say that � has good reduction at a place p, if
there exists an automorphism A 2 PGL2(K) such that the map A � � � A�1 has simple good
reduction at p. We will recall in the next section the definition of simple good reduction.
According to our definitions there are maps that have good reduction but not simple good
reduction at some places. E.g. consider the map �([X : Y]) = [tX2 : Y2] that has bad
simple reduction at the place given by t, but it has good reduction at t by considering the
automorphism A([X : Y]) = [tX : Y], since A � � � A�1([X : Y]) = [X2 : Y2]).
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Recall that there is a natural identification between the elements of the set of endo-
morphisms of P1 and the elements in K(z), i.e. rational functions defined over K, and a
corresponding identification of P1(K) with K [ {1}, where each point [x : y] 2 P1(K) is
identified with the point x/y in K [ {1}.

To ease notation we shall consider rational functions instead of endomorphisms of P1.
Our main result is the following one:

Theorem 1. Let k be an algebraically closed field of characteristic zero. Let K be the
rational function field K = k(t). Let S be a finite set of places of K of cardinality s � 1.
Let d be a positive integer. Then there exists a bound B(d, s) such that for each � 2 K(z)
non–isotrivial over K of degree d, with good reduction outside S , the inequality

#PrePer(�,K)  B(d, s)

holds.

The outline of the proof of Theorem 1 is similar to the one for [8, Corollary 1.1]. But in
our setting we have the problem that the residue fields are infinite, more precisely they are
the algebraically closed field k. With global fields one has the advantage that each residue
field is finite. This fact plays an important role in almost all proofs in [8]. In our situation
we need some preliminary lemmas, in particular Lemma 4.2 and Lemma 4.3, to bypass the
problem about the infiniteness of the residue field.

The condition S not empty is only a technical one and it does not represent a significant
restriction. Indeed each map with everywhere good reduction (i.e. with good reduction
outside the empty set) has good reduction outside any arbitrary chosen finite set S . There
are many non-isotrivial maps with everywhere good reduction. As an example the map

�(z) =
(t + 1)z + t

z + 1
has everywhere good reduction. With some calculations (simplified by applying Proposi-
tion 2.10 in [4]) one can see that � is non–isotrivial.

Next result is an important tool in the proof of Theorem 1.

Theorem 2. Let k be an algebraically closed field of characteristic zero. Let K be the
rational function field K = k(t). Let S be a finite set of places of K of cardinality s � 1.
Let � 2 K(z) be non–isotrivial over K of degree d with good reduction outside S . Let P be
defined over K and be a periodic point for �, with minimal period n. Then

(1) n 
Y

pb(d,s)
p prime

max
⇢

9s�1 + 1
2

(2d + 1) + 2, p · 32s�1
�
,

where b(d, s) = 9s�1+1
2 (2d + 1) + 2.

To ease notation we will denote by C(d, s) the bound in (1).
Some ideas to prove Theorem 2 come from the proof of [8, Theorem 7]. But in [8,

Theorem 7], the description of the possible shape of the minimal periodicity for a periodic
points as given in [9] or [17] plays an important role. These results do not apply to our
situation, because the residue fields are infinite. Therefore in our proof of Theorem 2 we
use new ideas, mainly contained in Section 4.1, in order to compensate the absence of
results as the ones in [9] and [17].

The second important tool in the proof of Theorem 1 is the following result.
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Theorem 3. Let k be an algebraically closed field of characteristic zero. Let K be the
rational function field K = k(t). Let S be a finite set of places of K of cardinality s � 1.
Let � 2 K(z) be non–isotrivial over K of degree d with good reduction outside S . Let P be
defined over K and be a preperiodic point for �. Then

(2) #
�
O�(P)

�  9s+1 + 1
2

(2d + 2)
Y

pb(d,s)
p prime

max
⇢

9s�1 + 1
2

(2d + 1) + 2, p · 32s�1
�
,

where b(d, s) = 9s�1+1
2 (2d + 1) + 2.

To ease notation we will denote by D(d, s) the bound in (2).
The main tool to prove the above theorems is a result about the finiteness of solutions

in S –units of linear equations, namely [16, Corollary 4]. The idea of using S –units in
the arithmetic of dynamical systems is due to Narkiewicz (see [11]), where he studied
dynamics associated to polynomials instead of generic rational functions.

Some similar results obtained by using S –units equations are contained in [6],[7]. But
all those results concern rational functions defined over number fields, where the linear
equations have finite set of non–degenerate solutions in S –units. In our setting, a linear
equation, even with only two addends, can have an infinite set of solutions in S –units. One
has this problem also when the field k is a finite field. But the infiniteness of the solutions in
the case of global function fields is more manageable than the one in our situation. Indeed,
for example in our setting we need to ask that the map � is non–isotrivial (condition that
is not necessary in the case of global function field). This problem, about S –unit solutions
of linear equations, represents another reason for the need of new ideas in addition to the
ones already used in [6], [7] and [8].

Some results similar to our are given by Morton and Silverman in [9] and by Benedetto
in [2] and [3]. More precisely in [2] there is a result (Theorem A) that characterizes preperi-
odic points, for polynomials defined over an arbitrary algebraic function field of dimension
one, in terms of the canonical height associated to �. Benedetto in [2, Remark 5.2] (and in
the introduction of [2]) a�rms that Theorem A implies, for the non–isotrivial polynomials,
a bound for the cardinality of the set of preperiodic points, which has a size of the type
O(s log s) (where the O–big constant depends on the degree d of the polynomial). Also the
bounds in [9] and [3] are of the form O(s log s).

Our techniques are completely di↵erent from the ones applied in [2], [3] and [9]. But
our methods lead on to prove some bounds that are worse than the ones in [2], [3] and [9],
but our results hold for rational functions and for preperiodic points.

It is possible to give an explicit value for the bound B(d, s) in Theorem 1, which is pre-
sented in the proof of Theorem 1. We have omitted to write it in the statement of Theorem
1 because it is huge and far from being sharp. The author and Salomon Vishkautasan have
already established a sharper bound for B(d, s) which will be part of future work and builds
upon the results of this article. The aim of the present work was just to prove the existence
of a bound B(d, s) as described in Theorem 1.

Our work is linked with Morton and Silverman’s Uniform Boundedness Conjecture for
dynamical systems (see [9]). It asserts that for any number field K, the cardinality of the set
PrePer(�,K) of a morphism � : PN ! PN of degree d � 2, defined over K, is bounded by
a number depending only on the integers d,N and on the degree D of the extension K/Q.
Our Theorem 1 gives a statement in the direction of the Uniform Boundedness Conjecture
in the case when K is an algebraic function field.
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Note that in the case when K is a number field, in order to have finiteness of the set
PrePer(�,K), it is necessary to set the condition that the degree d of � is � 2. Indeed for
each automorphism A 2 PGL2(K) of finite order, i.e. An = Id for a positive n, the set
PrePer(A,K) is the whole P1(K). In our setting, a non–isotrivial �, even of degree 1, can
not have finite order.

The results proven in this article should have an analogue to any finite extension of k(t)
(i.e. algebraic function fields over k). The fact that the ring of S –integers in K = k(t) is
a principal ideal domain plays a crucial role in our proofs. This fact is not true if K is the
function field of a curve of positive genus. It would be interesting to find a generalization
of our result to any algebraic function fields. Many of the methods used in this work can be
also applied to endomorphisms of N–dimensional projective spaces PN for any N � 1. But
one would need to generalize the notion of p–adic distance and the divisibility arguments
contained in [10, Proposition 5.1] and [10, Proposition 5.2].

Acknowledgements. The author would like to thank Laura DeMarco for setting the
question which has motivated the present work. He would like to thank also for the helpful
discussions with Laura Paladino, Laura DeMarco and Pietro Corvaja. The author would
like to thank also Joe Silverman for pointing out a mistake in a previous version of the
present work. Furthermore he would like to thank Sebastian Troncoso for suggesting an
improvement of the bound in Lemma 4.2. Part of the manuscript was written during the
spring term of 2015 when the author had a part time employment as a lecturer at the
University of Fribourg (Switzerland). The author would like to thank the University of
Fribourg for the financial support.

2. Notation and definitions

Throughout all the paper we shall use the following notation: k will be an algebraic
closed field of characteristic zero; K will be the rational function field k(t). We denote by R
the polynomial ring k[t]. Any place of K is either given by a valuation v↵ for ↵ 2 k or given
by the valuation v1 at infinity (associated to the point at infinity in P1). A valuation v↵ is
the one associated to the polynomial t�↵. The valuation at infinity v1 is the one associated
to the element 1/t. For any place p of K, we will denote the associated valuation by vp,
normalized so that vp(K) = Z. See [13] or [15] for the properties of places over function
fields.

For a finite set S of places of K of cardinality s, we set

RS B {x 2 K | vp(x) � 0 for all p < S }
the ring of S –integers and

R⇤S B {x 2 K | vp(x) = 0 for all p < S }
the group of S –units.

We will always assume that S is an arbitrary fixed non–empty finite set of places of K.
We will denote by s the cardinality of S . The rank of R⇤S /k is s � 1. The ring RS is a
principal ideal domain and K is the fraction field of the ring RS . Therefore, each point of
K can be written in S –coprime integral form; which means that for each x 2 K we may
assume that x = a/b with a, b 2 RS and min{vp(a), vp(b)} = 0 for each p < S (in this case a
and b are said S –coprime).

For each given � 2 K(z) of degree d, there exist f (z), g(z) 2 RS [z], coprime polynomials,
such that

(3) �(z) = f (z)/g(z), with f (z) = fdzd + . . . + f1z + f0, g(z) = gdzd + . . . + g1z + g0
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for suitable fd, . . . , g0 2 RS with no common factors in RS \ k. When � is written in the
above form, we shall say that it is written in a S –reduced integral form.

Let � be written in a S –reduced integral form as in (3). We say that � has simple
good reduction outside S if the homogeneous resultant of f and g is in R⇤S . Recall that if
f = fnzn + . . . + f0 and g(z) = gnzn + . . . + g0 are such that one of the coe�cients fn or gn
is not zero, the homogenous resultant is defined as the determinant of the following square
matrix of order 2n.

Resn( f , g) = det

0

BBBBBBBBBB@

f0 f1 . . . . . . . . . fn 0 . . . 0
0 f0 f1 . . . . . . . . . fn . . .

. . .
0 . . . 0 f0 f1 . . . . . . . . . fn
g0 g1 . . . . . . gn 0 . . . . . . 0
0 g0 g1 . . . . . . gn . . . . . . 0

. . .
0 . . . . . . g0 g1 . . . . . . . . . gn

1

CCCCCCCCCCA

.

It is called the homogeneous resultant because it vanishes if and only if the homogenized
polynomials obtained from f and g have a common factor.

For each place p, recall that the residue field Op/Mp, obtained as the quotient of the
ring Op = {x 2 K | vp(x) � 0} by its maximal idealMp = {x 2 K | vp(x) > 0}, is k. For
each element x 2 Op, we will denote by x the corresponding image of x in Op/Mp of the
canonical projection Op ! Op/Mp. The element x is called the reduction modulo p of x.
If x < Op, its reduction modulo p is the point at infinity1 = 1/0.

If a map � is written in S –reduced integral form, then the map �p 2 k(z) obtained from
� by reduction of its coe�cients modulo p is well defined, for each p < S . Simple good
reduction can be reformulated in the following way: � has simple good reduction outside
S if and only if deg �p = deg � for all p < S . We can reformulate the notion of simple good
reduction also in terms of the homogenous resultant of two polynomials. If � is written
in S –reduced form as in (3) and p < S , then � has good reduction at p if and only if
Resn( f , g) 2 Op \Mp (i.e. Resn( f , g) is a p–unit).

As an application of [4, Corollary 2.13] by Bruin and Molnar, one sees that each rational
map � of degree d defined over K admits a R–minimal model; see [4, Definition 2.8].
Roughly speaking, each rational map � can be conjugated to one in S –reduced integral
form with smallest p–adic valuation of the resultant. More precisely, by using the notation
in [4], we have that there exists  = A � � � A�1, for a suitable A 2 PGL2(K), with
 = F(z)/G(z) written in reduced form for each place p such that

ResR([�]) = Resd(F,G)R.

Therefore a rational function �(t) defined over K has good reduction at p if a R–minimal
model of � has simple good reduction at p. For a generalization of [4, Corollary 2.13], see
[12].

Let P1 = x1/y1, P2 = x2/y2 be two distinct points in K[ {1}. Using the notation of [10]
we shall denote by

�p (P1, P2) = vp (x1y2 � x2y1) �min{vp(x1), vp(y1)} �min{vp(x2), vp(y2)}
the p-adic logarithmic distance. The logarithmic distance is always non–negative and
�p(P1, P2) > 0 if and only if P1 and P2 have the same reduction modulo p. Note that if P1
and P2 are written in S –coprime integral form, then �p (P1, P2) = vp (x1y2 � x2y1) 8p < S .
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Let PGL2(RS ) be the group of automorphisms defined by a matrix in GL2(RS ) whose
determinant is in R⇤S , i.e. a invertible matrix with entries in RS , whose inverse has entries
in RS . Sometimes we will take in consideration the conjugate of a map � with an automor-
phism A 2 PGL2(RS ). We will use the fact that �p (A(P1), A(P2)) = �p (P1, P2) for each
A 2 PGL2(RS ).

3. Auxiliary results

An important tool in our proof will be the following result by Zannier in [16, Corollary
4] that we present here in a form adapted to our setting.

Theorem 4. [16, Corollary 4] Let �, µ 2 K⇤. Then the equation �x + µy = 1 has at most
9s�1 solutions (x, y) 2 (R⇤S )2 such that �x/µy < k⇤.

Zannier’s article concerns problems as the one in Theorem 4 but in a much more general
setting than needed here. For some more recent and general results see also [5].

The divisibility arguments that we shall use to produce the S –unit equations useful to
prove our bounds are obtained starting from the following two facts:

Proposition 3.1. [10, Proposition 5.1] For all P1, P2, P3 2 K [ {1}, we have

�p(P1, P3) � min{�p(P1, P2), �p(P2, P3)}.
Proposition 3.2. [10, Proposition 5.2] Let � 2 K(t) be a rational function with simple
good reduction outside S . Then for any P,Q 2 K [ {1} we have �p(�(P), �(Q)) � �p(P,Q)
for each p < S .

As a direct application of the previous propositions we have the next result.

Proposition 3.3. [10, Proposition 6.1] Let � 2 K(t) be a rational function with simple
good reduction outside S . Let P 2 K [ {1} be a periodic point for � with minimal period
n. Then the following hold for each p < S .

• �p(�i(P), � j(P)) = �p(�i+k(P), � j+k(P)) for every i, j, k 2 N,
• Let i, j 2 N be such that gcd(i � j, n) = 1. Then �p(�i(P), � j(P)) = �p(�(P), P).

4. Proofs

This section is divided in several subsections containing the proofs of some lemmas, the
proof of Theorem 2, the proof of Theorem 3 and finally the proof of Theorem 1.

4.1. Preliminary lemmas. We start by giving a very simple lemma, whose proof is an
elementary application of Theorem 4. Recall that K and S are defined as in Section 2.

Lemma 4.1. Let �, µ 2 K⇤ be such that there exists a place p < S with vp(�) , vp(µ). Then
the equation �x + µy = 1 has at most 9s�1 solutions (x, y) 2 (R⇤S )2.

Proof. The proof is an application of Theorem 4, because there are no (x, y) 2 (R⇤S )2 such
that �x/µy 2 k. ⇤

Next lemma contains in the hypothesis the crucial condition of non–triviality for the
maps.

Lemma 4.2. Let � 2 K(z) be a rational function defined of degree d � 1, not isotrivial
over K. The set of pairs (�1, �2) 2 (k)2 such that �(�1) = �2 is finite and is bounded by 2d.
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Proof. We assume �written in S –reduced normal form as in (3) for suitable fd, . . . , g0 2 R
without common factors in R \ k.

The condition �(�1) = �2 is equivalent to say that the polynomial

T (X,Y) B
�

fdXd + . . . + f1X + f0
� � �gdXd + . . . + g1X + g0

�
Y

is zero at (X,Y) = (�1, �2). The equivalence follows from the fact that the two plynomials
f (z), g(z) are coprime, so they do not have common roots. The polynomial T (X,Y) is in
K\k, because � is not isotrivial. Furthermore, because of our assumption on the coe�cients
fd, . . . , g0, we have that T (X,Y) is not factorisable in the form

T (X,Y) = ↵Q(X,Y)

with ↵ 2 K \ k and Q(X,Y) polynomial defined over k. Moreover, we can see that the
polynomial T (X,Y) is irreducible in K[X,Y]. Suppose the contrary; since the degree of
T (X,Y) with respect Y is one, then the decomposition should be of the form T (X,Y) =
P(X)Q(X,Y) for a suitable P(X) 2 K[X] \ K and Q(X,Y) 2 K[X,Y] \ K. But this is
absurd. Indeed, take p a place of simple good reduction for � such that the reduction
Pp(X) has positive degree, where Pp(X) denotes the polynomial obtained by reduction
modulo p of the coe�cients of P(X). Let ↵ 2 k be a root of Pp(X). The factorization
T (X,Y) = P(X)Q(X,Y) would imply that the map �p sends ↵ to any � 2 k, that is clearly
absurd. In the last part we used that �p(x) = �(x) for each x 2 K, which follows from the
fact that � has good reduction at p (see for example [14, Theorem 2.18]).

We may consider T (X,Y) as a polynomial in k[t, X,Y], that is possible by our choice of
f (z) and g(z). Consider T (X,Y) as a polynomial t. If the degree of T (X,Y) with respect t is
n, for each i 2 {0, 1, . . . , n}, we denote by hi(X,Y) the polynomial in k[X,Y] such that

T [X,Y] = hn(X,Y)tn + . . . + h1(X,Y)t + h0(X,Y).

From the previous remarks we know that the polynomials hi’s have no common irre-
ducible factors. This is important to know because we have that �(�1) = �2 if and only if
hi(�1, �2) = 0 for all i 2 {0, 1, . . . , n}. Note that for each i 2 {0, 1, . . . , n}, such that hi(X,Y)
is not the zero polynomial, there exist two polynomials ai(X) 2 k[X] and bi(X,Y) 2 k[X,Y]
such that hi(X,Y) = ai(X)bi(X,Y) and either bi(X,Y) = 1 or the degree of bi(X,Y) with
respect Y is exactly one and its total degree is bounded by d + 1. In both cases the degree
of the ai’s is bounded by d. If there exists an index i such that bi(X,Y) = 1 and ai(X) , 0,
then the number of solutions (�1, �2) 2 k2 of T (X,Y) = 0 is bounded by d. Otherwise there
are at most 2d solutions (�1, �2) 2 k2. ⇤

Lemma 4.3. Let � 2 K(z) be a rational function not isotrivial over K. Let d be the degree
of �. Let {P0, P1, . . . , Pn�1} be a set of n distinct points of K [ {1} with the property that
�(Pi) = Pi+1, for each i 2 {0, . . . n � 2}, and �p(Pi, Pj) = �p(P0, P1) for each distinct
i, j 2 {0, . . . n � 2} and for each p < S . Then

(4) n  9s�1 + 1
2

(2d + 1) + 2.

Proof. We assume n > 2 (otherwise the statement is trivially true). Up to conjugation of
� we may assume that P0 = 0 and P1 = 1. It is su�cient to take A 2 PGL2(K) that sends
P0 to 0 and P1 to 1 and take A � � � A�1 (that is again non–isotrivial) instead of � and
A(Pi) instead of Pi. Note that �p(A(Pi), A(Pj)) = �p(Pi, Pj) � �p(P0, P1) = 0 for all distinct
i, j 2 {0, . . . n � 1} and p < S . For each i 2 {2, . . . n � 1} let xi, yi 2 RS such that Pi = xi/yi
is written in S –coprime integral form. By considering the fact that the p–adic distances
�p(P0, Pi) = vp(xi) and �p(P1, Pi) = vp(yi) are zero for all p < S , one sees that there exists
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an S –unit ui such that Pi = ui. Furthermore we consider for each i 2 {3, . . . n � 1} the
p–adic distance �p(P2, Pi) and we obtain that ui � u2 is a S –unit. Therefore there exists an
S –unit u2,i such that the following equality holds:

ui

u2
+

u2,i

u2
= 1.

Hence ui is of the shape ui = u2�i, where �i 2 R⇤S is such that there exists µi 2 R⇤S so that
�i + µi = 1. Hence, we have the following situation:

0
�7! 1 �7! u2

�7! u2�3
�7! . . . �7! u2�n�1.

Up to conjugation by z 7! u�1
2 z we may assume that u2 = 1. So we reduce to the case

(5) 0
�7! 1 �7! 1

�7! �3
�7! . . . �7! �n�1,

where �i 2 R⇤S is such that there exists µi 2 R⇤S so that �i + µi = 1. By Theorem 4 we have
that the number of the �i’s in the orbit in (5) such that �i < k is bounded by 9s�1�1

2 . So there
are at most 9s�1+1

2 portions of the orbit in (5) of consecutive �i’s where each �i 2 k. By
Lemma 4.2 each such a portion of orbit in (5) can not contain more than 2d + 1 elements.
Therefore n  9s+1+1

2 (2d + 1) + 2. ⇤

To ease notation we shall denote by A(d, s) the number 9s+1+1
2 (2d + 1) + 2.

4.2. Proof of Theorem 2. We begin with a lemma that is a direct application of Lemma
4.3.

Lemma 4.4. Let � be a non–isotrivial rational function defined over K with simple good
reduction outside S . Let d be the degree of �. Let P 2 K [ {1} be a periodic point for �
of minimal period p with p a prime number. Then p  A(d, s), where A(d, s) is the bound
given in (4).

Proof. Proposition 3.3 a�rms that �p(�i(P), � j(P)) = �p(�(P), P) for each 0  j < i < p.
So it is enough to apply Lemma 4.3 to the set of points {�i(P) | 0  i  p � 1}. ⇤

Next Lemma 4.5 bounds the minimal periodicity of the form pk for a prime p. As said
in the introduction we use the same ideas applied in the proof of [8, Theorem 7]. For the
reader’s convenience we rewrite those ideas adapted to our situation.

Lemma 4.5. Let � 2 K(z) with simple good reduction outside S and not isotrivial over K.
Let d be the degree of �. Let P 2 K [ {1} be a periodic point for � of minimal period pr

with p prime number. Then

pr  max
⇢

9s�1 + 1
2

(2d + 1) + 2, p · 32s�1
�
.

Proof. Up to take a suitable conjugate of � by an element in PGL2(RS ) we may assume
that P = 0. To ease notation we denote by Pi = �i(P) for each 0  i  pr � 1. By applying
Proposition 3.1, for each 0  i  pr � 1 and p < S , we have that �p(Pi, P0) � �p(P1, P0),
where the equality holds for each i not divisible by p. Therefore the cycle of P0 is of the
shape

P0 = 0 7! x1/y1 7! A2x1/y2 7! . . . 7! Aix1/yi 7! . . . 7! x1/ypr�1 7! [0 : 1]

where each point is written in a S –coprime integral form, Ai 2 RS and Ai = 1 for each i
coprime with p. If each Ai is in R⇤S , by Proposition 3.3 we have that �p(Pi, Pj) = �p(P0, P1)
for each distinct indexes i, j and p < S . Thus we can apply Lemma 4.3 and deduce that
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pr  9s�1+1
2 (2d + 1) + 2. Otherwise there exists an integer j such that Aj < R⇤S . Let ↵ be the

smallest integer with this property, so Ap↵ is not an S –unit.
Case p = 2. For each arbitrary i ⌘ 3 mod 4 with 0 < i < 2r, we are going to define

a solution in S –units of the equation �x + y = 1 for a � < R⇤S and apply Lemma 4.1. Let
↵ > 1. Let i be as above. By Proposition 3.3 we have �p(P1, Pi) = �p(P0, P1) = �p(P1, P2↵ ),
for all p < S . Then there exist two S –units ui, u2↵ such that Pi =

x1
y1+ui

and P2↵ =
A2↵ x1

A2↵ y1+u2↵
.

Again by �p(P0, P1) = �p(Pi, P2↵ ), there exists an S –unit ui,↵ such that A2↵
ui

u2↵
� ui,↵

u2↵
= 1.

By Lemma 4.1 there are at most 9s�1 di↵erent possible values for ui. If ↵ = 1, for each
i as above we have �p(P1, Pi) = �p(P0, P2) and �p(P0, P1) = �p(P1, P2). Then there exist
two S –units ui, u2 such that Pi =

x1
y1+A2ui

and P2 =
A2

A2y1+u2
. As before, we have �p(P0, P1) =

�p(Pi, P2). Hence there exists an S –unit ui,2 such that A2
2

ui
u2
� ui,2

u2
= 1. Again, by Lemma 4.1,

there exist at most 9s�1 di↵erent possible values for ui. Note that the number of positive
integer i < 2r such that i ⌘ 3 mod 4 is equal to 2r�2. Therefore 2r  4 · 9s�1 < p · 32s�1

with p = 2.
Case p > 2. Let b be of the form

(6) b = m · p + i

with m 2 {0, 1, . . . pr�2} and i 2 {2, 3, . . . , p � 1}. By Proposition 3.3, we have �p(P0, Pb) =
�p(P1, Pb) = vp(x1) , for any p < S . Hence there exists an S unit ub such that

(7) Pb =
x1

y1 + ub
.

Since �p(P1, Pp↵ ) = vp(x1), there exists a S –unit up↵ verifying

Pp↵ =
Ap↵ x1

Ap↵y1 + up↵
.

Proposition 3.3 tells us that �p(Pp↵ , Pb) = vp(x1), for every p < S . By identity (7), there
exists u↵,b 2 R⇤S such that Ap↵ub � up↵ = u↵,b. There are exactly (pe�2 + 1)(p � 2) integers
b of the form as in (6). The pair (ub/up↵ , u↵,b/up↵ ) 2 (R⇤S )2 is a solution of Ap↵ x � y = 1,
where Ap↵ < R⇤S . By Lemma 4.1, there are at most only 9s�1 possible values for ub/up↵ .
Hence (pr�2 + 1)(p � 2)  9s�1, i. e. pr  p2

⇣
9s�1

p�2 � 1
⌘
< p · 32s�1. ⇤

Proof of Theorem 2. Let us assume that � 2 K(z) is not isotrivial over K with good
reduction outside S . By the result due to Bruin and Molnar [4, Corollary 2.13] we may
assume that � is a R–minimal model of its conjugacy class. Therefore � has simple good
reduction at a place p if and only if has good reduction at a prime p. Therefore � has also
simple good reduction outside S .

Let us take in consideration the factorization in prime factors of n, the minimal period
of P as given in the hypothesis of Theorem 2:

(8) n = pr1
1 · . . . · prm

m .

By applying Lemma 4.5 to the map �n/pri
i , for each prime pi in the above factorization, we

have that the minimal period of P for the map �n/pri
i is pri

i . Therefore we have

(9) pri
i  max

⇢
9s�1 + 1

2
(2d + 1) + 2, pi · 32s�1

�
.
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For each prime pi in the above factorization (4), we have that P is a periodic point for �n/pi

with minimal period pi. By applying Lemma 4.4 to the map �n/pi we have

(10) pi  9s�1 + 1
2

(2d + 1) + 2.

Putting together (8), (9) and (10) we have that

n 
Y

pb(d,s)
p prime

max
⇢

9s�1 + 1
2

(2d + 1) + 2, p · 32s�1
�
,

where b(d, s) = 9s�1+1
2 (2d + 1) + 2.

4.3. Proof of Theorem 3. We reduce our problem to the study of the solutions in S –units
of some equations that will be obtained by applying the divisibility arguments contained
in Proposition 3.1, Proposition 3.2, and Proposition 3.3. The strategy of the proof is taken
from the one in [8, Theorem 1], but here we apply our Lemma 4.3. We shall apply also
many times the following result ([8, Lemma 4.1]), that is an application of the previous
mentioned three propositions. As in the previous subsection we may assume that � is a
R–minimal model of its conjugacy class. Therefore assuming that � has good reduction
outside S , it follows that � has simple good reduction outside S too.

Lemma 4.6 (Lemma 4.1 in [8]). Let

(11) P = P�m+1 7! P�m+2 7! . . . 7! P�1 7! P0 = [0 : 1] 7! [0 : 1]

be an orbit for a rational function � defined over K, with simple good reduction outside S .
For any a, b integers such that 0 < a < b  m � 1 and p < S , we have

(12) �p(P�b, P�a) = �p(P�b, P0)  �p(P�a, P0).

We may alway assume that � and P = P�m+1 are as in the hypothesis of Lemma 4.6.
Indeed it is enough to take a suitable iterate �N , where N is bounded by the number C(d, s)
in (1) of Theorem 2. By proving a bound M(d, s) for the integer m as in (11) we will prove
that we may take as D(d, s) any number such that

(13) D(d, s) � C(d, s) · (M(d, s) + 2).

The proof of Theorem 3 will follow from the following result.

Lemma 4.7. Let � and the Pi’s be as in Lemma 4.6. Assume that � is not isotrivial over
K. Then

m  A(d, s) + 9s�1 � 1,
where the number A(d, s) is the one given in (4) of Lemma 4.3.

Proof. For each index �m  i  1 we assume that Pi = xi/yi is written in S –coprime
integral form. By Lemma 4.6 we have that for each �m  � j < �i  there exists an
S –integer Ti, j such that xi = Ti, j x j.

Consider the p–adic distance between the points P�1 and P� j. Again by Lemma 4.6, we
have

�p(P�1, P� j) = vp(x1y j � x1y1/T1, j) = vp(x1/T1, j),
for all p < S . Then, there exists an S –unit u j such that y j =

�
y1 + u j

�
/T1, j. Thus

(14) P� j =
xi/T1, j�

y1 + u j
�
/T1, j

=
x1

y1 + u j
.



PREPERIODIC POINTS FOR RATIONAL FUNCTIONS OVER FUNCTION FIELDS 11

Note that the maximal index N such that

(15) �p(P�N , P0) = �p(P�1, P0)

for all p < S is such that N + 1  A(d, s), where A(d, s) is the number in (4). Indeed, by
applying Lemma 4.6 we have that �p(P�i, P� j) = �p(P�1, P0) for each indexes �N  �i <
� j  0. Therefore if m = N we are done. Note that condition (15) with N = m implies that
T1,i 2 R⇤S for each �m  �i  �1.

Suppose that there exists a index �m  �a < �1 such that T1,a < R⇤S . Let a be
the minimum index with this property. Consider the p–adic distance between the points
P�a and P�b for each a < b. By Lemma 4.6 and by (14), we have: �p(P�b, P�a) =
vp

�
xa((y1 + ub)/T1,b) � (x1/T1,b)ya

�
= vp(x1/T1,b) = �p(P�b, P0), for all p < S . Then

there exists wb 2 R⇤S such that

(16)
x1

xay1 � x1ya
wb � xa

xay1 � x1ya
ub = 1.

Note that this last equation satisfies the hypothesis of Lemma 4.1, so there are at most 9s�1

possibilities for the S –unit ub. Therefore by (14) the point P�b may assume at most 9s�1

possibilities. The previous arguments about the integer N tells us that a + 1  A(d, s).
Therefore we have that m  a + 9s�1  A(d, s) + 9s�1 � 1. ⇤

From Lemma 4.7 we see that the bound M(d, s) in (13) is equal to A(d, s) + 9s�1 � 1.
Therefore we can take

D(d, s) =
9s+1 + 1

2
(d2 + 2)

Y

pb(d,s)
p prime

max
⇢

9s�1 + 1
2

(2d + 1) + 2, p · 32s�1
�

that is bigger than (A(d, s) + 9s�1 + 1) ·C(d, s) = (M(d, s) + 2) ·C(d, s) as claimed in (13).

4.4. Proof of Theorem 1. It is possible to bound the cardinality of the set of periodic
points in P1(K) in terms only of d and s. Let C(d, s) and D(d, s) the bounds given in
Theorem 2 and Theorem 3 respectively. Let

N(d, s) =
Y

p prime

pmp(C(d,s)),

where mp(C(d, s)) = max{ordp(z) | z 2 N, z  C(d, s)}. Note that C(d, s) is a fixed positive
rational integer, since d and s are arbitrary but fixed. Thus mp(C(d, s)) is zero for all but
finitely many primes p. Therefore, by Theorem 2, the cardinality of the set of periodic
points in P1(K) for � is bounded by dN(d,s) + 1. By Theorem 3, the set PrePer(�,K) has
cardinality bounded by dD(d,s)

�
dN(d,s) + 1

�
.
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