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Abstract

The simplicity of dielectric continuum models has made them a standard tool in almost any

Quantum Chemistry package. Despite being intuitive from a physical point of view, the actual elec-

trostatic problem at the cavity boundary is challenging: the underlying boundary integral equations

depend on singular, long-range operators. The parametrization of the cavity boundary should be

molecular-shaped, smooth and di↵erentiable. Even the most advanced implementations, based on

the Integral Equation Formalism (IEF) of the Polarizable Continuum Model (PCM) generally lead to

working equations, which do not guarantee convergence to the exact solution and/or might become

numerically unstable in the limit of large refinement of the molecular cavity (small tesserae). This is

because they generally make use of a surface parametrization with cusps (interlocking spheres) and

employ collocation methods for the discretization (point charges). Wavelets on a smooth cavity are

an attractive alternative to consider: for the operators involved, they lead to highly sparse matri-

ces and precise error control. Moreover, by making use of a bilinear basis for the representation of

operators and functions on the cavity boundary, all equations can be di↵erentiated, to enable the

computation of geometrical derivatives. In this contribution, we present our implementation of the

IEFPCM with bilinear wavelets on a smooth cavity boundary. The implementation has been car-

ried out in our module PCMSolver and interfaced with LSDalton, demonstrating the accuracy of the

method both for the electrostatic solvation energy and for linear response properties. In addition, the

implementation in a module makes our framework readily available to any Quantum Chemistry (QC)

software with minimal e↵ort.

1 Introduction

One of the grand challenges of quantum chemistry is the ability to describe molecular behavior in complex

realistic environments, far from the ideal picture of an isolated molecule: the overall system is far too

large to allow for a full quantum chemical treatment, but the inclusion of the environment is unavoidable

to achieve a realistic picture of the molecular processes under investigation. Overcoming such a challenge

will most likely never be fully accomplished but several strategies are being pursued in that direction.

One important consideration about chemical processes which guides such a development is their localized
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nature: only a small fraction of the system must be modelled with quantum chemistry, whereas the

remainder is required only to provide a realistic environmental e↵ect. This consideration is the basis

for the so-called focused models. Within focused models, two strategies are the most widespread: on

the one hand are models which retain the atomistic description of the environment, such as Molecular

Mechanics (MM) or Polarizable Embedding (PE) [1–3]; on the other hand are the Dielectric Continuum

(DC) models [4, 5] where the environment is described as a structureless medium with well defined

properties (dielectric permittivity and refractive index are among such properties).

Both strategies date back to the 70’s with the pioneering work of Rivail et al. [6] on the one

hand and Warshel et al. [7] on the other. They have since known a steady development, and most

quantum chemistry softwares feature at least one of them among their methods. MM and PE models

are appealing because they retain the atomistic description of the system, but on the other hand their

parametrization and application require dedicated skills, preventing their inclusion in any black-box

approach. Continuum models are by nature more approximate, disregarding the atomistic structure of

the environment altogether, but they are more suited for a black-box approach, requiring only a handful

of parameters, defining the molecular cavity and the properties of the continuum. The simplicity of the

model is attractive and has spurred several developments in order to make the model more accurate,

keeping at the same time the underlying simplicity in the parametrization. One milestone in such

a development has been the introduction of a molecular-shaped cavity instead of a simpler but less

accurate analytic form (sphere or ellipsoid), pioneered by Miertuš et al. [8], with the PCM. PCM

has made it possible to employ continuum models for molecules of arbitrary shape. The development

of e�cient and accurate methods to represent a molecular cavity has since become a research topic

in its own right [9]. The most widely employed algorithm is called GEPOL [10–12], which has been

extended to account for the solvent excluded surface or to generate a symmetry-adapted cavity [13, 14].

Another strategy to generate the Solvent-Excluded Surface (SES) has been provided by the DefPol

algorithm [15, 16], although the most appropriate one, based on atom-centered spheres has been devised

by Connolly [17, 18]. Not until recently has such a parameterization been used in quantum chemistry

calculations for the lack of appropriate software, which was able to generate an adequate parameterization

of the Connolly surface [19].

In addition to a proper description of the molecular cavity, it is necessary to provide a corresponding

description of the solute-solvent interactions. The lack of atomic structure on the solvent side is here

challenging. In practice, the solute-solvent interaction is separated in di↵erent contributions, which are

connected to the underlying intermolecular interactions: electrostatics, polarization, dispersion, repul-

sion, exchange, and cavitation are the contributions which are generally considered [20]. The first two

are classical electromagnetic interactions, the last one is the energy involved in the creation of the molec-

ular cavity, and the remaining three are contributions stemming from quantistic interactions between

the solute and the solvent [21–23]. Due to a fortuitous cancellation, the non-electromagnetic interac-

tions (all besides the first two) often have a much smaller impact on the total solvation energy than the

electromagnetic ones (electrostatics and polarization). Therefore, a large body of work has focused on

electrostatics and polarization. This amounts to the solution of the Poisson equation in the presence of a

dielectric medium [24]. The problem can then be recast as a boundary problem at the cavity surface: the

boundary integral equations arising from the Poisson problem are discretized and the resulting system of

linear equations can be solved by making use of an appropriate linear algebra technique [25]. The most

critical point of such a procedure is the discretization method that is employed, because its choice a↵ects

the final solution in terms of accuracy, stability and e�ciency [26]. The original procedure, which is still

employed in most implementations, is a simple collocation method: the cavity is discretized in elements

called tesserae and functions on the cavity surface are represented by their values on the collocation
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points, selected as the tesserae centroids. The representation of integral operators is straightforward,

except for the diagonal elements where special care must be taken by either using some form of analytic

integration or a numerical quadrature [9]. Increased accuracy in the electrostatic energy can be achieved

by a careful selection of the procedure by which the matrix representation of the integral operators is

obtained. Purisima et al. [27] showed that the diagonal matrix entries play a crucial role in this respect.

More recently, Bardhan et al. have thoroughly investigated the discretization procedure and the solution

method for the resulting linear system [28–30]. In particular, a simple interchange of the the integration

order in the centroid collocation quadrature formulas was found to lead to substantial increases in ac-

curacy. This method was first proposed by Tausch et al. [31] and is termed qualocation. Very recently

an altogether di↵erent approach has been proposed by Lipparini et al. [32]. A domain decomposition

method was used to achieve a formally exact solution for a cavity made of interlocking spheres within

the COSMO-PCM approximation [33].

However, in order to guarantee accuracy of the numerical solution and to provide the necessary

stability, for the general problem (IEFPCM for an arbitrary cavity), a Galerkin approach shall be em-

ployed [34]. In a previous work, we presented the first wavelet-based implementation of the IEFPCM,

which is making use of piecewise constant wavelets as basis functions [35]. In this work, we have ex-

tended the approach to the use of a piecewise bilinear wavelet basis. The additional flexibility provided

by piecewise bilinear functions has two main advantages: on the one hand, the convergence towards the

limiting result is much faster; on the other hand, it allows to compute the shape gradient [36]. The first

point makes the approach more e�cient, for any given target precision, whereas the second point will

allow to compute the solvent contribution to the molecular gradient, which is required both to optimize

molecular geometries and to compute molecular properties requiring geometrical derivatives, such as

Raman Optical Activity (ROA), Coherent Antistokes Raman Scattering (CARS) and Sum-Frequency

Generation (SFG).

2 Theory

2.1 IEFPCM

When describing solvent e↵ects by a continuum model, the solvent degrees of freedom are replaced by

a structureless continuum characterized by the dielectric permittivity of the bulk solvent. The solute is

then placed in a cavity inside this continuum. The mutual polarization between the solute charge density

⇢ and the infinite continuum dielectric is taken into account in a classical fashion, by solving the Poisson

equation for the electrostatic potential u(r) with the appropriate boundary conditions:

8
>>>>>>><

>>>>>>>:

r2u(r) = �⇢(r) 8r 2 C

"r2u(r) = 0 8r /2 C

lim
|r|!@C+

u(r) = lim
|r|!@C�

u(r)

" lim
|r|!@C+

@u(r)

@n
= lim

|r|!@C�

@u(r)

@n

(1)

Here C ⇢ R3 is the cavity with boundary @C. The last two equations above represent the boundary

conditions. The former is the usual requirement of continuity for the electrostatic potential at the

boundary, while the latter is the jump condition on the normal derivative of the potential [24]. The

subscripts + and � refer to the direction, relative to the cavity boundary, in which the limits are taken:

from the outside or the inside, respectively. SI-based atomic units have been used and will be used

throughout the text.
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The solution of the Poisson problem can be achieved by its reformulation in terms of a boundary

integral equation [37]. The apparent surface charge (ASC) �(s) is introduced to represent the reaction

potential:

u(r) =

Z

C

dr0
⇢(r0)

|r � r

0| +
Z

@C

ds
�(s)

|r � s| = N⇢ + ⇠, (2)

where we have implicitly defined the Newton potential N⇢ and the solvent reaction potential ⇠ as the first

and second integral, respectively. Notice that the polarization in the continuum is now represented by

a surface charge, a scalar function of the surface coordinate s. As shown by Cancès and Mennucci [25],

the ASC is the unique solution to the following integral equation
✓
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e

◆
S
i

+ S
e

✓
1

2
+D†

i

◆�
� =

✓
D

e

� 1
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◆
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e

@N⇢

@n
(3)

where the integral operators are the components of the Calderón projector:

S?f(s) =

Z

@C

ds0G?(s, s
0)f(s0)

D?f(s) =

Z

@C

ds0"[rs0G?(s, s
0)f(s0)] · ns0

D†
?f(s) =

Z

@C

ds0"[rsG?(s, s
0)f(s0)] · ns

(4)

Here, the subscript ? 2 {i, e} di↵erentiates between the internal and external Calderón projector. As

apparent, knowledge of the Green’s function for the di↵erential operators is necessary in setting up

the proper integral operators. Despite the fact that the Poisson problem has been formulated for a

uniform, homogeneous dielectric, the boundary integral equation approach is rather general and can be

exploited on a more vast class of physical problems, such as ionic liquids, liquid crystals [25] and dielectric

interfaces [38].

For a uniform, homogeneous dielectric the Green’s functions are given as

G
i

(r, r0) =
1

4⇡|r � r

0| , G
e

(r, r0) =
G

i

(r, r0)

"
(5)

and the boundary integral equation (4) is simplified to

S
i

� =
1

"� 1

✓
"+ 1

2("� 1)
�D

i

◆�1

N⇢ �N⇢ (6)

where only the single-layer S
i

and double-layer D
i

operators are involved. Since S
i

is a symmetric

operator [37], the solution of equation (6) could be achieved by use of the conjugate gradient (CG)

method [39], whilst the right hand side is obtained by applying a generalized minimal residual (GMRES)

method [40]. In a more general setting one can apply the GMRES method directly to equation (3).

2.2 Wavelet IEFPCM

Boundary integral equations, such as the IEFPCM Eq. (6), can conveniently be solved numerically by

the application of the boundary element method (BEM). Both the integral operators and the functions

on which these act are defined solely on the boundary of the cavity.

The application of the boundary element method requires that the boundary of the molecular cavity

is discretized by a number of suitable finite elements. The discretization of the boundary leads to
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a discretization of the integral operators. This discretization can be carried out by using either the

collocation or the Galerkin approach [26]. In both cases, the integral equation is transformed to a system

of linear equations whose dimension is related to the number of finite elements used in the discretization

of the boundary. The resulting system matrix is, in general, a dense matrix. The boundary element

method thus su↵ers from limitations imposed by the number of matrix elements to be stored and the

memory and time requirements of solving the resulting linear system.

The use of a wavelet basis in the Galerkin approach has been proven beneficial in this respect [41–43].

The resulting system matrices are quasi-sparse and can be further reduced to a sparse form by discarding

negligible entries without considerable loss of precision.

The wavelet boundary element method starts by defining a sequence of hierarchical trial spaces,

spanned by standard finite element ansatz functions:

{0} = V�1

⇢ V
0

⇢ V
1

⇢ . . . ⇢ VJ , Vj = span{�j,k : k 2 �j}. (7)

Here, �j is an index set for the single-scale basis of the space Vj . In the wavelet method, the trial space

Vj is split into the direct sum Vj = Vj�1

� Wj . The resulting complementary space Wj is called the

wavelet space and is not necessarily orthogonal to Vj�1

. Recursive splitting of the trial spaces leads to

the wavelet decomposition Vj =
Lj

l=0

Wl.

The complementary space is spanned by the wavelet basis:

Wj = span{ j,k : k 2 �j+1

\ �j}. (8)

The choice of this basis turns out to be very convenient, since we can exploit the compression technique

described in [42] to build up the sparse system matrix in the wavelet basis directly, avoiding the com-

putation of non-relevant matrix entries. The a priori compression is carried out in two steps. In the

first step, contributions from basis functions su�ciently far away from each other are discarded. In the

following, elements of the matrix where one wavelet is in the smooth part of the other one are ignored.

The number of relevant matrix entries scales proportional to O(NJ) with NJ the number of degrees of

freedom for a refinement of the geometry up to level J .

In order to understand the compression steps, let us introduce some notation. Let the convex hull of

the support of the wavelet  j,k be:

⌦j,k = conv hull (supp j,k) . (9)

Moreover, let the singular support of the wavelet  j,k be:

⌦0
j,k = sing supp j,k (10)

It contains all the points in the support where the wavelet is not smooth. The compression steps are

then governed by the following set of equations

[AJ ]
(j,k)(j0,k0

)

=

8
>>>>>>>><

>>>>>>>>:

0 dist(⌦j,k,⌦j0,k0) > Bj,j0 and j, j0 � 0,

0 dist(⌦j,k,⌦j0,k0) . 2�min{j,j0} and

dist(⌦0
j,k,⌦j0,k0) > B0

j,j0 if j
0 > j � 0,

dist(⌦j,k,⌦0
j0,k0) > B0

j,j0 if j > j0 � 0,

hA j0,k0 , j,ki, otherwise

(11)

where dist(·, ·) denotes the distance, either between the bounding boxes of the wavelets or between the

singular support and the bounding box. The first and second conditions represent the first and second
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compression step, respectively. The parameters j, j0 are the levels of the wavelets under consideration

and the level-dependent cut-o↵ parameters Bj,j0 and B0
j,j0 are given by

Bj,j0 = amax

(
2�min{j,j0}, 2

J

(

2d

0�op

)

�
(

j+j

0
)(

d

0
+

˜

d

)

(

2

˜

d+op

)

)
and

B0
j,j0 = amax

(
2�min{j,j0}, 2

J

(

2d

0�op

)

�
(

j+j

0
)

d

0�max{j,j

0} ˜

d

(

˜

d+op

)

)

with op being the order of the integral operator under consideration. For the first kind integral equation

op = �1, while op = 0 for the second kind integral equation. The integer d̃ is related to the vanishing

moments of the wavelet basis:
Z

dx x

r j,k(x) = 0, r = 0, . . . d̃� 1 (12)

In the particular implementation, d̃ = 3 for the piecewise constant wavelet basis, while d̃ = 4 for the

piecewise bilinear parametrization [44]. The compression can thus be adjusted by the parameters a and

d0:

a � 1, d < d0 < d̃+ op (13)

where d is the approximation order of the trial spaces Vj : d = 1, 2 for piecewise constant and piecewise

bilinear ansatz functions, respectively. Note that, if the interaction between two wavelets,  j,k and  j0,k0 ,

on level j and j0 is neglected in the system matrix, all other interactions between wavelets resulting from

the refinement of  j,k and  j0,k0 can also be ignored. Thus, the compression pattern of the system matrix

is calculated hierarchically starting from the coarsest level.

Once the compressed system matrix is assembled, we arrive at a sparse system matrix in the wavelet

basis which can be compressed further by leaving out the su�ciently small elements. This post-processing

step is governed by the rule

[AJ ]
(j,k)(j0,k0

)

8
<

:
0 if | [AJ ]

(j,k)(j0,k0
)

|  ✏j,j0

[AJ ]
(j,k)(j0,k0

)

, otherwise,
(14)

where the coe�cients ✏j,j0 are given by

✏j,j0 = bmin

⇢
2�|j�j0|, 2

�(2J�(j+j0)) 2d

0�op

2

˜

d+op

�
2
�2d0

⇣
J� j+j

0
2

⌘

(15)

with the a posteriori compression parameter b < 1.

2.3 The quantum mechanical problem

Modelling the solvent as a classical continuum requires that the quantum mechanical Hamiltonian be

modified. The mutual polarization of the quantum mechanical molecular charge density distribution and

the dielectric continuum can be accounted for by introducing a suitable operator in the Hamiltonian:

H = H
0

+ V�⇢[⇢] (16)

The PCM operator V�⇢[⇢] depends linearly on the solute charge density, thus introducing a scalar non-

linearity into the quantum mechanical problem. It can be shown that variational minimization of the

functional

G[ ] =
h |H

0

+ 1

2

V�⇢[⇢]| i
h | i (17)
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leads to the ground state of the nonlinear Hamiltonian [45]. The physical quantity associated with the

functional is a free energy, as it also takes into account the irreversible work spent in the process of

polarizing the solvent.

The derivation of the quantum mechanical equations is beyond the scope of this work and the reader

is thus referred to the existing literature [4, 5]. The expressions reported are in the molecular orbital

(MO) basis. The usual notation for the indices is adopted: i, j, k, . . . are used for occupied orbitals and

a, b, c, . . . for virtual orbitals, while p, q, r, . . . are reserved for general orbitals. It is here necessary to

remark that the use of a di↵erent strategy for the solution of the integral equation arising from the

classical electrostatic problem does not a↵ect the derivations. In the self-consistent field approximation

(SCF) for the electronic wave function (the Born-Oppenheimer approximation is assumed), the Fock

matrix has the form

fpq = fvac

pq + (�,'pq)@C (18)

where the usual vacuum terms are augmented by a solvent term:

(�,'pq)@C =

Z

@C

ds�(s)'pq(s) (19)

The notation used here is general. We avoid making any reference to the discretization scheme for

the integral equation, thus keeping the derivations transparent with respect to the choices made in the

solution of the classical problem. The vacuum-like term is given as

fvac

pq = hpq +
X

j

(gpqjj � �gpjjq) + v
xc;pq (20)

and encompasses also the case of Kohn-Sham DFT with possibly hybrid functionals. The reader is

referred to the existing literature for the explicit form of the above terms [46]. The integrals 'pq(s) are

called charge-attraction integrals:

'pq(s) =

Z
dr

��p(r)�q(r)

|r � s| =

Z
dr

�⌦pq(r)

|r � s| (21)

In our notation, the polarization energy contribution can be rewritten as:

U
pol

=
1

2
(�,')@C =

1

2
(�

e

,'
e

)@C +
1

2
(�

N

,'
e

)@C +
1

2
(�

e

,'
N

)@C +
1

2
(�

N

,'
N

)@C

= U
ee

+ U
Ne

+ U
eN

+ U
NN

(22)

The ASC and MEP have here been separated into their electronic-induced – e – and nuclear-induced –

N – components. The electronic and nuclear electrostatic potential are expressed as

'
e

(s) =
X

pq

Dpq'pq(s), '
N

(s) =
X

A

ZA

|RA � s| (23)

where Dpq is the density matrix and ZA, RA are the charge and position of nucleus A, respectively.

Turning our attention to the formulation of the linear response function, introduction of the coupling

with the continuum leads to response equations of the usual form:
h
E

[2] � !S[2]

i
XB = �E

[1]

B (24)

Limiting ourselves to electric properties, only the electronic Hessian

E

[2] =

 
A B

B

⇤
A

⇤

!
(25)
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Figure 1 Internal structure of the PCMSolvermodule.

has additional contributions from the continuum solvent. The matrices A and B are now defined as:

Aai,bj = �ijfab � �abfji + gaijb � �gabji + w
xc;ai,jb + (�ai,'jb)@C

Bai,bj = gaibj � �gajbi + w
xc;ai,bj + (�ai,'bj)@C

(26)

Since explicit formation and inversion of the electronic Hessian is too costly, the solution of the

response equations is achieved by means of subspace iteration methods [47]. The solution vector is

expanded in terms of n trial vectors chosen in a proper subspace. The reduced response equations are

solved iteratively by repeated calculation of the � vector E[2]

XB , i. e. the linear transformation of the

given subspace by the electronic Hessian which assumes the form of a generalized Fock matrix [48]. From

Eq. (26), one can see that the solvent contributions are now included implicitly, via the unperturbed

Fock matrix term, and explicitly, via the last term. When a nonequilibrium response formalism for the

PCM is adopted, formation of the explicit term in Eq. (26) requires the use of the dynamic apparent

surface charge: the optical permittivity "1 is used in the PCM matrix, instead of the static one "
0

[49].

3 Implementation

As apparent from Sec. 2.3, the solution of the PCM problem is independent of the particular strategy

employed to tackle the quantum mechanical problem. The PCM functionality can be then abstracted

into a module, fully agnostic of the details of the quantum mechanical problem at hand. Our current

implementation of the PCM makes use of a recently developed application programming interface (API)

called PCMSolver [50]. The API implements all the functionality needed to set up a PCM calculation:

cavity, Green’s functions and solver. The implementation is completely independent of the details in the

quantum mechanical host program. This is in line with the idea of a modular programming paradigm,

described already in the early ’70s by Dijkstra [51] and Parnas [52]. The low coupling between the host

QM code and the API e↵ectively allows to quickly introduce a PCM implementation into codes that are

intrinsically di↵erent in their internal structure. For this paper, we introduced the PCM functionality

into the LSDaltonprogram [53], in much the same way as described in [54] for the DIRACprogram [55].

Figure 1 shows a schematic view of the internal structure of the API. PCMSolveris developed in

C++, but legacy C and Fortran codes coexist within the main object-oriented infrastructure. Thanks

to the polymorphism, available as a language mechanism, the API is modular in itself: the cavity,

Green’s functions and solver are independent of each other. Coupling between the three is achieved by

means of abstract interfaces [56–58]. The module has some external dependencies. The Boost C++

libraries [59] are used for a number of tasks, unit testing and metaprogramming, among others. Boost
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libraries are a highly reliable framework: many of their functions are reference implementations. The

Eigen linear algebra library [60] is extensively used for the manipulation of vectors and matrices. The

GetKw library provides the input parsing facility [61]. Finally, the header-only Taylor library is used

to implement automatic di↵erentiation (AD) of the Green’s function objects [62]. Notice that AD relies

on template programming, i. e. static polymorphism, which is coupled to the dynamic polymorphism,

implemented by inheritance, through the metaprogramming algorithm of Langr et al. [63]. Despite the

internal complexity of the API, only a handful of functions (around 10) are exposed to the QM code

programmer.

Finally, let us remark that the API is publicly available as an open-source project, licensed under the

terms of the GNU Lesser General Public License (LGPL).

3.1 The Wavelet Solver

The wavelet solver can be used to tackle any problem where the Green’s function and the surface are

known. The parameters that play a role in the solution are: the number J of levels of refinement given

by the cavity generator, the a priori and a posteriori compression parameters a, b, d0, and the number

d̃ of vanishing moments of the wavelets.

The wavelet solver flow chart is depicted in Fig. 2. We start by building an interpolation structure

of the points on the quadrangular mesh as computed by the cavity generator for the selected molecular

surface, cf. Fig. 5. The interpolation of these points will then be used to calculate the quadrature points

needed in the integration and the computation of the normal derivatives.

The interpolation class is based on a tensorized Newton interpolation which assumes that each patch

is refined uniformly. The number of polynomials used in the interpolation is determined by the degree of

the polynomials and the level of refinement of each patch. It is assumed that the patch can be divided in

disjunct polynomials, yielding a relation between the refinement levels and the degree of the polynomials,

2J mod grade = 0. A simple picture showing the situation in case of J = 2 and grade = 2 for one patch

is found in Fig. 3. Having determined the coe�cients of the Newton polynomial, we can then easily

compute the derivatives with respect to x, y or the normal derivative by the Horner scheme as described

in [39].

After constructing the element list and the wavelet list, the element-wise computation of the system

matrix is carried out. The elements of the matrix computed are determined by the compression rule

described in Eq. (11). The integration is done by using tensor product Gaussian quadrature rules and

the Green’s function definition in PCMSolver. The last step in the computation of the sparse system

matrix is the application of the a posteriori compression described in Eq. (14).

Having computed the system matrix, the right hand side is assembled according to the boundary

integral equation (6). To that end, the Generalized Minimal Residual (GMRES) solver, [40] is used with

an inner iteration number set to 100. Finally, the linear system of equations is solved by employing a

CG solver, [64]. The precision used for the solver is ✏ = 10�6.

The class diagram of the wavelet solver can be seen in Fig. 4. It is based on the implementation

of an abstract class, the GenericAnsatzFunction class, which implements only common aspects of the

code, for example the construction of the element list and the a priori and a posteriori compression.

The derived classes ConAnsatzFunction and LinAnsatzFunction initialize the implementation specific

constants, that are a, b, d̃, and d0, for the piecewise constant discretization and the piecewise bilinear

discretization. Furthermore the specific functions, for example the integration functions, are found in

the derived classes as well.
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Initialization

generateNet

construct elementList

with pointers to nodeList

generateWaveletList

build waveletList

with pointers to the

elements in the support

simplifyWaveletList

coarsen wavelets

with same weights

completeElementList

add wavelets to elements

System matrix

construction

compression

calculate which elements

are needed according

to a-priori compression

WEM

calculate integrals by

calling Green’s Function

postprocessing

use a-posteriori com-

pression for leaving

out other elements

Solving the system

RHS

calculate rhs - de-

pending on equation

to be solved, several

calculations are made

GMRES/CG

call solver depending

on system matrix

energy/charge

evaluate seeked prop-

erties, for exam-

ple by integrating

the charge density

Figure 2 Control flow for the wavelet solver.

P
0,0 P

1,0

P
0,1 P

1,1

Figure 3 Example of 2D interpolation. The number of refinement of the underlying patch is J = 2 and the degree of the

polynomials in each coordinate is grade = 2.
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GenericAnsatzFunction

+ elementTree

+ waveletTree

generateNet

compression

postprocessing

printGeometry

ConstantAnsatzFunction

+ noPhi = 1

+ td = 3

+ dp

integrateFunctions

generateWaveletList

simplifyWaveletList

completeElementList

LinearAnsatzFunction

+ noPhi = 4

+ td = 4

+ dp

integrateFunctions

generateWaveletList

simplifyWaveletList

completeElementList

Figure 4 Class diagram for the wavelet solver.

4 Applications

The current implementation of the IEFPCM wavelet code within PCMSolverhas been interfaced with a

development version of LSDalton. The wavelet code reimplements the piecewise constant discretization

presented in [35] together with the piecewise bilinear discretization [41], as presented in Section 3.

To keep consistency with Weijo et al., we used benzene as our test molecule. All calculations have

been carried out at the Hartree–Fock level of theory. Two di↵erent Gaussian basis sets were employed:

6-31G and 6-311++G**, the latter to analyze how the wavelet solver performs when a more realistic

description of the electronic charge distribution is sought.

The PCM calculations employ water as solvent (" = 78.39) and the solvent-accessible surface (SAS).

The radii used to generate the SAS are the ones reported by Bondi [65], unscaled: 1.70 Å for carbon and

1.20 Å for hydrogen.

All LSDaltoncalculations employed the augmented Roothaan-Hall algorithm in combination with the

ATOMS starting guess [66] for density optimizations, and the linear-response solver of Coriani et al. [48]

with the atomic orbital (AO) basis preconditioner. For e�cient integral evaluation, LSDaltoncombines

J-engine [67–69] acceleration for the Coulomb and LinK [70] for the exchange contributions.

Figure 5 Quadrangulation of the solvent-excluded surface (SES) for the C
32

H
66

molecule. The quadrangulation was

generated by the code described in [19, 71] at patch level 4.

Being the first such implementation, we have devoted our attention to the following aspects: test-

ing the intrinsic accuracy of the bilinear wavelet solver with respect to the choice of the compression
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parameters (a and d0); comparing to our previous piecewise constant implementation; assessing the over-

all performance of the method. In addition, we have for the first time calculated static electric dipole

polarizabilities with a wavelet based PCM implementation.

All calculations were carried out on a single Intel E5-2670 processor, compiled with the Intel compiler

suite version 14.0.2 in combination with OpenMPI version 1.6.5. For the standalone version used for

timing and convergence results found in the Sec. 4.3 the GNU g++ compiler version 4.6.3 was employed.

4.1 Accuracy and compression parameters

The accuracy and memory requirements of the wavelet solver depend on the chosen compression param-

eters. It is thus important to determine the best set of compression parameters triplet a, d0 and b that,

for fixed patch level (PL), limits the memory requirements, while retaining the highest accuracy. We

will first look at the behaviour of the wavelet Galerkin BEM for the Laplace equation on 6 patches, in

order to explore the impact of the compression on the sparsity pattern and draw some conclusions on the

relative importance of the various compression steps. A more thorough assessment of the accuracy will

then be given based on quantum mechanical calculations of benzene. Finally, the convergence behavior

with increasing patch level will be discussed for the C
32

H
66

polyalkane system.

Table 1 contains a summary of the number of non-zero elements retained in the system matrix for

di↵erent choices of the a priori compression parameters. The impact of the first and second a priori

compressions is also summarized. In all cases, the first a priori compression already discards most of the

negligible entries (80% on average), achieving the desired sparsity in the system matrix. The combination

with the second a priori compression discards additional negligible entries (8% on average) but does not

significantly a↵ect the sparsity pattern. This is reflected in Figs. 6 and 7, which show the patterns

obtained by applying only the first or the complete a priori compression, respectively.

(a) a = 1.0, d0 = d

nnz = 158 540

(b) a = 2.0, d0 = d

nnz = 205 878

Figure 6 Sparsity pattern for the system matrix representing the single layer operator S in a piecewise bilinear wavelet

basis. The e↵ect of the parameter a on the first a priori compression is shown. d0 is kept fixed at its minimum

value: d0 = d. The number of non-zero elements (nnz) is reported under each matrix.

Table 2 shows the number of non-zero elements for di↵erent values of the a posteriori parameters b

and d0. The main conclusion is that choice of the parameters for the a posteriori compression is not as

critical as for the a priori compression.

The comparison of the sparsity pattern for the piecewise constant and piecewise bilinear wavelets in

Fig. 8 shows that indeed sparsity and linear memory requirements are a general feature of the wavelet

12



(a) First a priori compression only.

nnz = 221 716

(b) First and second a priori compression.

nnz = 204 404

Figure 7 Sparsity pattern for the system matrix representing the single layer operator S in a piecewise bilinear wavelet

basis. The e↵ect of the first a priori compression (left panel) is compared to the combined e↵ect of the first and

second a priori compression (right panel). Both parameters are kept fixed: a = 2.0 and d0 = d0
1

/2

. The number

of non-zero elements (nnz) is reported under each matrix.

Table 1 Number of non-zero elements for the single layer operator S in a piecewise bilinear wavelet basis. The e↵ect of

the first a priori and first and second a priori compressions is shown, as adjusted by the a priori compression

parameters a and d0. The value d0
1

/2

=
˜

d+op+d

2

is selected as an intermediate value for d0. The total number of

elements of the full matrix would be 1 048 576.

d d0
1/2 d0

max

First compression
a = 1 158 540 169 550 180 022

a = 2 205 878 221 716 236 350

Complete compression
a = 1 136 456 155 214 170 082

a = 2 181 470 204 404 227 930

Table 2 Number of non-zero elements for the single layer operator S in a piecewise bilinear wavelet basis. The e↵ect of

the a posteriori compression is shown, as adjusted by the parameters b and d0. The parameter a is set to a = 1.

The value d0
1

/2

=
˜

d+op+d

2

is selected as an intermediate value for d0. The total number of elements of the full

matrix would be 1 048 576.

d d0
1/2 d0

max

b = 0.1 121 678 145 782 163 602

b = 0.01 131 852 152 218 168 186

b = 0.001 135 642 154 634 169 920

b = 0 136 456 155 214 170 082

Galerkin scheme, although the piecewise bilinear wavelets features a larger number of non-zero matrix

entries.

The e↵ect of the matrix compression on the accuracy was evaluated by performing quantum mechan-

ical calculations on benzene. The calculations were repeated at PL-2 and PL-3, varying the compression

parameters. The nuclear and electronic components of the polarization energy U
NN

and U
ee

together

with the static isotropic polarizability ↵
iso

were considered.

Given that the a posteriori compression has a rather limited influence on the memory requirements
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(a) Piecewise constant wavelets.

nnz = 155 450

(b) Piecewise bilinear wavelets.

nnz = 236 350

Figure 8 Sparsity pattern for the system matrix representing the single layer operator S as resulting from the first a

priori compression only. The piecewise constant (left panel) and piecewise bilinear (right panel) wavelet bases

are compared. In both cases the a priori compression parameters are kept fixed: a = 2.0 and d0 = d0
max

.

(see Table 2), only two values of the b parameter were considered: 0.01 and 0.001. The a priori com-

pression parameters instead were varied in a wider range: a 2 [1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0], while

d0 2 [2.0, 2.25.2.5, 2.75, 3.0]. Results are only presented for a number of selected a, d0 pairs. The reader

is referred to the Supporting Information (SI) for the complete results of the parameter study.

The most important conclusion from Tables 3 and 5 is that a higher accuracy can always be achieved

by a further refinement of the Galerkin discretization of the cavity surface. In passing from PL-2 to

PL-3, there is a significant gain in accuracy, regardless of the compression parameter triplet chosen.

This is a general feature of Galerkin BEM schemes: mesh refinement ensures convergence to the exact

solution. A similar conclusion was reached by Weijo et al. [35] in their analysis of the wavelet solver

based on piecewise constant wavelets. The calculations reported there were repeated in this study, but

with our wider parameter set. Results using piecewise constant wavelets are though only reported for

the calculations on ↵
iso

. See SI for the complete set of results.

A comparison of the results obtained with the di↵erent a posteriori compression parameters shows

that the more conservative choice b = 0.001 leads to a PL-2 reference result deviating by at most 0.001%

from the PL-3 values for both energies and isotropic polarizabilities. It is however to be noted that the

relative accuracy, i. e. the absolute di↵erence with respect to the reference value at the same patch level

and choice of b, is worsened for the polarization energy components analyzed here. From the results

in Tables 1 and 2, it is easy to see that the number of matrix elements that are discarded by the a

posteriori compression is largely inferior to the compression that is achieved a priori. Based on the

relative accuracy results in Table 3, we can however advocate for the use of the less conservative setting

b = 0.01. This choice is further justified by the relative accuracy results for the isotropic polarizability,

reported in Table 4 for piecewise constant wavelets and in Table 5 for piecewise bilinear wavelets.

Comparing the results for ↵
iso

obtained with the two di↵erent discretizations (piecewise constant

wavelets in Table 4 and piecewise bilinear wavelets in Table 5) it is evident that a higher accuracy can

be achieved already at PL-2 by use of the latter wavelet basis. However, the high accuracy comes at the

cost of roughly twice as many points where the electrostatic potential has to be evaluated: 10 240 vs.

23 040 at PL-2, 40 960 vs. 92 160 at PL-3.

As a result of the accuracy analysis, we conclude that a sensible choice of default compression pa-
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Table 3 E↵ect of the a priori and the a posteriori matrix compression parameters a, d0 and b on the nuclear and electronic

polarization energies for benzene. Results were obtained at the Hartree–Fock level of theory either using a 6-31G

or a large 6-311++G** basis set. The piecewise bilinear wavelet basis was used in the Galerkin discretization of

the PCM integral operators. All the energies reported are di↵erences, expressed in Hartrees, with respect to the

case where a = 5.0, d0 = 3.0, which is the upper limit in (13). Only selected compression parameter triplets are

shown. The number of points on the cavity where the electrostatic potential has to be evaluated are 23 040 and

92 160 at PL-2 and PL-3, respectively.

U
NN

b = 0.01

a d0 PL-2 PL-3

b = 0.001

a d0 PL-2 PL-3

1.0 2.0 -0.15413 -0.03528 1.0 2.0 -0.25131 -0.03519

2.0 2.25 -0.07127 -0.00410 2.0 2.25 -0.14905 -0.00412

3.0 2.5 -0.03865 -0.00313 3.0 2.5 -0.05442 -0.00332

4.0 2.75 -0.01925 -0.00137 4.0 2.75 -0.01133 -0.00161

Reference 5.0 3.0 -177.71475 -177.60140 Reference 5.0 3.0 -177.60327 -177.60147

U
ee

, 6-31G

b = 0.01

a d0 PL-2 PL-3

b = 0.001

a d0 PL-2 PL-3

1.0 2.0 -0.15310 -0.03461 1.0 2.0 -0.24965 -0.03451

2.0 2.25 -0.07091 -0.00402 2.0 2.25 -0.14804 -0.00405

3.0 2.5 -0.03850 -0.00310 3.0 2.5 -0.05372 -0.00329

4.0 2.75 -0.01918 -0.00131 4.0 2.75 -0.01111 -0.00155

Reference 5.0 3.0 -177.90179 -177.78866 Reference 5.0 3.0 -177.79100 -177.78873

U
ee

, 6-311++G**

b = 0.01

a d0 PL-2 PL-3

b = 0.001

a d0 PL-2 PL-3

1.0 2.0 -0.15290 -0.03454 1.0 2.0 -0.24933 -0.03445

2.0 2.25 -0.07085 -0.00403 2.0 2.25 -0.14787 -0.00405

3.0 2.5 -0.03847 -0.00310 3.0 2.5 -0.05364 -0.00329

4.0 2.75 -0.01916 -0.00132 4.0 2.75 -0.01109 -0.00155

Reference 5.0 3.0 -177.78503 -177.67204 Reference 5.0 3.0 -177.67438 -177.67210

rameters is a = 2.5, d0 = 3.0, b = 0.01 for piecewise bilinear wavelets and a = 2.5, d0 = 2.0, b = 0.01

for piecewise constant wavelets. This choice has been adopted in the rest of the present work.

4.2 Piecewise bilinear wavelets vs. piecewise constant wavelets and standard

PCM

In order to compare our piecewise bilinear wavelet implementation with previous ones, we have considered

both our previous piecewise constant wavelet implementation [35] and a standard IEFPCM implementa-

tion [25], which makes use of a collocation method and the GEPOL algorithm for the cavity construction.

This comparison is illustrated in Fig. 9 for the nuclear part of the solvation energy, in Fig. 10 for the

electronic part, and in Fig. 11 for the total solvation energy. Finally, the isotropic polarizability results

are displayed in Fig. 12.

The nuclear and electronic components of the solvation energy show very similar trends. In particular,

the piecewise bilinear basis shows a faster convergence to the limiting value, although it uses twice as many

function evaluations as the corresponding piecewise constant wavelet solver at the same PL. Concerning

the comparison with standard IEFPCM, it is more di�cult to compare calculations vis-à-vis, because the
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Table 4 E↵ect of the a priori and a posteriori matrix compression parameters a, d0 and b on the static isotropic po-

larizability of benzene. Results were obtained at the Hartree–Fock level of theory either using a 6-31G or a

large 6-311++G** basis set. The piecewise constant wavelet basis was used in the Galerkin discretization of the

PCM integral operators. All the values reported are di↵erences, expressed in a3
0

, with respect to the case where

a = 5.0, d0 = 2.0, which is the upper limit in (13). Only selected compression parameter triplets are shown. The

number of points on the cavity where the electrostatic potential has to be evaluated are 10 240 and 40 960 at PL-2

and PL-3, respectively.

↵
iso

, 6-31G

b = 0.01

a d0 PL-2 PL-3

b = 0.001

a d0 PL-2 PL-3

1.0 1.0 1.56827 0.42493 1.0 1.0 1.58092 0.42590

2.0 1.25 0.54138 0.02795 2.0 1.25 0.55476 0.02786

3.0 1.5 0.10108 0.00005 3.0 1.5 0.10212 -0.00003

4.0 1.75 0.02073 0.00002 4.0 1.75 0.02050 -0.00001

Reference 5.0 2.0 76.72553 76.67398 Reference 5.0 2.0 76.72438 76.67395

↵
iso

, 6-311++G**

b = 0.01

a d0 PL-2 PL-3

b = 0.001

a d0 PL-2 PL-3

1.0 1.0 2.18743 0.55107 1.0 1.0 2.20332 0.55214

2.0 1.25 0.73558 0.02995 2.0 1.25 0.74963 0.02973

3.0 1.5 0.13414 0.00022 3.0 1.5 0.13420 0.00002

4.0 1.75 0.02799 0.00001 4.0 1.75 0.02732 -0.00004

Reference 5.0 2.0 99.15263 99.08674 Reference 5.0 2.0 99.14895 99.08655

Table 5 E↵ect of the a priori and a posteriori matrix compression parameters a, d0 and b on the static isotropic po-

larizability of benzene. Results were obtained at the Hartree–Fock level of theory either using a 6-31G or a

large 6-311++G** basis set. The piecewise bilinear wavelet basis was used in the Galerkin discretization of the

PCM integral operators. All the values reported are di↵erences, expressed in a3
0

, with respect to the case where

a = 5.0, d0 = 3.0, which is the upper limit in (13). Only selected compression parameter triplets are shown. The

number of points on the cavity where the electrostatic potential has to be evaluated are 23 040 and 92 160 at PL-2

and PL-3, respectively.

↵
iso

, 6-31G

b = 0.01

a d0 PL-2 PL-3

b = 0.001

a d0 PL-2 PL-3

1.0 2.0 0.01442 0.00076 1.0 2.0 0.01696 0.00078

2.0 2.25 0.00498 0.00017 2.0 2.25 0.00640 0.00021

3.0 2.5 0.00227 0.00016 3.0 2.5 0.00245 0.00019

4.0 2.75 0.00103 0.00014 4.0 2.75 0.00011 0.00016

Reference 5.0 3.0 76.67687 76.67714 Reference 5.0 3.0 76.67300 76.67713

↵
iso

, 6-311++G**

b = 0.01

a d0 PL-2 PL-3

b = 0.001

a d0 PL-2 PL-3

1.0 2.0 0.01924 0.00275 1.0 2.0 0.02503 0.00278

2.0 2.25 0.00797 0.00036 2.0 2.25 0.01207 0.00042

3.0 2.5 0.00384 0.00026 3.0 2.5 0.00487 0.00032

4.0 2.75 0.00181 0.00026 4.0 2.75 0.00083 0.00031

Reference 5.0 3.0 99.09592 99.09154 Reference 5.0 3.0 99.08813 99.09153
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Figure 9 Convergence of U
NN

with respect to the number of molecular electrostatic potential (MEP) evaluation points

on the cavity surface. The values reported are in Hartree and refer to benzene. The upper axis reports the

average area for the collocation tesselation, while the lower axis refers to the patch level in the wavelet Galerkin

discretization. The annotation report the number of MEP evaluation points. The compression parameter triplet

was set to a = 2.5, d0 = 2.0, b = 0.01 for piecewise constant wavelets and to a = 2.5, d0 = 3.0, b = 0.01 for

piecewise bilinear wavelets. The limit value is extrapolated from the results obtained from the piecewise bilinear

wavelet Galerkin scheme.

cavity discretization is here significantly di↵erent and because a fitted parametrization for the diagonal

elements is employed. Therefore, a standard PCM calculation is able to achieve a good accuracy even

with much coarser cavity parametrization. On the other hand, the most accurate result is still di↵erent

from the wavelet one. Further refinement of the cavity description would expose the instabilities of the

collocation method. The values for the electronic part are very similar and identical considerations apply.

Turning our attention to the total solvation energy, it is evident that the piecewise bilinear wavelets are

much more accurate: already at PL-2 the result is practically converged. A similar result requires PL-

4 with piecewise constants wavelets and almost 8 times as many elements. The comparison with the

collocation method shows that there is going to be a gap between the converged IEFPCM results and the

wavelet results. For the electrostatic solvation energy of benzene the gap is not large (0.02 kcal ·mol�1),

but more polar substrates might show wider gaps.

Concerning the isotropic polarization, similar findings to the total solvation energies are obtained: the

piecewise bilinear wavelets yield a practically converged result at PL-2, whereas the piecewise constant

wavelets are converged at PL-3 and the “best” standard IEFPCM displays again a small gap with respect

to the converged wavelet results.

In conclusion, both wavelet methods converge to the same result: the piecewise bilinear wavelets

converge faster and require a lower PL to attain a given accuracy, both for the overall solvation energy

and the polarizability. The traditional collocation method is able to achieve a reasonable accuracy with

fewer points. However, the limit of large refinement is slightly di↵erent than the wavelet one, indicating

a limitation of the collocation method. One possible explanation for such a discrepancy could be the
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Figure 10 Convergence of U
ee

with respect to the number of molecular electrostatic potential (MEP) evaluation points

on the cavity surface. The values reported are in Hartree and refer to benzene. The Gaussian basis 6-31G

was used. The upper axis reports the average area for the collocation tesselation, while the lower axis refers to

the patch level in the wavelet Galerkin discretization. The annotation report the number of MEP evaluation

points. The compression parameter triplet was set to a = 2.5, d0 = 2.0, b = 0.01 for the piecewise constant

wavelets and to a = 2.5, d0 = 3.0, b = 0.01 for piecewise bilinear wavelets. The limit value is extrapolated

from the results obtained from the piecewise bilinear wavelet Galerkin scheme.

fitting of the diagonal elements [72], introducing a bias at large refinements.

4.3 Performance of the wavelet solver

The convergence properties and memory requirements of the wavelet solver were assessed by performing

calculations on the four linear polyalkane chains CnH2n+2

, (n = 8, 16, 32, 64), using a standalone version

of the wavelet solver. The interpolation parameter grade is set to 4 for levels = 2, 3, 4 and 8 for level 5.

Only the nuclear charge distribution was considered. The total apparent surface charge (ASC) can thus

be compared to the exact analytical value as obtained by the Gauss’ theorem

�� = �
calc

� �
exact

, �
exact

= �"� 1

"
Q (27)

where " is the permittivity and Q is the total charge enclosed by the cavity. A similar analysis for the

piecewise constant parametrization was presented by Weijo et al. [35].

The influence of the patch level on the ASC convergence is shown in Fig. 13, for three di↵erent sets

of a priori compression parameters. Only the graph for C
32

H
64

is shown because similar trends were

observed also for the other polyalkanes. See SI for the complete set.

From Figure 13 we see that by increasing the patch level leads to convergence towards �
exact

, a

general feature of any Galerkin BEM method. Such convergence is achieved somewhat faster when a less

aggressive a priori compression is applied to the system matrix. As discussed in Sec. 2.2, higher values

of the a priori compression parameters lead to a higher accuracy in the calculated ASC since a larger

number of matrix elements is retained.
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Figure 11 Convergence of U
pol

with respect to the number of molecular electrostatic potential (MEP) evaluation points

on the cavity surface. The values reported are in kcal ·mol�1 and refer to benzene. The Gaussian basis 6-31G

was used. The upper axis reports the average area for the collocation tesselation, while the lower axis refers to

the patch level in the wavelet Galerkin discretization. The annotation report the number of MEP evaluation

points. The compression parameter triplet was set to a = 2.5, d0 = 2.0, b = 0.01 for the piecewise constant

wavelets and to a = 2.5, d0 = 3.0, b = 0.01 for piecewise bilinear wavelets. The limit value is extrapolated

from the results obtained from the piecewise bilinear wavelet Galerkin scheme.

In the wavelet PCM formalism, both the construction of the system matrix and the solution of the

linear equations scale linearly with the mesh size, given the same initial set of patches. In Fig. 14, we

see a summary of the convergence analysis for the polyalkane chains CnH2n+2

(n = 8, 16, 32, 64), which

also contains the total computational time. In all cases, the compression parameters were kept fixed:

a = 1.0, d0 = 2.25 and b = 0.01. Since we are still in the preasymptotic regime, the observed scaling is

N1.5
J instead of the proven linear behaviour NJ , where J is the refinement level as described in Sec. 2.2.

The time spent for assembling the system matrix, discarding unnecessary elements by compression

and solving the linear system of equations is shown in Fig. 15 for di↵erent choices of the compression

parameters. Only the results obtained in the case of C
16

H
34

are shown, as similar trends are exhibited

by the other molecules. For the other molecules the reader is referred to the Supporting Information.

Clearly, assembling the system matrix is the most time consuming portion of the currently implemented

version of the wavelet algorithm. It is also evident that this takes longer when the compression of the

matrix is less aggressive and more elements are to be retained. For example, up to 93% of the time is

spent in assembling the system matrix when a = 2.0, d0 = 3.0 and b = 0.01. The solution of the system

of linear equations is much less demanding and also less a↵ected by the requested accuracy. On the

other hand, a finer mesh (higher PL) implies an increased number of integral evaluations to obtain the

electrostatic potential.

Another crucial aspect to be considered is the construction of the initial set of patches. The system

matrix is indeed dense for the scaling part and the algorithm scales quadratically with number of original

patches. In order to achieve linear scaling with respect to the molecular size, it will be necessary to devise
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Figure 12 Convergence of ↵
iso

with respect to the number of molecular electrostatic potential (MEP) evaluation points on

the cavity surface. The values reported are in a3
0

and refer to benzene. The lower axis reports the average area for

the collocation tesselation, while the upper axis refers to the patch level in the wavelet Galerkin discretization.

The annotation report the number of MEP evaluation points. The compression parameter triplet was set to

a = 2.5, d0 = 2.0, b = 0.01 for the piecewise constant wavelets and to a = 2.5, d0 = 3.0, b = 0.01 for piecewise

bilinear wavelets. The limit value is extrapolated from the results obtained from the piecewise bilinear wavelet

Galerkin scheme.

a cavity generator which scales sub-linearly (ideally O(N1/2) where N is the number of atoms) with the

molecular size. This is however not the case for the current implementation, as already shown in our

previous work [35] and therefore the scaling with the molecular size is almost quadratic.

5 Conclusions

We have presented the first implementation of the Polarizable Continuum Model which combines the

Integral Equation Formalism with a wavelet solver with piecewise bilinear wavelets for the solution of the

underlying boundary integral equation. This is a further development of a previous work, [35] which made

use of piecewise constant wavelets. Thanks to the construction of the system matrix within the wavelet

formalism, the solution of the boundary integral equation exhibits fast and guaranteed convergence to

the exact limiting values of the problem, which cannot be achieved with a collocation method. Due to the

high modularity of PCMSolver, linear response was immediately available (both with picewise constant

wavelets and piecewise linear wavelets) and we have demonstrated that the accuracy attained for energy

calculations is reflected in the response calculations as well.

The robustness of the wavelet formalism makes our implementation an important reference benchmark

for accurate calculations, which has so far been missing. In order to make the implementation competitive

also on the performance side the two most important bottlenecks will have to be addressed. The accuracy

achieved with wavelets depends on the evaluation of electrostatic potentials in a large number of mesh

points. Speeding up this part will require the use of interpolation techniques (integrals are calculated at
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a coarser mesh and interpolated at a finer one) and fast multipole methods. The second bottleneck is

constituted by the construction of the initial parameterization of the cavity into patches. The current

implementation does not guarantee linear scaling with the molecular size, which could only be achieved

if the number of patches scales sub-linearly with the molecule size.
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