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ON HOMOMORPHISMS BETWEEN CREMONA GROUPS

CHRISTIAN URECH

Abstract. We look at algebraic embeddings of the Cremona group in n vari-
ables Crn(C) to the groups of birational transformations Bir(M) of an algebraic
variety M . First we study geometrical properties of an example of an embed-
ding of Cr2(C) into Cr5(C) that is due to Gizatullin. In a second part, we give
a full classification of all algebraic embeddings of Cr2(C) into Bir(M), where
dim(M) = 3 and generalize this result partially to algebraic embeddings of
Crn(C) into Bir(M), where dim(M) = n + 1, for arbitrary n. In particular,
this yields a classification of all algebraic PGLn+1(C)-actions on smooth pro-
jective varieties of dimension n+1 that can be extended to rational actions of
Crn(C).
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1. Introduction and statement of the results

1.1. Cremona groups. Let M be a complex variety and Bir(M) the group of
birational transformations of M . Denote by P

n = P

n
C the complex projective space

of dimension n. The group
Crn := Bir(Pn)

is called the Cremona group. In this paper we are interested in group homomor-
phisms from Crn to Bir(M). In particular, we will study an embedding of Cr2
into Cr5 that was described by Gizatullin [Giz99] and consider the case, where
dim(M) = n+ 1.

A birational transformation A : M 99K N between varieties M and N induces
an isomorphism Bir(M) ! Bir(N) by conjugating elements of Bir(M) with A.
Two homomorphisms � : Bir(M) ! Bir(N1) and  : Bir(M) ! Bir(N2) are called
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2 CHRISTIAN URECH

conjugate if there exists a birational transformation A : N1 99K N2 such that  (g) =
A � �(g) �A�1 for all g 2 Bir(M).

Example 1.1. Assume that a variety M is birationally equivalent to P

n ⇥N for
some variety N . The standard action on the first factor yields an injective ho-
momorphism of Crn into Bir(Pn ⇥N) and therefore also into Bir(M). We call
embeddings of this type standard embeddings. In particular, we obtain in that way
for all nonnegative integers m an injective homomorphism Crn ! Bir(Pn ⇥P

m).

Example 1.2. A variety M is called stably rational if there exists a n such that
M ⇥ P

n is rational. There exist varieties of dimension larger than or equal to
3 that are stably rational but not rational (see [BCTSSD85]). We will see that
two standard embeddings f1 : Crn ! Bir(Pn ⇥N) and f2 : Crn ! Bir(Pn ⇥M)
are conjugate if and only if N and M are birationally equivalent (Lemma 3.3).
So every class of birationally equivalent stably rational varieties of dimension k
defines a di↵erent conjugacy class of injective homomorphisms Crn ! Bir(Pm) for
m = n+ k.

1.2. Notation and subgroups of Crn. If we fix homogeneous coordinates [x0 :
· · · : xn] of P

n, every element f 2 Crn can be described by homogeneous polynomials
of the same degree f0, . . . , fn 2 C[x0, . . . , xn] without non-constant common factor,
such that

f([x0 : · · · : xn]) = [f0 : · · · : fn].
The degree of f is the degree of the fi.

With respect to a�ne coordinates [1 : X1 : · · · : Xn] = (X1, . . . , Xn), we have

f(X1, . . . , Xn) = (F1, . . . , Fn),

where Fi(X1, . . . , Xn) = fi(1, X1, . . . , Xn)/f0(1, X1, . . . , Xn) 2 C(X1, . . . , Xn).
An important subgroup of Crn is the automorphism group

Aut(Pn) ' PGLn+1(C).

The n-dimensional subgroup of Aut(Pn) consisting of diagonal automorphisms will
be denoted by Dn.

Let A = (aij) 2 Mn(Z) be a matrix of integers. The matrix A determines a
rational self map of the a�ne space

fA = (xa11
1 xa12

2 · · ·xa1n
n , xa21

1 xa22
2 · · ·xa2n

n , . . . , xan1
1 xan2

2 · · ·xann
n ).

We have fA � fB = fAB for A,B 2 Mn(Z). One observes that fA is a birational
transformation if and only if A 2 GLn(Z). This yields an injective homomorphism
GLn(Z) ! Crn whose image we call the Weyl group and denote it by Wn. This
terminology is justified by the fact that the normalizer ofDn in Crn is the semidirect
product NormCrn(Dn) = DnoWn. Note that DnoWn is the automorphism group
of (C⇤)n. Sometimes, Wn is also called the group of monomial transformations.

The Cremona group Crn contains Aut(An), the group of polynomial automor-
phisms of the a�ne space A

n. We always consider the embedding of Aut(An) into
Crn by considering the a�ne coordinates given by x0 6= 0.

1.3. Previous results. The well known theorem of Noether and Castelnuovo (see
for example [AC02]) states that over an algebraically closed field k the Cremona
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group in two variables is generated by PGL3(k) and the standard quadratic invo-
lution

� := [x1x2 : x0x2 : x0x1] 2 W2 .

Results of Hudson and Pan ([Hud27], [Pan99]) show that for n � 3 the Cremona
group Crn is not generated by PGLn+1(C) and Wn. Let

Hn := hPGLn+1(C),Wni .
Blanc and Hedén studied the subgroup Gn of Crn generated by PGLn+1(C) and
the element �n := [x�1

0 : · · · : x�1
n ] ([BH14]). In particular, they show that Gn is

strictly contained in Hn if and only if n is odd. Further results about the group
structure of Gn can be found in [Dés14].

Let � : C ! C be an automorphism of fields. By acting on the coordinates, �
induces a bijective map � : P

n ! P

n. Conjugation with � yields a group automor-
phism of Crn that preserves degrees. Observe that we obtain the image of g 2 Crn
by letting � operate on the coe�cients of g. By abuse of notation we denote this
automorphism by � as well. In [Dés06b] Déserti showed that all automorphisms of
Cr2 are inner up to such field automorphisms. A generalization of this result is the
following theorem by Cantat:

Theorem 1.3 ([Can14]). Let M be a smooth projective variety of dimension n and

r 2 Z

+
. Let

⇢ : PGLr+1(C) ! Bir(M)

be a non-trivial group homomorphism. Then n � r and if n = r then M is rational

and there exists an automorphism of fields � : C ! C such that ⇢ � � is conjugate

to the standard embedding of PGLn+1(C) into Crn.

In the Appendix we will prove two corollaries of Theorem 1.3 that show some
implications of this result to group endomorphisms of Crn.

1.4. Algebraic homomorphisms. We call a group homomorphism  : Crn !
Bir(M) algebraic if its restriction to PGLn+1(C) is an algebraic morphism. The
algebraic structure of Bir(M) and some properties of algebraic homomorphisms
will be discussed in Section 2. Recall that an element f 2 Crn is called algebraic,
if the sequence {deg(fn)}n2Z+ is bounded.

1.5. Reducibility.

Definition. Let M be a variety 'M : Crn ! Bir(M) a non-trivial algebraic group
homomorphism. We say that 'M is reducible if there exists a variety N such that
0 < dim(N) < dim(M) and an algebraic homomorphism 'N : Crn ! Bir(N)
together with a dominant rational map ⇡ : M 99K N that is Cr2-equivariant with
respect to the rational actions induced by 'M and 'N respectively.

Remark 1. In [Zha10], Zhang uses the terminology primitive action for irreducible
actions in the sense of Definition 1.5; in [Can03], Cantat says that an action admits

a non-trivial factor if it is reducible.

Note that if we look at the induced action of Crn on the function field C(M)
of M , reducibility is equivalent to the existence of a Crn-invariant function field
C(N) ⇢ C(M).
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1.6. An example by Gizatullin. In [Giz99], Gizatullin looks at the following
question: Let  : PGL3(C) ! PGLn+1(C) be a linear representation. Does  ex-
tend to a homomorphism  : Cr2 ! Crn? He shows that the linear representations
given by the action of PGL3(C) on conics, cubics and quartics can be extended to
homomorphisms from Cr2 to Cr5, Cr9 and Cr14, respectively.

In Section 3 we study in detail some geometrical properties of the homomorphism

� : Cr2 ! Cr5

that was described by Gizatullin; by construction, the restriction of � to PGL3

yields the linear representation ' : PGL3(C) ! PGL6(C) given by the action of
PGL3(C) on plane conics. Among other things, we prove the following:

Theorem 1.4. Let � : Cr2 ! Cr5 be the Gizatullin homomorphism. Then the

following is true:

(1) The group homomorphism � is injective and irreducible.

(2) The rational action of Cr2 on P

5
that is induced by � preserves the Veronese

surface V and its secant variety S ⇢ P

5
and induces rational actions of Cr2

on V and S.
(3) The Veronese embedding v : P

2 ! P

5
is Cr2-equivariant with respect to the

standard rational action on P

2
.

(4) The surjective secant morphism s : P

2 ⇥P

2 ! S ⇢ P

5
(see Section 3.4) is

Cr2-equivariant with respect to the diagonal action of Cr2 on P

2 ⇥P

2
.

(5) The rational action of Cr2 on P

5
preserves a volume form on P

5
with poles

of order three along the secant variety S.
(6) The group homomorphism � sends the group of polynomial automomor-

phisms Aut(A2) ⇢ Cr2 to Aut(A5).

Note that the injectivity of � follows from (3); in Section 3.8 irreducibility is
proved. Part (2) - (4) of Theorem 1.4 will be proved in Section 3.4, part (5) in
Section 3.6 and part (6) in Section 3.7

The representation '_ of PGL3 into PGL6 given by  � ↵, where ↵ is the alge-
braic homomorphism g 7! tg�1, is conjugate in Cr5 to the representation '. This
conjugation yields the embedding �_ : Cr2 ! Cr5, whose image preserves the se-
cant variety S as well and induces a rational action on it. As the secant variety S
is rational, � and �_ induce two non-standard embeddings of Cr2 into Cr4, which
we denote by  1 and  2 respectively. In Section 3.5 we prove the following:

Proposition 1.5. The two embeddings  1, 2 : Cr2 ! Cr4 are not conjugate in

Cr4; moreover they are irreducible and therefore not conjugate to the standard em-

bedding.

Proposition 1.5 shows in particular that there exist at least three di↵erent em-
beddings of Cr2 into Cr4.

Since � is algebraic, the images of algebraic elements under � are algebraic again
(see Proposition 2.3). Calculation of the degrees of some examples suggests that �
might even preserve the degrees of all elements in Cr2. However, we were only able
to prove the following (Section 3.7):

Theorem 1.6. Let � : Cr2 ! Cr5 be the Gizatullin-embedding. Then

(1) for all elements f 2 Cr2 we have deg(f)  deg(�(f)),
(2) for all g 2 Aut(A2) ⇢ Cr2 we have deg(g) = deg(�(g)).



ON HOMOMORPHISMS BETWEEN CREMONA GROUPS 5

The image of the Weyl group W2 under � is not contained in the Weyl group W5.
More generally, it can be shown that there exists no algebraic homomorphism from

Cr2 to Cr5 that preserves automorphisms, diagonal automorphisms and the Weyl

group (see [Ureon]).

1.7. Algebraic embeddings in codimension 1. In Section 4 and Section 5 we
look at algebraic homomorphisms Crn ! Bir(M) in the case where M is a smooth
projective variety of dimension n+ 1 for n � 2.

Example 1.7. For all curves C of genus � 1, the variety P

n ⇥C is not rational
and there exists the standard embedding  C : Crn ! Bir(Pn ⇥C).

Example 1.8. Crn acts rationally on the total space of the canonical bundle of Pn

KPn ' OPn(�(n+ 1)) '
n̂

(T P

n)_

by f(p,!) = (f(p),! � (dfp)�1), where p 2 P

n and ! 2 Vn(Tp P
2)_. This action

extends to the projective completion

F1 := P(OPn �OPn(�(n+ 1))).

More generally, we obtain an action of Crn on the total space of the bundle
K⌦l

Pn ' OPn(�(n+ 1)l) and on its projective completion

Fl := P(OPn �OPn(�l(n+ 1))

for all l 2 Z�0. This yields a countable family of injective homomorphisms

 l : Crn ! Bir(Fl).

We can choose a�ne coordinates (x1, . . . , xn, xn+1) of Fl such that  l is given
by

 l(f)(x1, . . . , xn, xn+1) = (f(x1, . . . , xn), J(f(x1, . . . , xn))
�lxn+1).

Here, J(f(x1, . . . , xn)) denotes the determinant of the Jacobian of f at the point
(x1, . . . , xn). Observe that  0 is conjugate to the standard embedding.

Example 1.9. Let P(T P

2) be the total space of the fiberwise projectivisation of
the tangent bundle over P2. Then P(T P

2) is rational and there is an injective group
homomorphism

 B : Cr2 ! Bir(P(T P

2))

defined by  B(f)(p, v) := (f(p),P(dfp)(v)). Here, P(dfp) : PTp ! PTf(p) defines

the projectivisation of the di↵erential dfp of f at the point p 2 P

2.

Example 1.10. The Grassmannian of lines in the projective 3-space G(1, 3) is a
rational variety of dimension 4 with a transitive algebraic PGL4(C)-action. This
action induces an algebraic embedding of PGL4(C) into Cr4. In Proposition 5.2 we
will show that the image of this embedding does not lie in any subgroup isomor-
phic to Cr3. So no group action of PGL4(C) on G(1, 3) by automorphisms can be

extended to a rational action of Cr3.

The classification of PGLn+1-actions on smooth projective varieties of dimension
n+1 is well known to the experts; in Section 4 we study their conjugacy classes. In
fact, we will see that Examples 1.7 to 1.10 describe up to birational conjugation and
up to algebraic homomorphisms of PGLn+1 all possible PGLn+1-actions on smooth
projective varieties of dimension n + 1 and that these actions are not birationally
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conjugate to each other. This yields a classification of algebraic homomorphisms
of PGLn+1 to Bir(M). We will study in Section 5 how these actions extend to
rational actions of Crn on M .

Theorem 1.11. Let n � 2 and let M be a complex projective variety of dimension

n+ 1 and let ' : PGLn+1(C) ! Bir(M) be a non-trivial algebraic homomorphism,

then ' is conjugate to one of the embeddings described in Example 1.7 to 1.9. If

' is not conjugate to the action described in Example 1.10, then there exists up

to conjugation a unique algebraic homomorphism ↵ of PGLn+1(C) such that ' � ↵
extends to a homomorphism of Crn to Bir(M). Moreover, this extension is unique

if restricted to the subgroup Hn = hPGLn+1(C),Wni ⇢ Crn.

Theorem 1.11 classifies all group homomorphisms  : Hn ! Bir(M) for projec-
tive varieties M of dimension n + 1 such that the restriction to PGLn+1(C) is a
morphism. By the theorem of Noether and Castelnuovo, we obtain in particular a
full classification of all algebraic homomorphisms from Cr2 to Bir(M) for projective
varieties M of dimension 3:

Corollary 1.12. Let M be a projective variety of dimension 3 and  : Cr2 !
Bir(M) a non-trivial algebraic group homomorphism. Then  is conjugate to ex-

actly one of the homomorphisms described in Example 1.7 to 1.9.

The following observations are now immediate:

Corollary 1.13. Let M be a projective variety of dimension 3 and  : Cr2 !
Bir(M) a non-trivial algebraic homomorphism. Then

(1)  is injective.

(2) There exists a Cr2-equivariant rational map f : M 99K P

2
with respect to

the rational action induced by  and the standard action respectively. In

particular, all algebraic homomorphisms from Cr2 to Bir(M) are reducible.

(3) There exists an integer C 2 Z such that

1/C deg(f)  deg( (f))  C deg(f).

Note that Part (3) of Corollary 1.13 resembles in some way Theorem 1.6. It
seems to be an interesting question how the degree of the image of an element
f 2 Cr2 under an algebraic homomorphism is related to the degree of f .

1.8. Acknowledgements. I thank my PhD advisors Jérémy Blanc and Serge Can-
tat for their constant support, all the interesting discussions and for the helpful
remarks on previous versions of this article.

2. Algebraic homomorphisms

In this section we recall some results on the algebraic structure of Bir(M) and
of some of its subgroups and we discuss our notion of algebraic homomorphisms.

2.1. The Zariski topology. We can equip Bir(M) with the so-called Zariski topol-
ogy. Let A be an algebraic variety and

f : A⇥M 99K A⇥M

an A-birational map inducing an isomorphism between open subsets U and V of
A⇥M such that the projections from U and from V to A are both surjective. For
each a 2 A we obtain therefore an element of Bir(M) defined by x 7! p2(f(a, x)),
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where p2 is the second projection. Such a map A ! Bir(M) is called a morphism

or family of birational transformations parametrized by A.

Definition. The Zariski topology on Bir(M) is the finest topology such that all
morphisms f : A ! Bir(M) for all algebraic varieties A are continuous (with respect
to the Zariski topology on A).

The map ◆ : Bir(M) ! Bir(M), x 7! x�1 is continuous as well as the maps
x 7! g � x and x 7! x � g for any g 2 Bir(M). This follows from the fact that
the inverse of an A-birational map as above is again an A-birational map as is
the right/left-composition with an element of Bir(M). The Zariski topology was
introduced in [Dem70] and [Ser08] and studied in [BF13].

2.2. Algebraic subgroups. An algebraic subgroup of Bir(M) is the image of an
algebraic group G by a morphism G ! Bir(M) that is also an injective group
homomorphism. It can be shown that algebraic groups are closed in the Zariski
topology and of bounded degree in the case of Bir(M) = Crn. Conversely, closed
subgroups of bounded degree in Crn are always algebraic subgroups with a unique
algebraic group structure that is compatible with the Zariski topology (see [BF13]).

Let N be a smooth projective variety that is birationally equivalent to M . Let G
be an algebraic group acting regularly and faithfully on N . This yields a morphism
G ! Bir(M), so G is an algebraic subgroup of Bir(M). On the other hand, a
theorem by Weil states that all algebraic subgroups of Bir(M) have this form.

Theorem 2.1 ([Wei55], [Sum74], [Zai95]). Let G ⇢ Bir(M) be an algebraic sub-

group. Then there exists a smooth projective variety N and a birational map

f : M 99K N that conjugates G to a subgroup of Aut(N) such that the induced

action on N is algebraic.

It can be shown (see for example, [BF13]) that the sets (Crn)d ⇢ Crn consisting
of all birational transformations of degree  d are closed with respect to the Zariski
topology. So the closure of a subgroup of bounded degree in Crn is an algebraic
subgroup and can therefore be regularized. We obtain:

Corollary 2.2. Let G ⇢ Crn be a subgroup that is contained in some (Crn)d,

then there exists a smooth projective variety N and a birational transformation

f : P

n 99K N such that fGf�1 ⇢ Aut(N).

The maximal algebraic subgroups of Cr2 have been classified together with the
rational surfaces on which they act as automorphisms ([Enr93], [Bla09]). In dimen-
sion 3, a classification for maximal connected algebraic subgroups exists: [Ume82b],
[Ume85], [Ume82a].

2.3. Algebraic homomorphisms and continuous homomorphisms. We de-
fined a group homomorphism from Crn to Bir(M) to be algebraic if its restriction
to PGLn+1(C) is a morphism. Note that this is a priori a weaker notion than being
continuous with respect to the Zariski topology. It is not clear, whether algebraic
homomorphisms are always continuous. However, for dimension 2 we have the
following partial result, which will proved in Section 2.5:

Proposition 2.3. Let � : Cr2 ! Bir(M) be a homomorphism of groups. The

following are equivalent:

(1) � is algebraic.
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(2) The restriction of � to any algebraic subgroup of Cr2 is algebraic.

(3) The restriction of � to one positive dimensional algebraic subgroup of Cr2
is algebraic.

2.4. One-parameter subgroups. A one-parameter subgroup is a connected al-
gebraic group of dimension 1. It is well known (see for example [Hum75]) that
all one-parameter subgroups are isomorphic to either C or C

⇤. The group C is
unipotent, the group C

⇤ semi-simple.
Proposition 2.4 shows that, up to conjugation by birational maps, there exists

only one birational action of C and only one of C⇤ on P

2:

Proposition 2.4. In Cr2 all one-parameter subgroups isomorphic to C are conju-

gate and all one-parameter subgroups isomorphic to C

⇤
are conjugate.

The first part of Proposition 2.4 follows from results in [BD15] and [Bla06] (see
also [Bru97]). The second part is a special case of Theorem 2.5. A detailed expla-
nation of the proof can be found in [Ureon].

Theorem 2.5 ([BB66], [Pop13]). In Crn all tori of dimension � n�2 are conjugate

to a subtorus of Dn. Moreover, two subtori of Dn are conjugate in Crn to each other

if and only if they are isomorphic.

The following Lemma is a classical result (see for example [Sta13]):

Lemma 2.6. Let G be a linear algebraic group and U1, . . . , Un be algebraic sub-

groups such that U1U2 · · ·Un = G. Let H be a linear algebraic group and ' : G ! H
a homomorphism of abstract groups such that '|Ui is a homomorphism of algebraic

groups for all i. Then ' is a homomorphism of algebraic groups.

2.5. Algebraic and abstract group homomorphisms. Let G and H be alge-
braic groups that are isomorphic as abstract groups. The question whether G and
H are also isomorphic as algebraic groups have been treated in detail in [BT73]
(see also [Die71] and [Dés06a]). We will use the following result:

Proposition 2.7. Let G be an algebraic group that is isomorphic to PGLn(C)
as an abstract group. Then G is isomorphic to PGLn(C) as an algebraic group.

Moreover, for every abstract isomorphism

⇢ : PGLn(C) ! G

there exists an automorphism of fields ⌧ : C ! C such that ⇢ � ⌧ is an algebraic

isomorphism.

Remark 2. It is well known that the automorphisms of PGLn(C) as an algebraic
group are compositions of inner automorphisms and the automorphism

↵ : PGLn(C) ! PGLn(C), g 7! tg�1.

Proof of Proposition 2.3. We first show how (1) implies (2). Let G be an algebraic
subgroup of Cr2. We can assume that G is connected. There exist one parameter
subgroups U1, . . . , Uk ⇢ G such that U1 · · ·Uk = G and there exists a constant C
such that every element in G can be written as the product of at most C elements
of U1 [ U2 [ · · · [ Un. Since, by Proposition 2.4, the group Ui is conjugate to a
one parameter subgroup of PGL3(C) for all i, we obtain that the restriction of '
to any of the Ui is an algebraic homomorphism of groups and that '(G) ⇢ Crn is
of bounded degree. Then '(G) ⇢ Crn is an algebraic group. We can now apply
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Lemma 2.6 and conclude that the restriction of ' to G is a homomorphism of
algebraic groups.

Statement (3) follows immediately from statement (2), so it only remains to
prove that (3) implies (1). Let ' : Cr2 ! Bir(M) be a homomorphism of abstract
groups and let G ⇢ Cr2 be a positive dimensional algebraic subgroup such that the
restriction of ' to G is a morphism. Since G is infinite, it contains a one parameter
subgroup U ⇢ G.

Let U1, . . . , Un ⇢ PGL3(C) be unipotent one parameter subgroups such that
U1 · · ·Un = PGL3(C) and C a constant such that every element in PGL3(C) can
be written as the product of at most C elements of U1 [ U2 [ · · · [ Un. If U is
unipotent, all the subgroups Ui are conjugate to U . Hence the restriction of ' to
Ui is a morphism for all i. The image '(PGL3(C)) ⇢ Crn is of bounded degree, so
'(PGL3(C)) ⇢ Crn is an algebraic group and with Lemma 2.6 it follows that the
restriction of ' to PGL3(C) is a morphism.

Denote by D1 ⇢ PGL3(C) the subgroup given by elements of the form [cx0 :
x1 : x2], c 2 C

⇤ and by T ⇢ PGL3(C) the subgroup of all elements of the form
[x0 : x1 + cx0 : x2], c 2 C; we have D1 ' C

⇤ and T ' C. If U is semi-simple, it
is, again by Proposition 2.4, conjugate to D1, hence the restriction of ' to D1 is a
morphism well. Note that

T = {[x0 : x1 + cx0 : x2] | c 2 C} = {dgd�1 | d 2 D1} [ {id}
where g = [x0 : x1 + x0 : x2]. We obtain that '(T ) is of bounded degree and
contained in the algebraic group '(T ) ⇢ Crn. As '(T ) consists of two '(D1)-orbits,
it is constructible and therefore closed. We obtain that the images of all unipotent
subgroups of Cr2 under ' are algebraic subgroups.The map '(U1)⇥ · · ·⇥'(Un) !
Crn is a morphism, so its image is a constructible set and therefore closed since
it is a group. Hence '(PGL3(C)) = '(U1) · · ·'(Un) is an algebraic subgroup. By
Proposition 2.7 it is isomorphic as an algebraic group to PGL3(C) and there exists
an automorphism of fields ⌧ : C ! C such that ' � ⌧ : PGL3(C) ! PGL3(C) is an
isomorphism of algebraic groups. But since the restriction of ' to T is already an
algebraic homomorphism, it follows that ⌧ is the identity. ⇤

Remark 3. Proposition 2.3 shows in particular that algebraic homomorphisms
 : Cr2 ! Bir(M) send algebraic elements to algebraic elements. This result fol-
lows also directly from the fact that a birational transformation f 2 Cr2 of degree
d can be written as the product of at most 4d linear maps and 4d times the stan-
dard quadratic involution � (see for example [AC02]); we therefore obtain that the
sequence {deg(�(f)n} is bounded if {deg(fn)} is bounded.

3. An example by Gizatullin

3.1. Projective representations of the projective linear group. The results
from representation theory of linear algebraic groups that we use in this section can
be found, for example, in [FH91], [Pro07].

Proposition 3.1. There is a bijection between homomorphisms of algebraic groups

from SLn(C) to SLm(C) such that the image of the center is contained in the center

and homomorphisms of algebraic groups from PGLn(C) to PGLm(C).
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From Propostion 3.1 and some elementary representation theory of SL3(C) it
follows that n = 6 is the smallest number such that there exist non-trivial and non-
standard homomorphisms of algebraic groups from PGL3(C) to PGLn(C). In fact,
up to automorphisms of PGL3(C) there are exactly two non-trivial representations
from PGL3(C) to PGL6(C).

The first one is reducible. Let  0 : GL3 ! GL6 be the linear representation
given by the diagonal action on C

3 ⇥C

3; we denote by  : PGL3(C) ! PGL6(C)
its projectivisation.

The second one is given by the action of PGL3(C) on the space of conics. The
latter one can be parametrized by the space PM3 of symmetric 3⇥ 3-matrices up
to scalar multiple and is isomorphic to P

5. Let g 2 PGL3(C), we define '(g) 2
PGL6(C) by (aij) 7! g(aij)(tg).

In this section we identify the space of conics with P

5 in the following way:

(aij) 7! [a00 : a11 : a22 : a12 : a02 : a01]

In other words, the conic C given by the zeroes of the equation

F = a00X
2 + a11Y

2 + a22Z
2 + 2a12Y Z + 2a02XZ + 2a01XY

is identified with the point [a00 : a11 : a22 : a12 : a02 : a01] 2 P

5 .
Observe that with our definition, '(g) sends the conic C to the conic given by

the zero set of the polynomial F � (tg).
Let

↵ : PGL3(C) ! PGL3(C)

be the algebraic automorphism g 7! (tg)�1. Then '(↵(g)) maps the conic C to
g(C), which is the conic given by the zero set of the polynomial F �g�1. Accordingly,
'(↵(g)) 2 PGL6(C) maps the matrix (aij) 2 M3 to (tg)�1(aij)g�1.

The action of PGL3(C) on P

5 induced by ' has exactly three orbits that are
characterized by the rank of the corresponding symmetric matrix in M3. Geomet-
rically they correspond to the sets of smooth conics, pairs of distinct lines and
double lines. The set of double lines is a surface isomorphic to P

2 and called the
Veronese surface; we denote it by V . The set of singular conics S is the secant
variety of V and has dimension 4.

To describe the PGL3(C)-orbits with respect to the action induced by  , consider
a point p = [x0 : x1 : x2 : x3 : x4 : x5] 2 P

5. Then p can either be mapped by
an element of  (PGL3(C)) to a point of the form [a : 0 : 0 : b : 0 : 0], where
[a : b] 2 P

1, or to the point [1 : 0 : 0 : 0 : 0 : 1] and these points are all in di↵erent
 (PGL3(C))-orbits. The stabilizer of [1 : 0 : 0 : 0 : 0 : 1] in  (PGL3(C)) is the
subgroup of matrices of the form


g 0
0 g

�
, where g 2 PGL3(C) has the form

2

4
1 a 0
0 b 0
0 c 1

3

5 .

Therefore, the orbit of [1 : 0 : 0 : 0 : 0 : 1] under  (PGL3(C)) has dimension 5. The
orbit of a point of the form [a : 0 : 0 : b : 0 : 0], on the other hand, has dimension 2.
So we have a family parametrized by P

1 of orbits of dimension 2 and one orbit of
dimension 5. In particular, there is no  (PGL3(C))-invariant subset of dimension 4.

The following observation is easy but useful. We leave its proof to the reader.
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Lemma 3.2. Let X and Y be two projective varieties with biregular actions of

a group G and let f : X 99K Y be a G-equivariant rational map. Then the inde-

terminacy locus If ⇢ X and the exceptional divisor Exc(f) ⇢ X are G-invariant

sets.

Note that Lemma 3.2 implies in particular that all equivariant rational maps
with respect to actions without orbits of codimension � 2 are morphisms.

Lemma 3.3. Let M and M 0
be irreducible complex projective varieties such that

M ⇥ P

n
et M 0 ⇥ P

n
are birationally equivalent. Then the standard embeddings

 : PGLn+1(C) ! Bir(Pn ⇥M) and  0 : PGLn+1(C) ! Bir(Pn ⇥M 0)

are conjugate if and only if M and M 0
are birationally equivalent.

Proof. If M and M 0 are birationally equivalent it follows directly that  and  0

are conjugate. On the other hand, assume that there exists a birational map
A : P

n ⇥M 99K P

n ⇥M 0 that conjugates  to  0, i.e. A �  (g) =  0(g) � A for
all g 2 PGLn+1(C). The images  (PGLn+1(C)) and  0(PGLn+1(C)) permute the
fibers {p}⇥M , p 2 P

n and {p}⇥M 0, p 2 P

n respectively. By Lemma 3.2, no fiber
is fully contained in the exceptional locus of A.

The fiber

F := [1 : 1 : · · · : 1]⇥M ⇢ P

n ⇥M

consists of all fixed points of the image of the subgroup of coordinate permutations
 (Sn+1) and it is isomorphic to M . Correspondingly, the fiber

F 0 := [1 : 1 : · · · : 1]⇥M 0 ⇢ P

n ⇥M 0

consists of all fixed points of  0(Sn+1) and is isomorphic to M 0. Hence the strict
transform of F under A is F 0 and we obtain that M and M 0 are birationally
equivalent. ⇤

Proposition 3.4. Let ', : PGL3(C) ! PGL6(C) be the homomorphisms defined

in Section 3.1. The subgroups '(PGL3(C)) and  (PGL3(C)) are not conjugate in

Cr5.

Proof. Assume that there is an element f 2 Cr5 conjugating '(PGL3(C)) to
 (PGL3(C)). Note that P

5 has no  (PGL3(C))-invariant subset of dimension 4.
Hence, by Lemma 3.2, f must be a birational morphism and therefore an auto-
morphism. But this isn’t possible since the action of '(PGL3(C)) has an orbit of
dimension 4 and the action of  (PGL3(C)) does not. ⇤

3.2. A rational action on the space of plane conics. Our goal is to extend
the group homomorphism ' : PGL3(C) ! PGL6(C) to a group homomorphism

� : Cr2 ! Cr5 .

A first naive idea is to check whether the map  : {PGL3(C),�} ! Cr5 defined
by  (g) = '(g) for g 2 PGL3(C) and  (�) = [x�1

0 : x�1
2 : · · · : x�1

5 ] extends to a
group homomorphism Cr2 ! Cr5. However,  (�) and  (h) don’t satisfy relation
(3) of Lemma A.9. Let h = [Z � Z : Z � Y : Z] 2 Cr2, then

([x�1
0 : x�1

1 : · · · : x�1
5 ] � '(h))3 6= id .
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In [Giz99], Gizatullin constructs an extension � : Cr2 ! Cr5 of ', defined by
�|PGL3(C) = ' and

�(�) = [x1x2 : x0x2 : x0x1 : x3x0 : x4x1 : x5x2].

He shows the following:

Proposition 3.5 ([Giz99]). The map � : Cr2 ! Cr5 is a group homomorphism.

3.3. The dual action. We can also look at the representation '_ : PGL3(C) !
PGL6(C) that is defined by

'_(g) := t'(g)�1.

In other words, '_ = ' � ↵, where ↵ : PGL3(C) ! PGL3(C) is the algebraic
automorphism g 7! (tg)�1.

Let A = (aij) be a 3⇥ 3 matrix. The cofactor matrix C(A) of A is given by

Cij(A) = (�1)i+jAij ,

where Aij is the i, j-minor of A, i.e. the determinant of the 2⇥ 2-matrix obtained
by removing the i-th row and j-th column of A. We denote by

Ad(A) := tC(A)

the adjugate matrix of A. This is a classical construction and it is well known that
Ad(AB) = Ad(B)Ad(A) and that if A is invertible, then Ad(A) = det(A)A�1. In
particular, Ad : PM3 99K PM3 is a birational map. The conic corresponding to
the symmetric matrix A is the dual of the conic corresponding to the symmetric
matrix A. This is one of the birational maps that A.R.Williams described 1938 in
his paper “Birational transformations in 4-space and 5-space” ([Wil38]).

Lemma 3.6. We identify P

5
with the projectivized space of symmetric 3⇥3 matrices

PM3. The birational transformation Ad 2 Cr5 is given by

Ad := [x1x2 �x2
3 : x0x2 �x2

4 : x0x1 �x2
5 : x4x5 �x0x3 : x3x5 �x1x4 : x3x4 �x2x5].

Moreover, ad conjugates ' to '_
.

Proof. It is a straightforward calculation that the rational map Ad from P

5 to itself
that corresponds to Ad is given by

Ad := [x1x2 �x2
3 : x0x2 �x2

4 : x0x1 �x2
5 : x4x5 �x0x3 : x3x5 �x1x4 : x3x4 �x2x5].

The actions of PGL3(C) on PM3 induced by ' and '_ are given by '(g)(X) =
gX(tg) and '_(g)X = t(g�1)Xg�1 respectively, for all X 2 PM3. We obtain

Ad('(g)(X)) = Ad(tg)Ad(X)Ad(g) = (tg)�1Ad(X)g�1 = '_(g)Ad(X).

⇤

Remark 4. The Blow-up Q of P5 along the Veronese surface is the so called space

of complete conics. Let U ⇢ P

5 be the open orbit of the PGL3-action on P

5 given
by ', i.e. U = P

5 \S. Then U can be embedded into P(C6)⇥ P((C6)_) by sending
a conic C 2 U to the pair (C,C_), where C

_ denotes the dual conic of C. It turns
out that Q is isomorphic to the closure of U in P(C6) ⇥ P((C6)_). Moreover, the
PGL3-action on P

5 given by ' lifts to an algebraic action on Q and the birational
map ad to an automorphism of Q. More details on this subject can be found for
example in [Bri89].
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Lemma 3.6 shows that the representations ' and '_ are conjugate to each other
in Cr5 by the birational transformation Ad. By conjugating �(�) with Ad we can
extend '_ to the dual embedding �_ : Cr2 ! Cr5 and obtain

�_(�) = [(x1x2 � x2
3)

2x0 : (x0x2 � x2
4)

2x1 : (x0x1 � x2
5)

2x2 :

(x0x2 � x2
4)(x0x1 � x2

5)x3 : (x1x2 � x2
3)(x0x1 � x2

5)x4 : (x1x2 � x2
3)(x0x2 � x2

4)x5].

3.4. Geometry of �. The embedding � induces a rational action of Cr2 on the
space of conics on P

2. The action of �(�) can be viewed geometrically as follows
(compare with [Giz99, Introduction]): Let Q0 := [1 : 0 : 0], Q1 := [0 : 1 : 0] and
Q2 := [0 : 0 : 1]. Let C ⇢ P

2 be a conic that doesn’t pass through any of the points
Qi. Write

C = {a00X2 + a11Y
2 + a22Z

2 + 2a12Y Z + 2a02XZ + 2a01XY = 0} ⇢ P

2

Denote by P1i, P2i the points of intersection of C with the lines li, where l0 :=
{X = 0}, l1 := {Y = 0} and l2 := {Z = 0}. Denote by f1i and f2i the lines passing
through Qi and Pi1 respectively through Qi and Pi2. The images �(fji) are again
lines passing through the points Qi. Let P 0

1i and P 0
2i be the intersection points of

�(f1i) and �(f2i) with li. One checks that the conic D defined by the equation

a11a22x
2
0 + a00a22x

2
1 + a00a11x

2
2 + 2a00a12x1x2 + 2a11a02x0x2 + 2a22a01x0x2 = 0

passes through the points P 0
ij . Since no 4 of the 6 points Pij lie on the same line,

D is the unique conic through the points Pij . We have thus proven the following:

Proposition 3.7. For a general conic C ⇢ P

2
there exists a unique conic D through

the six points P 0
ij and D is the image of C under �(�).

Notice as well that the indeterminacy points of �(�) in P

5 correspond to the
subspace of dimension 2 of conics passing through the points Q1, Q2, Q3 and the
subspaces of dimension 2 of conics consisting of one li and any other line. The
three subspaces of dimension 4 of conics passing through one of the points Qi are
contracted by the action of �(�) and form the exceptional divisor.

In homogeneous coordinates of P

5, the four planes of indeterminacy locus of
�(�) can be described as follows

E0 = {x1 = x2 = x3 = 0}, E1 = {x0 = x2 = x4 = 0}, E2 = {x0 = x1 = x5 = 0}
and F = {x1 = x2 = x3 = 0}.

The exceptional divisor of �(�) consists of the three hyperplanes

H0 = {x0 = 0}, H1 = {x1 = 0}, H2 = {x2 = 0},
The hyperplanes H0, H1 and H2 are contracted by �(�) onto the planes E0, E1 and
E2 respectively. Note as well that E0, E1 and E2 are contained in the secant variety
S ⇢ P

5 of the Veronese surface V and they are tangent to V .
The geometrical description of the rational action of �_(�) on the space of conics

is the dual of the construction described above. If C is a conic not passing through
any of the points Q0, Q1, Q2, we get �_(�)(C) in the following way: let li,1, li,2 be
the tangents of C passing through the point Qi. Then the images of the li,1 and
li,2 under � are lines again. There exists a unique conic having all the lines �(li,1)
and �(li,2) for all i as tangents.
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These geometrical constructions show that �(Cr2) preserves the space of conics
consisting of double lines and therefore the Veronese surface V in P

5. The injective
morphism

v : P

2 ! P

5, [X : Y : Z] 7! [X2 : Y 2 : Z2 : Y Z : XZ : XY ]

is called the Veronese morphism. It is an isomorphism onto its image, which is
V . It is well known that v is PGL3(C)-equivariant with respect to the standard
action and the action induced by � respectively. The restriction of �(�) to V is a
birational transformation. We therefore obtain a rational action of Cr2 on V ' P

2.
Since the restrction of this rational action to PGL3(C) is the standard action, we
obtain by Corollary A.12 that v is Cr2-equivariant.

We observe as well that �(Cr2) preserves the secant variety S ⇢ P

5 of V . Note
that S is the image of the morphism:

S : P

2 ⇥P

2 ! S ⇢ P

5,

that maps the point [X : Y : Z], [U : V : W ] 2 P

2 ⇥P

2 to the point

[XU : Y V : ZW : 1/2(YW + UZ) : 1/2(XW + ZU) : 1/2(XV + Y U)].

Note that s is generically 2 : 1. Again, the geometrical construction above shows
that s is Cr2-equivariant with respect to the diagonal action on P

2 ⇥P

2 and the
action given by � on P

5 respectively.
We obtain the following sequence of Cr2-equivariant maps:

P

2 ��! P

2 ⇥P

2 s�! P

5,

where � is the diagonal embedding. This proves part (2) to (4) of Theorem 1.4.
The observation that �(Cr2) preserves the Veronese surface and extends the

canonical rational action of Cr2 has a nice consequence:

Proposition 3.8. Let f 2 Cr2. Then deg(f)  deg(�(f)).

Proof. Denote by v : P

2 ! P

5 the Veronese embedding. Let C ⇢ P

2 be a general
conic. The image v(C) ⇢ P

5 is a curve of degree 4 given by the intersection of
a hyperplane H ⇢ P

5 and the Veronese surface. Let f 2 Cr2 be a birational
transformation of degree d. The strict transform f(C 0) of a general conic C 0 ⇢ P

2

intersects C in 4d di↵erent points. So v(C) intersects v(f(C 0)) in 4d di↵erent
points. By the above results we know that v(f(C 0)) = �(f)(v(C 0)). Let d0 =
deg(�(f)). Since v(C 0) is a curve of degree 4, this yields that �(f)(v(C 0)) is a
curve of degree 4d0. The curve �(f)(v(C 0)) intersects the hyperplane H in 4d
points, hence d0 � d. ⇤

3.5. Two induced embeddings from Cr2 into Cr4. The birational map Ad 2
Cr5 contracts the secant variety S ⇢ P

5 onto the Veronese surface V ⇢ P

5. However,
the exceptional locus of  _(�) = Ad�(�)Ad consists of the three hyperplanes

G0 = {z1z2 � z23 = 0}, G1 = {z0z2 � z24 = 0}, G2 = {z0z1 � z25 = 0},
with respect to homogeneous coordinates [z0 : z1 : z2 : z3 : z4 : z5] of P

5.
This implies in particular that the restriction of �_(�) to S induces a birational

map of S and therefore that any element in �_(Cr2) restricts to a birational map
of S.
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Since S is a cubic hypersurface and contains the two disjoint planes

E1 = {z1 = z2 = z3 = 0}, E2 = {z0 = z4 = z5 = 0},
it is rational. Explicitely, projection onto E1 and E2 yields the birational map
A : S 99K P

2 ⇥P

2 defined by

[z0 : z1 : z2 : z3 : z4 : z5] 7! [z1 : z2 : z3], [z0 : z4 : z5].

The inverse transformation A�1 is given by

[x0 : x1 : x2], [y0 : y1 : y2] 7! [p2y0, p1x0, p1x1, p1x2, p2y1, p2y2],

where p1 = (x0y
2
1 + x1y

2
2 � 2x2y1y2) and p2 = y0(x0x1 � x2

2).
Let f 2 Cr2. As seen above, both images �(f) and �_(f) restrict to a birational

map of S. So conjugation of � and �_ by A yields two embeddings from Cr2 into
Bir(P2 ⇥P

2) ' Cr4, which we denote by  1 and  2 respectively.

Proof of Proposition 1.5. Irreducibility is proved in Section 3.8.
By Theorem 2.5, all tori D2 ⇢ Cr4 are conjugate to the standard torus D2 ⇢

Cr4. We calculate the map that conjugates  1(D2) =  2(D2) to the image of the
standard embedding of D2 explicitely. Let ⇢ : P

2 ⇥P

2 99K P

2 ⇥P

2 be the birational
transformation defined by

([x0 : x1 : x2], [y0 : y1 : y2]) 7! ([x2y0 : x0y1 : x2y1], [x0y
2
1 : x1y

2
2 : x2y1y2]).

The inverse map ⇢�1 is given by

([x0 : x1 : x2], [y0 : y1 : y2]) 7! ([x2
1y

2
2 : x2

2y0y1 : x1x2y
2
2 ], [x0y0 : x2y0 : x1y2]).

One calculates that ⇢A 1([aX : bY : cZ])A�1⇢�1 maps ([x0 : x1 : x2], [y0 : y1 : y2])
to ([ax0 : bx1 : cx2], [y0 : y1 : y2]). Correspondingly, ⇢A 2([aX : bY : cZ])A�1⇢�1

maps ([x0 : x1 : x2], [y0 : y1 : y2]) to ([a�1x0 : b�1x1 : c�1x2], [y0 : y1 : y2]). So the
second coordinates parametrize the closures of the D2-orbits. Since W2 normalizes
D2, its image preserves the D2-orbits. We thus obtain two homomorphisms

�1 : W2 ! Cr2,�2 : W2 ! Cr2

by just considering the rational action of W2 on the second coordinate.
Assume that there exists an element A 2 Bir(P2 ⇥P

2) that conjugates  to  _.
As A normalizes  1(D2) =  2(D2), it preserves the  1(D2)-orbits as well. Hence
by restriction on the second coordinate, it conjugates �1 to �2. It therefore su�ces
to show that �1 and �2 are not conjugate.

In Cr2 we have
f := [XY : Y Z : Z2] = ⌧1g0�g0�g0⌧2,

where ⌧1 = [Z : Y : X], ⌧2 = [Y : Z : X] and g0 = [Y �X : Y : Z]. By calculating
the corresponding images under � we obtain

�(f) = �(⌧1g0�g0�g0⌧2) = [x0x1 : x1x2 : x2
2 : x2x3 : �x2x5 + 2x3x4 : x1x4]

and �_(f) = [g0 : g1 : g2 : g3 : g4 : g5], where

g0 = (x0x1 � x2
5)

2x0,

g1 = x2
0x

2
1x2 � 2x0x1x2x

2
5 � 4x0x1x3x4x5 + 4x0x

2
3x

2
5 + 4x1x

2
4x

2
5 + x2x

4
5 � 4x3x4x

3
5,

g2 = (x0x2 � x2
4)

2x1,

g3 = (x0x2 � x2
4)(x0x1x3 � 2x1x4x5 + x3x

2
5),

g4 = �(x0x2 � x2
4)(x0x1 � x2

5)x5,
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g5 = (x0x1 � x2
5)(x0x1x4 � 2x0x3x5 + x4x

2
5).

This yields
�1(f) = [(y1 � 2y2)

2 : y0y1 : �y2(y1 � 2y2)]

and

�2(f) = [y20y1 + 4y0y
2
1 � 6y0y1y2 � 3y1y

2
2 + 4y32 : y0(y0 + 2y1 � 3y2)

2 :

(2y0y1 � y0y2 � y22)(y0 + 2y1 � 3y2)].

We show that these two transformations are not conjugate in Cr2. With respect to
a�ne coordinates [y0 : y1 : 1] one calculates

�1(f)
2 =

✓
y0y1 � 2y1 + 4

y1 � 2
, y1

◆
.

From this we see that the integer sequence deg(�1(f)n) grows linearly in n and is,
in particular, not bounded.

Let A = [y0 � y2 : y1 � y2 : y2]. Then

A�2(f)
2A�1 = [�y20y

2
1(2y1+y0) : y

2
0y

2
1(3y1+2y0) : p(y0, y1, y2)(3y1+2y0)(2y1+y0)],

where p(y0, y1, y2) = (6y21y2 + 7y2y0y1 + 6y0y21 + 2y20y2 + 2y20y1). We claim that

fn
A = A�2(f)

2nA�1 = [�y20y
2
1(2ny1 + (2n� 1)y0) : y

2
0y

2
1((2n+ 1)y1 + 2ny0) : fn],

where fn = (2ny1+(2n�1)y0)((2n+1)y1+2ny0)pn(y0, y1, y2) for some homogeneous
pn 2 C[y0, y1, y2] of degree 3. Note that this claim implies in particular that
deg(�2(f)n) is bounded for all n and hence that �1(f) and �2(f) are not conjugate.

To prove the claim we proceed by induction. Assume that fn
A has the desired

form. One calculates that the first coordinate of fn+1
A = A�2(f)2A�1 � fn

A is

�ry20y
2
1((2n+ 2)y1 + (2n+ 1)y0),

the second coordinate is

ry20y
2
1((2n+ 3)y1 + (2n+ 1)y0)

and the third coordinate

r((2n+ 2)y1 + (2n+ 1)y0)((2n+ 3)y1 + (2n+ 1)y0)pn+1(x0, x1, x2),

where r = y40y
4
1(2ny0 + (2n � 1)y1)2((2n + 1)y0 + 2ny1)2 and pn 2 C[x0, x1, x2] is

homogeneous of degree 3. This proves the claim. ⇤

3.6. A volume form. Let M be a complex projective manifold. It is sometimes
interesting to study subgroups of Bir(M) that preserve a given form. In [Bla13]
and [DL16] the authors study for example birational maps of surfaces that preserve
a meromorphic symplectic form (see [CK15] for the 3-dimensional case). In [Giz08]
and [CD16] Cremona transformations in dimension 3 preserving a contact form are
studied.

Define

F := det

0

@
x0 x5 x4

x5 x1 x3

x4 x3 x2

1

A

and let

⌦ :=
x6
5

F 2
· dx0 ^ dx1 ^ dx2 ^ dx3 ^ dx4.
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Then ⌦ is a 5-form on P

5 with a double pole along the secant variety of the Veronese
surface. Note that the total volume of P5 is infinite.

Proposition 3.9. All elements in �(Cr2) preserve ⌦.

Proof. We show that �(PGL3(C)) and �(�) preserve ⌦.
Let g = [�X : �Y : Z] 2 �(PGL3(C)). One checks that �(g) preserves ⌦.

Since �(PGL3(C)) preserves F , we have that �(fgf�1) preserves ⌦ as well. As
�(PGL3(C)) is simple, the whole group preserves ⌦.

With respect to a�ne coordinates given by x5 = 1, we have

�(�) = (x1, x0, x0x1x
�1
2 , x0x3x

�1
2 , x1x4x

�1
2 ).

A direct calculation yields ⌦ � �(�) = ⌦. ⇤

3.7. Polynomial automorphisms. In this section we will prove Claim (6) of
Theorem 1.4 as well as Theorem 1.6. Let Aut(A2) ⇢ Cr2 be the subgroup of
automorphisms of the a�ne plane with respect to the a�ne coordinates [1 : X : Y ].
By the theorem of Jung and van der Kulk (see for example [Lam02]), Aut(A2) has
the following amalgamated product structure

Aut(A2) = A↵2 ⇤\J2,

where J2 denotes the subgroup of elementary automorphisms, which is the subgroup
of all elements of the form

{(c1X, c2Y + p(X)) | c1, c2 2 C, p(X) 2 C[X]} .
Let f 2 Aut(A2) and assume that f = a1j1a2j2 · · · jn�1an, where ai 2 A↵2 and
ji 2 J2 \A↵2. It is well known that deg(f) = deg(j1) deg(j2) · · · deg(jn�1).

Let Aut(A5) ⇢ Cr5 be given by the a�ne coordinates [1 : x1 : · · · : x5].
Lemma 3.10 follows from a direct calculation.

Lemma 3.10. The image �(A↵2) is contained in A↵5.

We consider the following elements in J2:

f�
n := (X,Y + �Xn),

where n 2 Z�0 and � 2 C.

Lemma 3.11. For all n 2 Z�0 we have

�(f�
n ) = (x1, x2 + �2xn

1 + �x3An � �x4x1An�1, x3 + �x1Bn�1, x4 + �Bn, x5),

where

An = 2

bn/2cX

k=0

✓
n

2k + 1

◆
xn�2k�1
5 (x2

5 � x1)
k

and

Bn =

bn/2cX

k=0

✓
n

2k

◆
xn�2k
5 (x2

5 � x1)
k.

Moreover, the following recursive identities hold:

An = 2x5An�1 � x1An�2,

Bn = 2x5Bn�1 � x1Bn�2.
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Proof. For n = 0 and n = 1 the claim follows from a direct calculation.
Let s := (X,XY ) 2 Cr2. Then we have f�

n+1 = sf�
ns

�1. In Cr2 the iden-
tity s = ⌧1g0�g0�g0⌧2 holds, where ⌧1 = (XY �1, Y �1), ⌧2 = (Y �1, XY �1) and
g0 = (X,XY ). Note that ⌧1 and ⌧2 are elements of PGL3. If we calculate the
corresponding images under � we obtain

�(s) = �(⌧1g0�g0�g0⌧2) = (x1, x1x2, x1x4, 2x4x5 � x3, x5)

and
�(s�1) = (x1, x2x

�1
1 , 2x3x5x

�1
1 � x4, x3x

�1
1 , x5).

One calculates

sf�
ns

�1 = (x1, x2 + �2xn+1
1 + �x3(2x5 � x1)An�1 � �x4x1An, x3 + �x1Bn,

x4 � �(2x5Bn � x1Bn�1).

This shows by induction that

�(f�
n ) = (x1, x2 + �2xn

1 + �x3An � �x4x1An�1, x3 + �x1Bn�1, x4 + �Bn, x5),

where
An = 2x5An�1 � x1An�2, A0 = 0, A1 = 2;

Bn = 2x5Bn�1 � x1Bn�2, B0 = 1, B1 = x5.

These recursive formulas have the following closed form:

An =

�
x5 +

p
x5

2 � x1

�n � �
x5 �

p
x5

2 � x1

�n
p
x5

2 � x1
,

Bn =
1

2

⇣
x5 �

p
x5

2 � x1

⌘n
+ 1/2

⇣
x5 +

p
x5

2 � x1

⌘n
.

The claim follows. ⇤
Since A↵n together with all the elements f�

n , n 2 Z

+, � 6= 0 generates Aut(A2),
Lemma 3.11 shows that �(Aut(A2)) is contained in Aut(A5) and thus claim (6) of
Theorem 1.4.

Lemma 3.12. Let n and m be positive integers and An, Bm as in Lemma 3.11.
Then

AnBm�1 �An�1Bm = P (x1, x5),

where P 2 C[x1, x5] is a polynomial of degree < max{m,n}.
Proof. If n = 1 or m = 1 the claim is true, since A0 = 0, A1 = 2, B0 = 1, B1 = x5

and deg(Ak) = k�1, deg(Bk) = k. By the identities from Lemma 3.11, one obtains

AnBm�1 �An�1Bm = (2x5An�1 � x1An�2)Bm�1 �An�1(2x5Bm�1 � x1Bm�2)

= x1(An�1Bm�2 �An�2Bm�1).

The claim follows by induction on m and n. ⇤
Lemma 3.13. Let

f = f�1
1 f�2

2 · · · f�n
n , where �n 6= 0.

Then

�(f) = (x1, x2 + F, x3 + p3(x1, x5) + �nx1Bn�1, x4 + p4(x1, x5) + �nBn, x5),

where F = p2(x1, x5) + x3(�1A1 + · · · + �nAn) � x4x1(�1An�1 + · · · + �nAn) and

p2, p3, p4 2 C[x1, x5] are polynomials of degree  n. In particular, deg(�(f)) =
deg(f).
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Proof. It is easy to see that the third and fourth coordinate of �(f) have the claimed
form. The more di�cult part is the second coordinate.

For n = 1 the claim follows directly from Lemma 3.11. We proceed now by
induction. Let �n+1 6= 0 and m be the largest number, such that m  n and
n 6= 0. By the induction hypothesis we may assume that the second coordinate of
�(f�1

1 f�2
2 · · · f�m

m ) has the form

x2 + p2(x1, x5) + x3(�1A1 + · · ·+ �mAm)� x4x1(�1A0 + · · ·+ �mAm�1).

The second coordinate of �(f�1
1 f�2

2 · · · f�m
m ) � �(f�n

n ) is therefore

x2+p2(x1, x5)+x3(�1A1+· · ·+�mAm+�nAn)�x4x1(�1A0+· · ·+�mAm�1+�nAn)+

x1

mX

k=1

�k(AkBn�1 �Ak�1Bn).

By Lemma 3.12, x1
Pm

k=1 �k(AkBn�1 � Ak�1Bn) is a polynomial in x1 and x5 of
degree  n. ⇤

Proof of Theorem 1.6. The first claim was proved in Proposition 3.8.
For the second part it su�ces by the remark above on the amalgamated product

structure to show that deg(�(f)) = deg(f) for all elements f 2 J2. Composition
with an element in A↵2 doesn’t change the degree. So it is enough to consider
elements in J2 of the form f = (X,Y + P (X)), P 2 C[X]. For suitable �i 2 C we
have f = f�1

1 f�2
2 · · · f�n

n , where �n 6= 0. In Lemma 3.13 we’ve seen that � preserves
the degree of these elements. ⇤

3.8. Irreducibility of �,  1 and  2. First we show that � is irreducible. As-
sume that there is a rational dominant map ⇡ : P

5 99K M to a variety M with an
algebraic embedding 'M : Cr2 ! Bir(M) such that A is Cr2-equivariant. Since
'M is algebraic, we may assume that PGL3(C) acts regularly on M . We obtain
that the restriction of A to the open PGL3(C)-invariant subset U ⇢ P

5 consisting
of all smooth conics is a PGL3(C)-equivariant morphism, whose image is an open
dense subset of M on which PGL3(C) acts transitively. Note that this implies
dim(M) > 1.

If dimM = 2, we obtain by Theorem 1.3 thatM ' P

2 with the standard action of
PGL3(C). The stabilizer in PGL3(C) of a point in U ⇢ P

5 is isomorphic to SO3(C).
On the other hand the stabilizer in PGL3(C) of a point in P

2 is isomorphic to the
group of a�ne transformations A↵2 = GL2(C) n C

2. Since SO3(C) can not be
embedded into A↵2, the case dim(M) = 2 is not possible.

If dim(M) = 3, we find, by Theorem 4.1, a PGL3(C)-equivariant projection
M 99K P

2 and are again in the case dim(M) = 2.
If dim(M) = 4, let p 2 M be a general point and Fp := A�1(p) ⇢ P

5 the fiber
of A. Let q 2 Fp be a point that is only contained in one connected component
C of Fp. Again, the stabilizer of q is isomorphic to SO3(C). This implies that
SO3(C) acts regularly on the curve C with a fixpoint. The group of birational
transformations of C is isomorphic to PGL2(C), is abelian or is finite. In all cases
we obtain that the connected component of the identity SO3(C)0 fixes C pointwise.
In other words, the group SO3(C)0 preserves each conic of the family of conics in
P

2 parametrized by C. This is not possible.
The proof that  1 and  2 are irreducible is done analogously.
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4. PGLn+1(C)-actions in codimension 1

In this section we look at algebraic embeddings of PGLn+1(C) into Bir(M) for
complex projective varietiesM of dimension n+1. Our aim is to prove Theorem 4.1.

Theorem 4.1. Let n � 2 and let M be a smooth projective variety of dimension

n+1 with a non-trivial PGLn+1(C)-action. Then, up to birational conjugation and

automorphisms of PGLn+1(C), we have one of the following:

(1) M ' Fl = P(OPn � OPn(�l(n + 1)) for a unique element l 2 Z�0 and

PGLn+1(C) acts as in Example 1.8.
(2) M ' P

n ⇥C for a unique smooth curve C and PGLn+1(C) acts on the first

factor as in Example 1.1.
(3) M ' P(T P

2) and PGL3 acts as in Example 1.9.
(4) M ' G(1, 3) and PGL4(C) acts as in Example 1.10.

Moreover, these actions are not birationally conjugate to each other.

Remark 5. If M is rational and of dimension 2 or 3, this result can be deduced
directly from the classification of maximal algebraic subgroups of Crn by Enriques,
Umemura and Blanc ([Enr93], [Ume82b], [Ume85], [Ume82a], [Bla09]).

4.1. Classification of varieties and groups of automorphisms. With some
geometric invariant theory and using results of Freudenthal about topological ends,
the following classification can be made (see [CZ12] and the references in there):

Theorem 4.2. Let M be a smooth projective variety of dimension n + 1 with an

action of PGLn+1(C), where n � 2. Then we are in one of the following cases:

(1) M ' P(OPn �OPn(�k)) for some k 2 Z�0.

(2) M ' P

n ⇥C for a curve C of genus � 1.
(3) M ' P(T P

2) ' PGL3(C)/B, where P ⇢ PGL3(C) is a maximal Borel

subgroup.

(4) M ' G(1, 3) ' PGL4(C)/P , where P ⇢ PGL4(C) is the parabolic subgroup

consisting of matrices of the form

0

BB@

⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
0 0 ⇤ ⇤
0 0 ⇤ ⇤

1

CCA .

The connected components Aut0(M) of the automorphism groups of the varieties
M that appear in Theorem 4.2 are well known. Proofs of the following Proposition
can be found in [Akh95].

Proposition 4.3. We have

• Aut0(P(OPn �OPn(�k)) ' (GLn+1(C)/µk)o C[x0, . . . , xn]k, where
C[x0, . . . , xn]k denotes the additive group of homogeneous polynomials of

degree k and µk ⇢ C

⇤
the group of all elements c 2 C

⇤
satisfying ck = 1,

• Aut0(Pn ⇥C) ' PGLn+1(C)⇥Aut0(C),
• Aut0(P(T P

2)) ' PGL3(C),
• Aut0(G(1, 3)) ' PGL4(C).

To describe the PGLn+1(C)-actions on these varieties we recall some results
about group cohomology.
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4.2. Group cohomology. Let H be a group that acts by automorphisms on a
group N . A cocycle is a map ⌧ : H ! N such that ⌧(gh) = ⌧(g)(g · ⌧(h)) for all
g, h 2 H. Two cocycles ⌧ and ⌫ are cohomologous if there exists an a 2 N such
that

⌧(g) = a�1⌫(g)(g · a) for all g 2 H.

The set of cocycles up to cohomology will be denoted by H1(H,N). If H acts
trivially on N , the set H1(H,N) corresponds to the set of group homomorphisms
H ! N . The following lemma is well known.

Lemma 4.4. Let G := N oH be a semi direct product of groups and ⇡ : G ! H
the canonical projection on H. Then there exists a bijection between H1(H,N) and
the sections of ⇡ up to conjugation in N .

There always exists the trivial cocycle ⌧0 : H ! N , g 7! eN . The set H1(G,N) is
therefore a pointed set with basepoint ⌧0. Assume that G acts on two groups A and
B by automorphisms. A G-homomorphism � : A ! B induces a homomorphism of
pointed sets

�⇤ : H
1(G,A) ! H1(G,B)

given by �⇤(⌧) = � � ⌧.
Proposition 4.5 ([Ser79], p. 125, Proposition 1). Let G be a group that acts by

automorphisms on groups A,B and C. Every exact sequence of G-homomorphisms

1 ! A ! B ! C ! 1

induces an exact sequence of pointed sets

H1(G,A) ! H1(G,B) ! H1(G,C).

4.3. Proof of Theorem 4.1.

4.3.1. Uniqueness of the actions. Now we show that PGLn+1(C) can only be em-
bedded into Aut0(P(OPn � OPn(�k)) if and only if n | k. Then we show that
in this case, up to conjugation and algebraic automorphisms of PGLn+1(C), the
embedding is unique.

By Proposition 4.3, Aut0(P(T P

2)) ' PGL3(C) and Aut(G(1, 3)) ' PGL4(C).
The uniqueness of the embedding is clear in this cases since PGLn+1(C) is a simple
group. If M ' P

n ⇥C uniqueness follows directly from the fact that PGLn+1(C)
does not embed into Aut(C).

Lemma 4.6. A non-trivial group homomorphism PGLn(C) ! GLn(C)/µk exists

if and only if n | k, where
µk = {� id | � 2 C,�k = 1}.

Let n and k be positive integers such that (n+ 1) | k. Denote by C[x0, . . . , xn]k
the vector space of homogeneous polynomials of degree k . We define

G := C[x0, . . . , xn]k o PGLn+1(C),

where the semi direct product is taken with respect to the action g · p = p � g�1.
Here we look at PGLn+1(C) ⇢ GLn+1(C)/µk as described in Lemma 4.6. Let
⇡ : G ! PGLn+1(C) be the standard projection.

Lemma 4.7. Up to conjugation, there exists a unique section ◆ : PGLn+1(C) ! G
of ⇡.



22 CHRISTIAN URECH

The results in Lemma 4.6 and Lemma 4.7 are certainly well known. A detailed
proof can be found in [Ureon].

Lemma 4.8. PGLn+1(C) acts non-trivially on the fibration P(OPn � OPn(�k))
with basis P

n
if and only if k = l(n+ 1) for some nonnegative l. Moreover, in this

case the action is unique up to conjugation and up to algebraic automorphisms of

PGLn+1(C).

Proof. Let � : PGLn+1(C) ! Aut0(P(OPn �OPn(�k))) be an algebraic embedding.
By Proposition 4.3, there exists an exact sequence of algebraic homomorphisms

1 ! C[x0, . . . , xn]k ! Aut0(P(OPn �OPn(�k))) ! GLn+1(C)/µk ! 1.

If � is non-trivial, this induces a non-trivial algebraic homomorphism from
PGLn+1(C) into GLn+1(C)/µk and by Lemma 4.6 this is possible if and only if
(n + 1) | k. So assume that k = l(n + 1) for an integer l. It remains to show that
in this case � is unique up to conjugation and up to algebraic automorphisms of
PGLn+1(C). Let

Fl := P(OPn �OPn(�k)).

We look at Fl as a P

1-fibration over the basis Pn. So there is an exact sequence

1 ! Aut0Pn(Fl) ! Aut0(Fl)
⇡�! PGLn(C) ! 1.

Here, Aut0Pn(Fl) ' C

⇤
nC[x0, . . . , xn]k denotes the subgroup of automorphisms of

Fl that fix the basis Pn pointwise.
Let H := PGLn+1(C). By Lemma 4.4, the sections of ⇡ up to conjugation are

in bijection with

H1(H,Aut0Pn(Fl)) = H1(H,C[x0, . . . , xn]k o C

⇤ /µk).

By Proposition 4.5, there is an exact sequence of pointed sets

H1(H,C[x0, . . . , xn]k) ! H1(H,AutPn(Fl)) ! H1(H,C⇤ /µk).

The action of H on C

⇤ /µk is trivial, so H1(H,C⇤ /µk) is the set of homomor-
phisms H ! C

⇤ /µk. Hence H1(H,C⇤ /µm) = {1}. By Lemma 4.7, we obtain
H1(H,C[x0, . . . , xn]k) = {1} and thus H1(H,AutPn(Fl)) = {1}. So, all sections of
⇡ are conjugate.

Now, since H is simple and not contained in Aut0Pn(Fl), we obtain ⇡��(H) ⇢ H.
Both � and ⇡ are are algebraic morphisms, so ⇡ � �(H) = H. Therefore, up to the
algebraic automorphism ⇡ � �, the homomorphism � is a section of ⇡. ⇤
4.3.2. Non conjugacy. It remains to show that the actions from Theorem 4.1 are
not birationally conjugate.

Let M be a variety of dimension n+ 1 on which PGLn+1(C) acts faithfully.
If M is not rational, then M is isomorphic to P

n ⇥C for some smooth curve C.
Recall that P

n ⇥C is birationally equivalent to P

n ⇥C 0 for smooth curves C and
C 0 if and only if C and C 0 are birationally equivalent which again implies that C
and C 0 are isomorphic. So, if PGLn+1(C) acts rationally and non trivially on a
non rational variety M of dimension n + 1, then this one is uniquely determined
up to algebraic automorphisms of PGLn+1(C) and up to birational conjugation in
Bir(M).

In the case thatM is rational, we have to show that the PGLn+1(C)-actions listed
in Theorem 4.1 are not conjugate to each other. For this, note that none of them
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has an orbit of codimension � 1. Lemma 3.2 induces therefore that any birational
transformation conjugating one action to another one must be an isomorphism. As
the varieties listed in Theorem 4.1 are not isomorphic we conclude that the actions
are not conjugate.

5. Extension to Crn

In this section we study how the PGLn+1(C)-actions described in the above
section extend to rational Crn-actions. Our goal is to prove Theorem 1.11. We
proceed case by case.

5.1. The case G(1, 3). Let

s1 :=

0

@
0 0 1
1 0 0
0 1 0

1

A , and s2 :=

0

@
0 �1 1
0 �1 0
1 �1 0

1

A 2 GL3(Z).

Lemma 5.1. Let G be a group. There exists no group homomorphism ⇢ : GL3(Z) !
G such that ⇢(s1) has order 3 and s2 2 ker(⇢).

Proof. Assume that such a ⇢ exists. Let

A :=

0

@
1 0 0
0 1 0
0 �1 1

1

A , B :=

0

@
�1 1 0
0 0 1
1 0 0

1

A , T :=

0

@
1 0 0
0 �1 0
0 0 �1

1

A 2 GL3(Z).

One calculates (A(s2(Bs2B
�1))A�1) = s1T . So s1T is contained in the kernel

of ⇢ and we get ⇢(T ) = ⇢(s�1
1 ). But this is a contradiction since the order of T is

2. ⇤

The following construction comes up in the context of tetrahedral line complexes
(see [Dol12]). Consider the 4 hyperplanes in P

3

E0 := {x0 = 0}, E1 := {x1 = 0}, E2 := {x2 = 0}, E3 := {x3 = 0}.
A line l 2 G(1, 3) that is not contained in any of the Ei, intersects each plane Ei

in one point pi. We thus obtain a rational surjective map

cr : G(1, 3) 99K P

1

that is defined by associating to the line l the cross ratio between the points pi.
The closure cr�1([a : b]) in G(1, 3) is irreducible if and only if [a : b] 2 P

1 \{[0 :
1], [1 : 0], [1 : 1]}, whereas cr�1([a : b]) consists of two irreducible components in all
the other cases ([Dol12, Chapter 10.3.6]).

Recall that ↵ is the automorphism of PGL4 given by g 7! tg�1.

Proposition 5.2. There exists no non-trivial group homomorphism

� : hPGL4(C),W3i ! Bir(G(1, 3))

such that �(PGL4(C)) ⇢ Aut(G(1, 3)).
In particular, neither the action of PGL4(C) on G(1, 3) given by the embedding

'G (see Example 1.10) nor the action given by 'G �↵ can be extended to a rational

action of Cr4.
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Proof. The proof of Corollary A.11 implies that if PGL4(C) is contained in the
kernel of a homomorphism � : hPGL4(C),W3i ! Bir(G(1, 3)), then � is trivial. So
we may assume that � embeds PGL4(C) into Aut0(G(1, 3)). By Theorem 4.1, it is
therefore enough to show that 'G and 'G � ↵ do not extend to a homomorphism
of hPGL4(C),W3i.

The 'G(D3)-orbit of a line that is not contained in one of the planes Ei and that
does not pass through any of the points [1 : 0 : 0 : 0], [0 : 1 : 0 : 0], [0 : 0 : 1 : 0], [0 :
0 : 0 : 1], has dimension 3 and these are all 'G(D3)-orbits of dimension 3.

Since 'G(D3) stabilizes the hyperplanes Ei and since the cross ratio is invariant
under linear transformations, we obtain that cr is 'G(D3)-invariant. By the above
remark, the rational map cr therefore parametrizes all but finitely many 'G(D3)-
orbits of dimension 3 by P

1 \{[0 : 1], [1 : 0], [1 : 1]}.
The image 'G(S4), where S4 ⇢ PGL4 is the subgroup of coordinate permuta-

tions, normalizes 'G(D3) and therefore it permutes its 3-dimensional orbits. Since
S4 permutes the hyperplanes Ei, we can describe its action on the 3-dimensional
'G(D3)-orbits by its action on the cross ratio of the intersection of general lines
with the planes Ei.

Let r be the cross ratio between the points p0, p1, p2, p3 on a line. One calculates
that the cross ratio between p3, p1, p2, p0 is again r and that the cross ratio between
the points p2, p1, p2, p3 is 1

1�r . Hence the image of ⌧1 := [x3 : x1 : x2 : x0]
leaves cr invariant, whereas for the permutation ⌧2 := [x2 : x1 : x0 : x3] we have
cr � '(⌧2) 6= cr and cr � '(⌧2)2 6= cr.

Let f : G(1, 3) 99K P

4 be a birational transformation and let '0
G : = f � 'G �

f�1. The image '0
G(D3) ⇢ Cr4 is an algebraic torus of rank 3 and therefore, by

Proposition 2.5, conjugate to the standard subtorus D3 ⇢ D4 of rank 3. In other
words, there exists a rational map P

4 99K P

1 whose fibers consist of the closure of
the '0

G(D3)-orbits. The image '0
G(S4) permutes the torus orbits, hence we obtain

a homomorphism ⇢ : S4 ! PGL2(C). By what we observed above, the permutation
⌧1 is contained in the kernel of ⇢, whereas the image ⇢(⌧2) has order 3. The matrix
representation in GL3(Z) of ⌧1 corresponds to s1 and the matrix representation of
⌧2 corresponds to s2.

It follows now from Lemma 5.1 that ⇢ can not be extended to a homomorphism
from GL3(Z) ' W3 to PGL2(C), which implies that there exists no homomorphism
� : hPGL4(C),W3i ! Cr4 such that �(PGL4(C)) = '0

G(PGL4(C)), since W3 nor-
malizes the torus and its image would therefore permute the torus orbits as well.
The statement follows. ⇤
5.2. The case P(T P

2). Recall that matrices of order two in PGL2(C) have the
form

(1)


0 1
a 0

�
, or


1 b
c �1

�
, where a 2 C

⇤, b, c 2 C, bc 6= �1.

Proposition 5.3. The embedding 'B : PGL3(C) ! Bir(P(T P

2)) extends uniquely
to an embedding

�B : Cr2 ! Bir(P(T P

2)).

Proof. It is enough to show that every extension coincides withe one given in Ex-
ample 1.9. For this it is enough to show that the image of � is uniquely determined.
Assume that there is an extension  : Cr2 ! Bir(P(T P

2)) of 'B . We will show
 = | B .
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Let d 2 D2, d = (ax1, bx2) with respect to a�ne coordinates given by x0 = 1.
Then 'B(d) = (ax1, bx2, (b/a)x3), with respect to suitable local a�ne coordinates
of P(T P

2). Let � : P(T P

2) 99K P

2 ⇥P

1 be the birational map given by

� : (x1, x2, x3) 7! (x1, x2,
x1

x2
x3),

with respect to local a�ne coordinates.
Let  1 : Cr2 ! Bir(P2 ⇥P

1) be the algebraic embedding  1 = � �  � ��1. This
gives us a P

2-fibration, which we call the horizontal fibration, and a P

1-fibration,
which we call the vertical fibration. The image  1(D2) acts canonically on the first
factor and leaves the second one invariant. The horizontal fibers thus consist of
the closures of D2-orbits. Since W2 normalizes D2, the image  1(W2) permutes
the orbits of  1(D2). Hence it preserves the horizontal fibration and we obtain a
homomorphism

⇢ : W2 ' GL2(Z) ! Bir(P1) = PGL2(C).

In what follows we identify W2 with GL2(Z).
The images of the three transpositions in S3 = W2 \PGL3(C) under ⇢ are:

⇢

✓
0 1
1 0

◆
=


0 1
1 0

�
, ⇢

✓
1 �1
0 �1

◆
=


1 �1
0 �1

�

and ⇢

✓ �1 0
�1 1

◆
=

 �1 0
�1 1

�
.

The image ⇢(�) is either the identity or it has order 2. The elements of the
form (1) do not commute with the images of S3 described above. Since � is con-
tained in the center of W2, we obtain ⇢(�) = id.

It remains to show that the action of  1(�) on the first factor of P2 ⇥P

1 is the
standard action. Let M = P

2 be a horizontal fiber. It is stabilized by  (D2) and
 (�), so we obtain a homomorphism

� : hD2,�i ! Bir(M) = Cr2 .

Since �d��1 = d�1 for all d 2 D2, there exists a d 2 D2 such that �(�) = d�. This
is true for all horizontal fibers, so  1(�) induces an automorphism of U ⇥P

1, where

U = {[x0 : x1 : x2] | x0, x1, x2 6= 0} ⇢ P

2 .

Let S ' P

1 ⇢ U ⇥ P

1 be a vertical fiber and ⇡ : U ⇥ P

1 ! U the projection onto
the first factor. Then ⇡ � 1(�)(S) is a regular map from P

1 to the a�ne set U and
is therefore constant. We obtain that  1(�) preserves the vertical fibration.

The image  1(PGL3(C)) preserves the vertical fibration as well and projection
onto P

2 yields a homomorphism from PGL3(C) to Cr2 that is the standard em-
bedding. Hence  1(Cr2) preserves the vertical fibration and we obtain an algebraic
homomorphism from Cr2 to Cr2, which is uniquely determined by its restriction to
PGL3(C). So the image  1(�) is uniquely determined. ⇤

Lemma 5.4. There exists no homomorphism � : Cr2 ! Cr3 such that

�|PGL3(C) = 'B � ↵,
where 'B denotes the embedding of PGL3 into Cr3 from Example 1.9 and ↵ the

algebraic automorphism of PGL3 given by g 7! tg�1
.
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Proof. Assume that such an extension � : Cr2 ! Cr3 of 'B � ↵ exists.
Observe that ↵(D2) = D2 and that ↵|S3 = idS3 . Therefore, we can repeat the

same argument as in the proof of Proposition 5.3 to obtain  (�) = �B(�). But we
have

 (�) (g) (�) (g) (�) (g) 6= id

for g = [z�x : z�y : z] - this contradicts the relations in Cr2 (Proposition A.9). ⇤

5.3. The case P(OPn �OPn(�k(n+ 1))).

Proposition 5.5. The algebraic homomorphism 'l : PGLn+1(C) ! Bir(Fl) ex-

tends uniquely to the embedding

 l : hPGLn+1(C),Wni ! Bir(Fl) (see Example 1.8).

Proof. Suppose that there is an extension  : Hn ! Bir(Fl) of 'l. We will show
that  is unique and therefore that  =  l.

Let (x1, . . . , xn�1, w) be local a�ne coordinates of Fl such that for every g 2
PGLn+1(C) the image 'l(g) acts by

(x1, . . . , xn, w) 7! (g(x1, . . . , xn), J(g(x1, . . . , xn))
�lw).

In particular, the image under  of (d1x1, . . . , dnxn) 2 Dn acts by

(x1, . . . , xn, w) 7! (d1x1, . . . , dnxn, (d1 · · · dn)�lw).

Define � : Fl ! P

n ⇥P

1 by

� : (x1, . . . , xn, w) 7! (x1, . . . , xn, (x1 · · ·xn)
lw)

with respect to local a�ne coordinates. Let  1 : Crn ! Bir(Pn ⇥P

1) be the al-
gebraic embedding  1 := � �  � ��1. Then the image  1(Dn) acts canonically
on the first factor and leaves the second one invariant. Since Wn normalises Dn,
the image  1(Wn) permutes the orbits of  1(Dn). Hence  1(Wn) preserves the
horizontal fibration. This induces a homomorphism

⇢ : Wn ' GLn(Z) ! PGL2(C).

In what follows, we identify Wn with GLn(Z). Let An+1 ⇢ Sn+1 ⇢ PGLn+1(C)
be the subgroup of coordinate permutations s 2 Sn+1 such that J(s) = 1. Hence
An+1 2 ker(⇢). Note that the fixed point set of  1(An+1) is the vertical fiber

L := [1 : · · · : 1]⇥ P

1 ⇢ P

n ⇥P

1 .

Since �n commutes with An+1, the image  1(�n) stabilises L. The group  1(Dn)
acts transitively on an open dense subset of vertical fibers that contains L. Since
 1(�n) normalizes  1(Dn), we obtain that  1(�n) preserves the vertical fibration.
Therefore hPGLn+1(C),�ni preserves the vertical fibration. We obtain a homo-
morphism hPGLn+1(C),�ni ! Crn, which is, by Corollary A.12 and its proof, the
standard embedding.

Let

fA = (
1

x1
, x2, . . . , xn).

In [BH14] it is shown that fA is contained in hPGLn+1(C),�ni, which implies that
 1(fA) preserves the vertical fibration and that its action on P

n is the standard
action.
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Recall that (hfA)3 = id for h = (1 � x1, x2, . . . , xn�1) 2 Crn. The image  1(h)
is

 1(h) : (x1, . . . , xn, z) 7! (1� x1, x2, . . . , xn, (�1)lz).

Denote by A 2 GLn(Z) the integer matrix corresponding to fA. We have ⇢(A) = id
or ⇢(A) is of order two, i.e. has the form (1).

Suppose that ⇢(A) = id. Then

 1(fA) : (x1, . . . xn, z) 7! (
1

x1
, x2 . . . xn, z).

The relation (hfA)3 = id then implies that l is even.
Suppose that

⇢(fA) =


1 b
c �1

�
, where b, c 2 C, bc 6= �1,

hence

 1(fA) : (x1, . . . xn, z) 7!
✓

1

x1
, x2 . . . xn,

z + b

cz � 1

◆

and therefore

 1(hfA) = (x1, . . . xn, z) 7!
✓
1� 1

x1
, . . . xn,

(�1)lz + (�1)lb

cz � 1

◆
,

One calculates that if l is even, then the relation (hfA)3 = id is not satisfied. So
assume that l is odd. This gives

 1(hfA)
3 = (x1, . . . xn, z) 7!

✓
x1, . . . xn,

a1z + a2
a3z � a4

◆
,

where a1 = 3bc � 1, a2 = (bc � 1)b � 2b, a3 = (1 � bc)c + 2c and a4 = 3bc � 1. So
(hfA)3 = id yields either l odd and b = c = 0 or l odd and bc = 3. However, the
latter is not possible. Consider the transformation

⌧ = (x1, . . . , xn�2, xn, xn�1) 2 Sn.

We have fA⌧ = ⌧fA. Note that

 1(⌧) : (x1, . . . , xn, z) 7! (x1, . . . , xn�2, xn, xn�1, . . . , xn, (�1)lz)

and this transformation does not commute with
⇣
x1, . . . xn,

a1z+a2
a3z�a4

⌘
in the second

case. Hence c = b = 0 and l is odd.
Finally, assume that

⇢(fA) =


0 1
a 0

�
, where a 2 C

⇤ .

This implies

 1(fA) : (x1, . . . xn, z) 7!
✓

1

x1
, x2 . . . xn,

1

az

◆

and hence  (hfA)3 6= id.
We conclude that

⇢(fA) =


1 0
0 (�1)l

�

and therefore that the action of  (fA) is uniquely determined by l. Hence

 |hPGLn(C),�n�1i =  l|hPGLn(C),�n�1i.
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Let fB , fC , fD and fE 2 Crn be as in the proof of Corollary A.11. By Lemma
A.10 it remains to show that the image  (fB) is uniquely determined. We use once
more the relation

fB = fDfCfEf
�1
D .

Since ⇢(CE) = id and since fD has order two, we obtain ⇢(B) = id.
Let c 2 P

1 such that the restriction of  1(fB) to the hyperplane

{c}⇥ P

n ⇢ P

1 ⇥P

n

is a birational map. Then the restriction of  1(fB) to {c} ⇥ P

n has to fulfill the
relations with the group hPGLn+1(C),�ni. By Corollary A.12 we obtain that this
restriction has to be fB . Hence the image  1(fB) is unique. ⇤

Proposition 5.6. There exists no group homomorphism  : Hn ! Bir(Fl) such

that  |PGLn+1(C) = 'l � ↵.
Proof. Assume that such an extension  : Hn ! Crn exists. Let � be as in Propo-
sition 5.5 and  2 : Hn ! Bir(P1 ⇥P

n),

 2 := � � 'l � ↵ � ��1.

Similarly as in the proof of Proposition 5.5 one can show that  2(�n) preserves the
vertical fibration. In that way we obtain an algebraic homomorphism

A : hPGLn+1,�i ! Crn

such that A|PGLn+1(C) = ↵. Such a homomorphism does not exist by Corollary
A.12. ⇤

5.4. The case C ⇥ P

n.

Proposition 5.7. The embedding 'C : PGLn+1(C) ! Bir(C⇥P

n) extends uniquely
to the standard embedding

�C : Hn ! Bir(C ⇥ P

n) (see Example 5.7).

Proof. Suppose that there is an extension  : Hn ! Bir(C ⇥ P

n) of 'C . By defi-
nition,  (PGLn+1(C)) fixes the horizontal fibration with fibers isomorphic to P

n.
Moreover, each of the horizontal fibers is a closure of a  (Dn)-orbit. Since the ele-
ments of Wn commute with Dn, we conclude that  (Wn) preserves the horizontal
fibration. Hence Hn preserves the horizontal fibration and we obtain a homomor-
phism

⇢ : Hn ! Bir(C)

such that PGLn+1(C) ⇢ ker(⇢). In the Appendix it is shown that the normal
subgroup generated by PGLn+1 in Hn is all of Hn. Hence ⇢ is trivial and  (Hn)
fixes the horizontal fibration. The restriction  (Hn)|c⇥Pn for any c 2 C defines
a homomorphism from Hn to Crn such that the restriction to PGLn+1(C) is the
standard embedding. By Corollary A.12, this is the standard embedding. Hence  
is unique. ⇤

Proposition 5.8. There exists no group homomorphism  : Hn ! Bir(C⇥P

n)
such that  |PGLn+1(C) = 'C � ↵.
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Proof. Assume there exists such a  . As in the proof of Proposition 5.7 one can
show that  (Hn) fixes the horizontal fibration. The restriction  (Hn)|c⇥Pn�1 de-
fines for each c 2 C a homomorphism from Hn to Crn such that the restriction
to PGLn+1(C) is given by g 7! ↵(g). By Corollary A.12, there exists no such
homomorphism. ⇤

Appendix

Relations and structures in Crn. We will often use the following relations be-
tween elements of the Cremona group:

Lemma A.9. In Cr2 the following relations hold:

(1) �⌧(⌧�)�1 = id for all ⌧ 2 S3,

(2) �d = d�1� for all diagonal maps d 2 D2 and

(3) (�h)3 = id for h = [x2 � x0 : x2 � x1 : x2].

Proof. One checks the identities by direct calculation. ⇤
Denote by Cr0n ⇢ Crn the subgroup consisting of elements that contract only

rational hypersurfaces. We have Hn ⇢ Cr0n. On the other hand, it seems to be
an interesting open question, whether there exist elements in Cr0n that are not
contained in Hn for any n � 3 (cf. [Lam14]).

Lemma A.10. The group Hn is generated by PGLn+1(C) and the birational trans-

formations �n := (x�1
1 , x�1

2 , . . . , x�1
n ) and fB := (x1x2, x3, . . . , xn).

Proof. It is known that GLn(Z) is generated by the subgroup of permutation ma-
trices in GLn(Z) and the two elements

A :=

0

BBBBBB@

�1 0 0 · · · 0
0 1 0 · · · 0

· · ·

0 0 · · · 1 0
0 0 · · · 0 1

1

CCCCCCA
and B :=

0

BBBBBB@

1 1 0 · · · 0
0 1 0 · · · 0

· · ·

0 0 · · · 1 0
0 0 · · · 0 1

1

CCCCCCA

(see for example [dlH00, III.A.2]). Notice that fB is the birational transformation
in Wn corresponding to B. Let fA be the birational transformation corresponding
to A. In [BH14] it is shown that fA is contained in hPGLn+1(C),�ni. ⇤

The goal of this appendix is to prove the following two corollaries of Theorem 1.3:

Corollary A.11. Let n > m and let � : Crn ! Crm be a group homomorphism.

Then the normal subgroup of Crn containing Hn is contained in the kernel of �.

No such non-trivial homomorphism is known so far. In fact, it is an open ques-
tion, whether Crn is simple for n � 3.

Corollary A.12. Let  : Hn ! Crn g be a non-trivial group homomorphism. Then

there exists an automorphism of fields � of C and an element g 2 Crn such that

�(g g�1) is the standard embedding.

Moreover, the extension of the standard embedding ' : PGLn+1 ! Crn to the

group Hn is unique. The embedding ' � ↵, where ↵ : PGLn+1 ! PGLn+1 is the

algebraic automorphism g 7! tg�1
, does not extend to a homomorphism from Hn

to Crn.
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By the theorem of Noether and Castelnuovo, Corollary A.12 implies in particular
the theorem of Déserti about automorphisms of Cr2.

Proof of Corollary A.11. By Lemma A.10 it is enough to show that �n and fB are
contained in the normal subgroup containing PGLn+1(C). Let

gn := [xn � x0 : xn � x1 : · · · : xn � xn�1 : xn] 2 PGLn+1(C).

Then �ngn�ngn�ngn = id . In particular, �ngn conjugates �n to gn.
Let

C :=

0

BBBBBB@

�1 2 0 · · · 0
0 1 0 · · · 0

· · ·

0 0 · · · 1 0
0 0 · · · 0 1

1

CCCCCCA
, D :=

0

BBBBBB@

�1 0 0 · · · 0
�1 1 0 · · · 0

· · ·

0 0 · · · 1 0
0 0 · · · 0 1

1

CCCCCCA
,

E :=

0

BBBBBB@

0 1 0 · · · 0
1 0 · · · 0

· · ·

0 0 · · · 1 0
0 0 · · · 0 1

1

CCCCCCA
2 GLn(Z)

and let fC , fD and fE be the corresponding elements in Wn. It is shown in [BH14]
that fC is contained in hPGLn+1(C),�ni. Moreover, one calculates that

fB = fDfCfEf
�1
D ,

which implies that fB is conjugate to an element in hPGLn+1(C),�ni. ⇤
Proof of Corollary A.12. By Theorem 1.3 we may assume that, up to conjugation
and automorphism of fields, the restriction of  to PGLn+1(C) ist the standard
embedding or the standard embedding composed with the automorphism ↵ of
PGLn+1(C) given by ↵(g) = tg�1.

In particular,  (Dn) = Dn and therefore  (Wn) is contained in Dn oWn. As-
sume that  (�n) = d⌧ for some d 2 Dn and ⌧ 2 Wn. The relation  (�n)e (�n) =
e�1 for all e 2 Dn implies ⌧ = �n. Note that the restriction of  to Sn+1 is the
standard embedding. So for all ⌧ 2 Sn+1 we obtain

⌧d�n = d�n⌧ = d⌧�n.

The only element in Dn that commutes with Sn+1 is the identity. Hence  (�n) =
�n.

Let gn be as in the proof of Corollary A.11. The relation �ngn�ngn�ngn = id
implies that  |PGLn+1(C) is the standard embedding, since

�n↵(gn)�n↵(gn)�n↵(gn) 6= id .

It remains to show that  (fB) = fB . Let d 2 Dn, and ⇢ 2 Wn such that
 (fB) = d⇢. The image  (fB) acts on  (Dn) by conjugation. We have that
 (Dn) = Dn, so the action of  (fB) on  (Dn) is determined by ⇢. Since  |Dn is
the standard embedding, we obtain ⇢ = fB . Let d = (d1x1, . . . , dnxn). The image
 (fB) commutes with �n. We obtain

d�1�nfB = �ndfB = dfB�n = d�nfB



ON HOMOMORPHISMS BETWEEN CREMONA GROUPS 31

and hence di = ±1 for all i.
The image  (fB) commutes with all elements of Sn+1 that fix the coordinates

x1 and x2. Similar as above, this yields that d commutes with all elements of Sn+1

that fix the coordinates x1 and x2 and we get di = 1 for i 6= 1 and i 6= 2.
In [BH14] it is shown that f2

B is contained in hPGLn+1(C),�ni. By what we
proved above, this gives

 (f2
B) = f2

B = dfBdfB = dd0f2
B ,

where d0 = (d1d2x1, d2x2, . . . , dnxn). So dd0 = id, which yields d21d2 = 1 and there-
fore d2 = 1. This means that we have either  (fB) = fB or  (fB) = dfB with
d = (�x1, x2, . . . , xn).

Let

r1 := [x0 : x1 : · · · : xn�1 : xn + x1], r2 := [xn : x1 : · · · : xn�1 : x0],

r3 := [xn : x0 : x2 : · · · : xn�1 : x1], t := [xn : x0 : · · · : xn�1].

We have the relation

(r2tfBt
�1r3)r1(r2tfBt

�1r3) = r1

and therefore
(r2t (fB)t

�1r3)r1(r2t (fB)t
�1r3) = r1.

One calculates that if  (fB) = (�x1, x2, . . . , xn)fB then this relation is not satis-
fied. Hence  (fB) = fB . ⇤
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