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UNCERTAINTY QUANTIFICATION FOR PDES WITH

ANISOTROPIC RANDOM DIFFUSION

HELMUT HARBRECHT, MICHAEL PETERS, AND MARC SCHMIDLIN

Abstract. In this article, we consider elliptic diffusion problems with an
anisotropic random diffusion coefficient. We model the notable direction in

terms of a random vector field and derive regularity results for the solution’s
dependence on the random parameter. It turns out that the decay of the
vector field’s Karhunen-Loève expansion entirely determines this regularity.

The obtained results allow for sophisticated quadrature methods, such as the
quasi-Monte Carlo method or the anisotropic sparse grid quadrature, in order

to approximate quantities of interest, like the solution’s mean or the variance.
Numerical examples in three spatial dimensions are provided to supplement
the presented theory.

1. Introduction

Many phenomena in science and engineering are modelled as boundary value
problems for an unknown function. Because, in general, the computation of an
exact solution of such a boundary value problem is infeasible, it is necessary to
use numerical schemes that yield approximations of the solution. When using nu-
merical methods, such as finite elements or finite differences, the behaviour of these
numerical simulations is generally well understood for input data, such as boundary
values or coefficients, that are given exactly. However, for many applications, the
input data are not known exactly and can be thought of being subject to uncer-
tainty, for example when they are based on measurements. This then implies that
the solution of the boundary value problem is also subject to uncertainty.

Specifically, let us consider the second order diffusion problem where uncertainty
regarding the diffusion coefficient A has been accounted for by considering it as a
random matrix field over a given probability space (Ω,F ,P), ie.

for almost every ! 2 Ω:

8
><
>:

− divx
(
A(!)rx u(!)

)
= f in D,

u(!) = 0 on ΓD,
⌦
A(!)rx u(!),n

↵
= g on ΓN ,

on a domain D given a mixed boundary condition, where the function f describes
the known source and the function g the conormal derivative at the Neumann
boundary.

We note that the numerical treatment of isotropic random diffusion coefficients,
ie. A(!) = a(!)I, has already been considered, for example, in [3, 4, 6, 8, 18].
However, since the simulations in applications may require anisotropic diffusion, we
subsequently consider anisotropic random diffusion coefficients that fit the following
description: The anisotropic random diffusion coefficient has, at every point in D,
a notable direction regarding diffusion; that is a direction perpendicular to which
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diffusion is isotropic with a global strength a and in which the strength of diffusion
may be considerably different and also may vary in space. We can represent this
notable direction with its spatially varying directional strength as a random vector
field V.

One interpretation for random diffusion coefficients of this type is to consider
diffusion in a medium that is comprised of thin fibres. The direction of these fibres
is then described by the direction of V and the strength of diffusion in a fibre is
given by kVk2. The diffusion from a fibre to a neighbouring fibre is the diffusion
that is perpendicular to V and is thus considered to have strength a.

The application we have in mind here amounts from cardiac electrophysiology:
The electrical activation of the human heart has been an active area of research
during the last decades. It has been known for a long time that the heart exhibits a
fibrous structure. By now, it is well-understood that these fibres play a major role
for both, the electrical and the mechanical properties of the heart muscle. More pre-
cisely, the fibres have a very complex but also well-organized structure, exhibiting
key features that can be identified in all healthy subjects, such as a helical distri-
bution with opposite orientations, from the endocardium to the epicardium, see eg.
[19, 20], in particular, for visualisations of the cardiac fiber structure. However, the
exact fibre dislocations vary between different individuals and may also change over
time within a single individual due to pathologies, such as infarctions. Then, the
fibre structure is perturbed with the introduction of high variability areas in the
presence of scars. This uncertainty in the fibre direction is modeled via the vector
field V. In this particular application, the ratio between kVk2 and a is typically of
the order ten to one, see eg. [9, 20].

Moreover, random diffusion coefficients of this type may also be used to model
the diffusion in a laminar medium, ie. a medium comprised of stacked thin layers,
by choosing the direction of V as the normals on the layers. Then, we have that in
a layer the diffusion is isotropic with the strength a and in between layers, that is
in the direction given by V, the diffusion strength is given by kVk2.

The sections hereafter are organised as follows: Section 2 introduces some basic
definitions and notation followed by the model problem, which also includes the
formula that expresses A in terms of V and a. Then, in Section 3, we reformulate
the model problem into a stochastically parametric and spatially weak formula-
tion, by using the Karhunen-Loève expansion of the diffusion describing field V

to arrive at a stochastically parametrised form of the diffusion coefficient A. This
also enables us to conclude the well-posedness of the model problem. Section 4 is
dedicated to the regularity of the solution of the model problem with respect to the
random parameter from the Karhunen-Loève expansion of the diffusion describing
field V. Numerical examples are then provided in Section 5 as validation. Lastly,
our conclusions are given in Section 6.

2. Problem formulation

2.1. Notation and precursory remarks. For a given Banach space X and a
complete measure space M with measure µ the space Lp

µ(M;X ) for 1  p 
1 denotes the Bochner space, see [15], which contains all equivalence classes of
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strongly measurable functions v : M ! X with finite norm

kvkLp
µ(M;X ) :=

8
>><
>>:

Z

M

∥∥v(x)
∥∥p
X
dµ(x)

]1/p
, p < 1,

ess sup
x2M

∥∥v(x)
∥∥
X
, p = 1.

A function v : M ! X is strongly measurable if there exists a sequence of countably-
valued measurable functions vn : M ! X , such that for almost every m 2 M we
have limn!1 vn(m) = v(m). Note that, for finite measures µ, we also have the
usual inclusion Lp

µ(M;X ) ⊃ Lq
µ(M;X ) for 1  p < q  1.

When X is a separable Hilbert space and M is a separable measure space, the
Bochner space L2

µ(M;X ) is also a separable Hilbert space with the inner product

(u, v)L2
µ(M;X ) :=

Z

M

(
u(x), v(x)

)
X
dµ(x)

and is isomorphic to the tensor product space L2
µ(M)⌦X , see [16].

Subsequently, we will always equip R
d with the norm k·k2 induced by the canon-

ical inner product h·, ·i and R
d⇥d with the norm k·kF induced by the Frobenius

inner product h·, ·iF . Then, for v,w 2 R
d, the Cauchy-Schwartz inequality gives

us

|vTw| =
∣∣hv,wi

∣∣  kvk2kwk2 and the special case vTv = hv,vi = kvk22,

and we also have, by straightforward computation, that kvwTkF = kvk2kwk2.

2.2. The model problem. Let (Ω,F ,P) be a separable, complete probability
space. We consider the following second order diffusion problem with a random
diffusion coefficient

(1) for almost every ! 2 Ω:

8
><
>:

− divx
(
A(!)rx u(!)

)
= f in D,

u(!) = 0 on ΓD,
⌦
A(!)rx u(!),n

↵
= g on ΓN ,

where D ⇢ R
d is a Lipschitz domain with d ≥ 1 and @D = ΓD[ΓN is a disjoint de-

composition of the boundary. The function f 2 eH−1(D) describes the known source
and g 2 H−1/2(ΓN ) the known conormal derivative at the Neumann boundary. The
random matrix field A 2 L1

P

(
Ω;L1(D;Rd⇥d)

)
is the stochastically and spatially

varying diffusion coefficient, which satisfies the uniform ellipticity condition
(2)
amin  ess inf

x2D
λmin

(
A(x, !)

)
 ess sup

x2D
λmax

(
A(x, !)

)
 amax P-almost surely

for some constants 0 < amin  amax < 1 and is almost surely symmetric almost
everywhere. Without loss of generality, we assume amin  1 and amax ≥ 1.

To be able to capture the two situations arising from the fact that we might
have a pure Neumann boundary value problem, we introduce the solution space
V dependent upon the boundary-measure of ΓD: If ΓD has non-zero boundary-
measure, then we define

V := H1
ΓD

(D) :=
{
v 2 H1(D) : v(x) = 0 for all x 2 ΓD

 
.
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If ΓD has zero boundary-measure, ie. if we have a pure Neumann boundary value
problem, then we set

V := H1
⇤ (D) :=

{
v 2 H1(D) : (v, 1)L2(D) = 0

 

and also require that f and g fulfil the compatibility condition
Z

D

f(x) dx = −
Z

ΓN

g(x) ds.

In both cases, the norm equivalence theorem of Sobolev, see [2], implies for all
v 2 V and some constant 0 < cV  1 that

cV kvkH1(D)  kvkV =
∥∥rx v

∥∥
L2(D;Rd)

 kvkH1(D).

We will consider anisotropic diffusion coefficients that are of the form

(3) A(x, !) := aI+
⇣∥∥V(x, !)

∥∥
2
− a

⌘V(x, !)VT(x, !)

VT(x, !)V(x, !)
,

where a 2 R is a given value and V 2 L1
P

(
Ω;L1(D;Rd)

)
is a random vector field.

Furthermore, we require that they satisfy bmin  a  bmax and

(4) bmin  ess inf
x2D

∥∥V(x, !)
∥∥
2
 ess sup

x2D

∥∥V(x, !)
∥∥
2
 bmax P-almost surely

for some constants 0 < bmin  bmax < 1. Without loss of generality, we assume
bmin  1 and bmax ≥ 1.

We note that the field A accounts for a medium that has homogeneous diffusion
strength a perpendicular toV and has diffusion strength

∥∥V(x, !)
∥∥
2
in the direction

of V. The randomness of the specific direction and length of V therefore quantifies
the uncertainty of this notable direction and its diffusion strength.

Lemma 2.1. A diffusion coefficient of form (3) is well-formed and indeed also

satisfies the uniform ellipticity condition (2) with bmin and bmax.

Proof. For almost every ! 2 Ω and almost every x 2 D we have that A(x, !) is
well-formed, because of

VT(x, !)V(x, !) = kV(x, !)k22 ≥ b2min > 0,

and clearly symmetric. Furthermore, we can choose u2, . . . ,ud 2 R
d that are

perpendicular to V(x, !) and are linearly independent; then, we know that, for all
i = 2, . . . , d,

A(x, !)ui = aui and A(x, !)V(x, !) =
∥∥V(x, !)

∥∥
2
V(x, !).

This means that, for almost every ! 2 Ω and almost every x 2 D,

λmin

(
A(x, !)

)
= min

n
a,
∥∥V(x, !)

∥∥
2

o
≥ bmin,

λmax

(
A(x, !)

)
= max

n
a,
∥∥V(x, !)

∥∥
2

o
 bmax.

Therefore, A satisfies the uniform ellipticity condition (2) with bmin and bmax. ⇤

Thus, we will set amin := bmin and amax := bmax and, from here on, solely use
amin and amax.
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3. Problem reformulation

3.1. Karhunen-Loève expansion. To make the random field, and hence also
the diffusion coefficient, feasible for numerical computations, we separate the spa-
tial variable x and the stochastic parameter ! by considering the Karhunen-Loève
expansion of V. The mean field E[V] : Ω ! R

d and the matrix-valued covariance
field Cov[V] : D ⇥D ! R

d⇥d are given by

E[V](x) =

Z

Ω

V(x, !) dP(!)

and

Cov[V](x,x0) =

Z

Ω

V0(x, !)V
T

0 (x
0, !) dP(!),

respectively, where

V0(x, !) := V(x, !)− E[V](x).

Let {λk,ψk}k denote the eigenpairs corresponding to the Hilbert-Schmidt oper-
ator C that is induced from the kernel Cov[V](x,x0), ie.

(Cu)(x) :=
Z

D

Cov[V](x,x0)u(x0) dx0.

Then, the Karhunen Loève expansion of V is given by

(5) V(x, !) = E[V](x) +

1X

k=1

p
λkψk(x)Yk(!),

where the uncorrelated and centered random variables {Yk}k are given according
to

Yk(!) :=
1p
λk

Z

D

VT

0 (x, !)ψk(x) dx.

We note that the convergence of (5) is in the L2
P

(
Ω;L2(D;Rd)

)
-norm. However, we

have the following lemma.

Lemma 3.1. We have img(C) ⇢ L1(D;Rd). This implies that ψk 2 L1(D;Rd)
and, as a consequence, also Yk(!) 2 L1

P
(Ω).

Proof. For almost every x 2 D, we know that Cov[V](x, ·) 2 L1(D;Rd⇥d), where
we clearly have

∥∥Cov[V](x, ·)
∥∥
L1(D;Rd⇥d)


∥∥Cov[V]

∥∥
L1(D;L1(D;Rd⇥d))

.

Thus, we can calculate for almost every x 2 D that

∥∥(Cu)(x)
∥∥
2

Z

D

∥∥Cov[V](x,x0)u(x0)
∥∥
2
dx0


Z

D

∥∥Cov[V](x,x0)
∥∥
F

∥∥u(x0)
∥∥
2
dx0


∥∥Cov[V]

∥∥
L1(D;L1(D;Rd⇥d))

p
|D|kukL2(D;Rd)

and conclude that kCukL1(D;Rd) 
∥∥Cov[V]

∥∥
L1(D;L1(D;Rd⇥d))

p
|D|kukL2(D;Rd).

⇤
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Now, by parametrisation of the Yk as yk and replacing the
p
λk with σk, we may

assume, without loss of generality, that yk 2 [−1, 1], when considering the vector
field V in the parametrised form

(6) V(x,y) = E[V](x) +

1X

k=1

σkψk(x)yk,

where y = (yk)k2N 2 ⇤ := [−1, 1]
N
. Consequently, we can also view A(x,y) and

u(x,y) as being parametrised by y and restate (1) as

(7) for almost every y 2 ⇤:

8
><
>:

− divx
(
A(y)rx u(y)

)
= f in D,

u(y) = 0 on ΓD,
⌦
A(y)rx u(y),n

↵
= g on ΓN .

We now impose some common assumptions, which make the Karhunen-Loève
expansion computationally feasible.

Assumption 3.2. The random variables (Yk)k2N are independent and uniformly

distributed on
⇥
−
p
3,
p
3
⇤
, ie. σk =

p
3λk. Moreover, the sequence γ = (γk)k2N0

,

given by

γk :=
∥∥σkψk

∥∥
L1(D;Rd)

,

is at least in `1(N0), where we have defined ψ0 := E[V] and σ0 := 1.

Lemma 3.3. The representation (6) also converges in L1
P

(
Ω;L1(D;Rd)

)
.

Proof. We define

VM (x,y) := E[V](x) +
MX

k=1

σkψk(x)yk.

Since L1
Py

(
⇤;L1(D;Rd)

)
is complete, it suffices to show that (VM )M2N

is a Cauchy

sequence in L1
Py

(
⇤;L1(D;Rd)

)
. Let M  M 0 be two indices, then we have

∥∥VM 0 −VM
∥∥
L1

Py
(⇤;L1(D;Rd))

=

∥∥∥∥
M 0X

k=M+1

σkψkyk

∥∥∥∥
L1

Py
(⇤;L1(D;Rd))


M 0X

k=M+1

∥∥σkψk

∥∥
L1(D;Rd)

∥∥yk
∥∥
L1

Py
(⇤;R)


M 0X

k=M+1

γk 
1X

k=M+1

γk.

Thus, since γ 2 `1(N0), we know that
∥∥VM 0 − VM

∥∥
L1

Py
(⇤;L1(D;Rd))

M,M 0!1−−−−−−−! 0

and so (VM )M2N
is a Cauchy sequence in L1

Py

(
⇤;L1(D;Rd)

)
. ⇤

3.2. Spatially weak formulation. Since we want to pursue a finite element ap-
proach in space to approximate the solution of (7), we will need the spatially weak
form thereof.

Given almost any y 2 ⇤, we have

− divx
(
A(x,y)rx u(x,y)

)
= f(x) for all x 2 D.
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After multiplication with a test function v 2 V and integration over D, we arrive
at

−
Z

D

divx
(
A(x,y)rx u(x,y)

)
v(x) dx =

Z

D

f(x)v(x) dx.

Now, Green’s identity implies

−
Z

D

divx
(
A(x,y)rx u(x,y)

)
v(x) dx =

Z

D

⌦
A(x,y)rx u(x,y),rx v(x)

↵
dx

−
Z

∂D

⌦
A(x,y)rx u(x,y),n(x)

↵
v(x) ds,

which, because of v|ΓD
= 0 and

⌦
A(y)rx u(y),n

↵
= g on ΓN , simplifies to

−
Z

D

divx
(
A(x,y)rx u(x,y)

)
v(x) dx =

Z

D

⌦
A(x,y)rx u(x,y),rx v(x)

↵
dx

−
Z

ΓN

g(x)v(x) ds.

We define B : ⇤ !
(
V ⇥ V ! R

)
, where B[y] is a continuous symmetric bilinear

form for almost any y 2 ⇤, by

B[y](u, v) :=
Z

D

⌦
A(x,y)rx u(x),rx v(x)

↵
dx

and ` : V ! R a continuous linear form by

`(v) :=

Z

D

f(x)v(x) dx+

Z

ΓN

g(x)v(x) ds.

Then, this leads us to the spatially weak formulation

(8)

(
Find u : ⇤ ! V such that

B[y]
(
u(y), v

)
= `(v) for almost every y 2 ⇤ and all v 2 V .

We conclude the following well known stability estimate.

Lemma 3.4. For almost every y 2 ⇤, there is a unique solution u(y) 2 V of (8),
which fulfils

∥∥u(y)
∥∥
H1(D)

 amax

aminc2V

⇣
kfk eH−1(D) + kgkH−1/2(ΓN )

⌘
.

4. Parametric regularity

4.1. Parametric regularity of the diffusion coefficient. In the following, we
will use the notation

~s~ := kskL1
Py

(⇤;L1(D;R)) = ess sup
y2⇤

ess sup
x2D

∣∣s(x,y)
∣∣,

~v~d := kvkL1
Py

(⇤;L1(D;Rd)) = ess sup
y2⇤

ess sup
x2D

∥∥v(x,y)
∥∥
2
,

~M~d⇥d := kMkL1
Py

(⇤;L1(D;Rd⇥d)) = ess sup
y2⇤

ess sup
x2D

∥∥M(x,y)
∥∥
F

for s 2 L1
Py

(
⇤;L1(D;R)

)
, v 2 L1

Py

(
⇤;L1(D;Rd)

)
andM 2 L1

Py

(
⇤;L1(D;Rd⇥d)

)
.

We will further make extensive use of the following straightforward result.
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Lemma 4.1. Given v,w 2 L1
Py

(
⇤;L1(D;Rd)

)
, we have

⌫

⌫vTw
⌫

⌫  ~v~d~w~d and
⌫

⌫vTv
⌫

⌫ = ~v~
2
d

as well as
⌫

⌫vwT
⌫

⌫

d⇥d
 ~v~d~w~d and

⌫

⌫vvT
⌫

⌫

d⇥d
= ~v~

2
d.

In this section, we assume that the vector field V is given by a finite rank
Karhunen-Loève expansion, ie.

V(x,y) = ψ0(x) +

MX

k=1

σkψk(x)yk.

If necessary this can be attained by appropriate truncation:

Lemma 4.2. The condition (4) is satisfied by any truncation of the Karhunen-

Loève expansion with a large enough M .

Proof. Recall the definition

VM (x,y) := E[V](x) +

MX

k=1

σkψk(x)yk.

Clearly, for any M we have that

⌫

⌫VM
⌫

⌫

d
=

⌫

⌫

⌫

⌫

E[V] +
MX

k=1

σkψkyk

⌫

⌫

⌫

⌫

d

=

⌫

⌫

⌫

⌫

ψ0 +
MX

k=1

σkψkyk

⌫

⌫

⌫

⌫

d


⌫

⌫ψ0

⌫

⌫

d
+

MX

k=1

⌫

⌫σkψkyk
⌫

⌫

d


MX

k=0

γk 
1X

k=0

γk < 1,

since γ 2 `1(N0). Then, because of

⌫

⌫VM
⌫

⌫

d
=

⌫

⌫

⌫

⌫

E[V] +

MX

k=1

σkψkyk

⌫

⌫

⌫

⌫

d

=

⌫

⌫

⌫

⌫

V −
1X

k=M+1

σkψkyk

⌫

⌫

⌫

⌫

d

≥ ~V~d −
⌫

⌫

⌫

⌫

1X

k=M+1

σkψkyk

⌫

⌫

⌫

⌫

d

≥ amin −
1X

k=M+1

γk,

for any M that fulfils
P1

k=M+1 γk < amin, we can find constants with which VM

satisfies the condition (4). Since γ 2 `1(N0) implies that
P1

k=M+1 γk
M!1−−−−! 0 ,

we see that
P1

k=M+1 γk < amin is fulfilled for sufficiently large M . ⇤

We shall now provide regularity estimates for the different terms in (3).

Lemma 4.3. Let B be defined as B(x,y) := V(x,y)VT(x,y). Then, we have for

all α 2 N
M
0 that

⌫

⌫@α
y B

⌫

⌫

d⇥d
 2a2maxγ

α.

Proof. More verbosely, B is given by

B(x,y) =

✓
ψ0(x) +

MX

k=1

σkψk(x)yk

◆✓
ψ0(x) +

MX

k=1

σkψk(x)yk

◆T

,
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from which we can derive the first order derivatives, yielding

(9)

@yi
B(x,y) = σiψi(x)

✓
ψ0(x) +

MX

k=1

σkψk(x)yk

◆T

+

✓
ψ0(x) +

MX

k=1

σkψk(x)yk

◆
σiψ

T

i (x),

and from those also the second order derivatives. They are given by

(10) @yj@yiB(x,y) = σiψi(x)σjψ
T

j (x) + σjψj(x)σiψ
T

i (x).

Since the second order derivatives with respect to y are constant, all higher order
derivatives with respect to y vanish.

We obviously have ~B~d⇥d = ~V~
2
d  a2max. From (9) we can now derive the

bound

⌫

⌫@yiB
⌫

⌫

d⇥d
 2

⌫

⌫σiψi

⌫

⌫

d

⌫

⌫

⌫

⌫

ψ0 +

MX

k=1

σkψkyk

⌫

⌫

⌫

⌫

d

 2γiamax

and (10) leads us to
⌫

⌫@yj@yiB
⌫

⌫

d⇥d
 2

⌫

⌫σiψi

⌫

⌫

d

⌫

⌫σjψj

⌫

⌫

d
 2γiγj . Therefore, we

have

⌫

⌫@α
y B

⌫

⌫

d⇥d


8
>>><
>>>:

a2maxγ
α, if |α| = 0,

2amaxγ
α, if |α| = 1,

2γα, if |α| = 2,

0, if |α| > 2,

and are finished since amax ≥ 1. ⇤

Lemma 4.4. Let us define C(x,y) := VT(x,y)V(x,y), D(x,y) :=
(
C(x,y)

)−1

and E(x,y) :=
p
C(x,y). Then, we know for all α 2 N

M
0 that

~@α
y D~  |α|! 1

a2min

✓
2a2max

a2min log 2

◆|α|

γα and ~@α
y E~  |α|!amax

✓
2a2max

a2min log 2

◆|α|

γα.

Proof. The function C can be expressed as

C(x,y) =

✓
ψ0(x) +

MX

k=1

σkψk(x)yk

◆T✓
ψ0(x) +

MX

k=1

σkψk(x)yk

◆
,

which, by derivation, gives the following expressions for the first order derivatives,

(11)

@yiC(x,y) = σiψ
T

i (x)

✓
ψ0(x) +

MX

k=1

σkψk(x)yk

◆

+

✓
ψ0(x) +

MX

k=1

σkψk(x)yk

◆T

σiψi(x).

Computing the second order derivatives then yields

(12) @yj@yiC(x,y) = σiψ
T

i (x)σjψj(x) + σjψ
T

j (x)σiψi(x)

and all higher order derivatives with respect to y are zero, since the second order
derivatives with respect to y are already constant.
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We use (4) to arrive at a2min  ~C~ = ~V~
2
d  a2max, which also yields

1

a2max

 ~D~  1

a2min

and amin  ~E~  amax.

Using (11) yields the bound

⌫

⌫@yiC
⌫

⌫  2
⌫

⌫σiψi

⌫

⌫

d

⌫

⌫

⌫

⌫

ψ0 +

MX

k=1

σkψkyk

⌫

⌫

⌫

⌫

d

 2γiamax

and, from (12), we can derive the bound
⌫

⌫@yj@yiC
⌫

⌫  2
⌫

⌫σiψi

⌫

⌫

d

⌫

⌫σjψj

⌫

⌫

d
 2γiγj .

Thus, we know that
⌫

⌫@α
y C

⌫

⌫  2a2maxγ
α.

Because D = v ◦ C with v(x) = x−1 and E = w ◦ C with w(x) =
p
x are

composite functions, we employ the Faà di Bruno formula, see [7], to compute their
derivatives. The r-th derivative of v is given by

dr

dxr
v(x) = (−1)rr!x−1−r = (−1)rr!v(x)r+1

and the r-th derivative of w is given by

dr

dxr
w(x) = crx

1
2
−r = crw(x)v(x)

r,

where cr :=
Qr−1

i=0

(
1
2 − i

)
. For n = |α| we thus arrive at

(13) @α
y D(x,y) =

nX

r=1

(−1)rr!D(x,y)r+1
X

P (α,r)

α!
nY

j=1

⇣
@
βj
y C(x,y)

⌘kj

kj !(βj !)
kj

and

(14) @α
y E(x,y) =

nX

r=1

crE(x,y)D(x,y)r
X

P (α,r)

α!

nY

j=1

⇣
@
βj
y C(x,y)

⌘kj

kj !(βj !)
kj

,

where P (α, r) is a subset of integer partitions of a multiindex α into r non-vanishing
multiindices, given by

P (α, r) :=

⇢⇣
(k1,β1), . . . , (kn,βn)

⌘
2
⇣
N0 ⇥ N

M
0

⌘n

:

nX

j=1

kjβj = α,

nX

j=1

ki = r,

and there exists 1  s  n : kj = 0 and βj = 0 for all 1  j  n− s,

kj > 0 for all n− s+ 1  j  n and 0 ≺ βn−s+1 ≺ · · ·βn

}
.

The relation β ≺ β0 for multiindices β,β0 2 N
M
0 means that either |β| < |β0| or,

when |β| = |β0|, there exists 0  k < m such that β1 = β0
1, . . . ,βk = β0

k and
βk+1 < β0

k+1.
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Taking the norm of (13) and (14) leads us to

⌫

⌫@α
y D

⌫

⌫ 
nX

r=1

r!~D~
r+1

X

P (α,r)

α!

nY

j=1

⌫

⌫@
βj
y C

⌫

⌫

kj

kj !(βj !)
kj


nX

r=1

r!

✓
1

a2min

◆r+1 X

P (α,r)

α!

nY

j=1

(
2a2maxγ

βj
)kj

kj !(βj !)
kj

= γα

nX

r=1

r!

✓
1

a2min

◆r+1(
2a2max

)r X

P (α,r)

α!

nY

j=1

1

kj !(βj !)
kj

and

⌫

⌫@α
y E

⌫

⌫ 
nX

r=1

|cr|~E~~D~
r
X

P (α,r)

α!

nY

j=1

⌫

⌫@
βj
y C

⌫

⌫

kj

kj !(βj !)
kj


nX

r=1

|cr|amax

✓
1

a2min

◆r X

P (α,r)

α!
nY

j=1

(
2a2maxγ

βj
)kj

kj !(βj !)
kj

= γα

nX

r=1

|cr|amax

✓
1

a2min

◆r(
2a2max

)r X

P (α,r)

α!

nY

j=1

1

kj !(βj !)
kj
.

Since we know from [7] that

X

P (α,r)

α!

nY

j=1

1

kj !(βj !)
kj

= Sn,r,

where Sn,r denotes the Stirling numbers of the second kind, see [1], and that |cr| 
r!, we can obtain

⌫

⌫@α
y D

⌫

⌫  1

a2min

γα

nX

r=1

r!

✓
2a2max

a2min

◆r

Sn,r  1

a2min

✓
2a2max

a2min

◆|α|

γα

nX

r=1

r!Sn,r

and

⌫

⌫@α
y E

⌫

⌫  amaxγ
α

nX

r=1

r!

✓
2a2max

a2min

◆r

Sn,r  amax

✓
2a2max

a2min

◆|α|

γα

nX

r=1

r!Sn,r.

Because
Pn

r=1 r!Sn,r equals the n-th ordered Bell number, we can bound it, see [5],
by

nX

r=1

r!Sn,r  n!

(log 2)n
.

This implies the assertion. ⇤

By combining the previous two lemmata, we derive the following result.

Lemma 4.5. We define F by

F(x,y) :=
V(x,y)VT(x,y)

VT(x,y)V(x,y)
.
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Then, we have for all α 2 N
M
0 that

⌫

⌫@α
y F

⌫

⌫

d⇥d
 |α|! 6a

2
max

a2min

✓
2a2max

a2min log 2

◆|α|

γα.

Proof. We can equivalently state F as F(x,y) = D(x,y)B(x,y). Then, by applying
the Leibniz rule, we arrive at

@α
y F(x,y) =

X

βα

✓
α

β

◆⇣
@β
yD(x,y)

⌘⇣
@α−β
y B(x,y)

⌘
.

Taking the norm and using the bounds from Lemma 4.3 and Lemma 4.4 leads us
to

⌫

⌫@α
y F

⌫

⌫

d⇥d


X

βα

✓
α

β

◆
⌫

⌫@β
yD

⌫

⌫

⌫

⌫@α−β
y B

⌫

⌫

d⇥d


X

βα

✓
α

β

◆
|β|! 1

a2min

✓
2a2max

a2min log 2

◆|β|

γβ2a2maxγ
α−β

 2a2max

a2min

✓
2a2max

a2min log 2

◆|α|

γα
X

βα

✓
α

β

◆
|β|!.

Lastly, the combinatorial identity

(15)
X

βα
|β|=j

✓
α

β

◆
=

✓|α|
j

◆

yields the bound

X

βα

✓
α

β

◆
|β|! =

|α|X

j=0

j!
X

βα
|β|=j

✓
α

β

◆
=

|α|X

j=0

j!

✓|α|
j

◆
= |α|!

|α|X

k=0

1

k!
 3|α|!.

⇤

Gathering all the regularity estimates for the different terms in (3) gives us the
regularity of the diffusion matrix A.

Theorem 4.6. The derivatives of the diffusion matrix A defined in (3) satisfy

⌫

⌫@α
y A

⌫

⌫

d⇥d
 (|α|+ 1)!(2amax)

6a2max

a2min

✓
2a2max

a2min log 2

◆|α|

γα

for all α 2 N
M
0 with |α| ≥ 1.

Proof. We can state A as A(x,y) = aI + E(x,y)F(x,y) − aF(x,y), which, with
the Leibniz rule, yields

@α
y A(x,y) =

X

βα

✓
α

β

◆⇣
@β
yE(x,y)

⌘⇣
@α−β
y F(x,y)

⌘
− a@α

y F(x,y).
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Then, by taking the norm and inserting the bounds from Lemmata 4.4 and 4.5, we
arrive at

⌫

⌫@α
y A

⌫

⌫

d⇥d


X

βα

✓
α

β

◆
⌫

⌫@β
yE

⌫

⌫

⌫

⌫@α−β
y F

⌫

⌫

d⇥d
+ amax

⌫

⌫@α
y F

⌫

⌫

d⇥d


X

βα

✓
α

β

◆
|β|!amax

✓
2a2max

a2min log 2

◆|β|

γβ

|α− β|! 6a
2
max

a2min

✓
2a2max

a2min log 2

◆|α−β|

γα−β

+ |α|!amax
6a2max

a2min

✓
2a2max

a2min log 2

◆|α|

γα

 amax
6a2max

a2min

✓
2a2max

a2min log 2

◆|α|

γα
X

βα

✓
α

β

◆
|β|!|α− β|!

+ amax
6a2max

a2min

✓
2a2max

a2min log 2

◆|α|

γα|α|!.

Finally, the combinatorial identity (15) yields, see eg. [12],

X

βα

✓
α

β

◆
|β|!|α− β|! = (|α|+ 1)!.

⇤

If we now define the modified sequence µ = (µk)k2N0
as

µk :=
4a2max

a2min log 2
γk and also cA := (2amax)

6a2max

a2min

,

we can summarize the results attained so far by1
⌫

⌫@α
y A

⌫

⌫

d⇥d
 |α|!cAµα.

4.2. Parametric regularity of the solution. The above regularity estimate car-
ries over to the solution with slightly different constants.

Theorem 4.7. For almost every y 2 ⇤, the derivatives of the solution u(y) of (8)
satisfy

∥∥@α
y u(y)

∥∥
H1(D)

 |α|!µα

✓
amax

aminc2V
max

n
2cA, kfk eH−1(D) + kgkH−1/2(ΓN )

o◆|α|+1

.

Proof. By differentiation of the variational formulation (8) with respect to y we
arrive, for arbitrary v 2 V , at

⇣
@α
y

(
A(y)rx u(y)

)
,rx v

⌘

L2(D;Rd)
= 0.

Applying the Leibniz rule on the left-hand side yields
✓X

βα

✓
α

β

◆
@α−β
y A(y)@β

y rx u(y),rx v

◆

L2(D;Rd)

= 0.

1Note that the additional factor of 2 in µk removes the factor |α| + 1 from the factorial

expression, since we know that 2|α| ≥ |α|+ 1.
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Then, by rearranging and using the linearity of the gradient, we find
Z

D

D
A(y)rx @

α
y u(y),rx v

E
dx = −

X

β<α

✓
α

β

◆Z

D

D
@α−β
y A(y)rx @

β
yu(y),rx v

E
dx.

We now choose v = @α
y u(y) and employ the coercivity as well as the bound from

Theorem 4.6. This results in

aminc
2
V

∥∥@α
y u(y)

∥∥2
H1(D)

 −
X

β<α

✓
α

β

◆Z

D

D
@α−β
y A(y)rx @

β
yu(y),rx @

α
y u(y)

E
dx


X

β<α

✓
α

β

◆
⌫

⌫@α−β
y A

⌫

⌫

d⇥d

∥∥@β
yu(y)

∥∥
H1(D)

∥∥@α
y u(y)

∥∥
H1(D)


X

β<α

✓
α

β

◆
|α− β|!cAµα−β

∥∥@β
yu(y)

∥∥
H1(D)

∥∥@α
y u(y)

∥∥
H1(D)

,

from which we derive
∥∥@α

y u(y)
∥∥
H1(D)

 c

2

X

β<α

✓
α

β

◆
|α− β|!µα−β

∥∥@β
yu(y)

∥∥
H1(D)

,

where

c :=
amax

aminc2V
max

n
2cA, kfk eH−1(D) + kgkH−1/2(ΓN )

o
.

We note that, by definition of c, we have c ≥ 2 and furthermore, because of
Lemma 3.4, we also have that

∥∥u(y)
∥∥
H1(D)

 c, which means that the assertion is

true for |α| = 0.
Thus, we can use an induction over |α| to prove the hypothesis

∥∥@α
y u(y)

∥∥
H1(D)

 |α|!µαc|α|+1

for |α| > 0. Let the assertions hold for all α, which satisfy |α|  n − 1 for some
n ≥ 1. Then, we know for all α with |α| = n that

∥∥@α
y u(y)

∥∥
H1(D)

 c

2

X

β<α

✓
α

β

◆
|α− β|!µα−β

∥∥@β
yu(y)

∥∥
H1(D)

 c

2
µα

X

β<α

✓
α

β

◆
|α− β|!|β|!c|β|+1

=
c

2
µα

n−1X

j=0

X

β<α
|β|=j

✓
α

β

◆
|α− β|!|β|!c|β|+1.

Making use of the combinatorial identity (15) yields

∥∥@α
y u(y)

∥∥
H1(D)

 c

2
µα

n−1X

j=0

✓|α|
j

◆
(|α| − j)!j!cj+1

=
c

2
|α|!µαc

n−1X

j=0

cj  c

2
|α|!µαc

c|α|

c− 1
 c

2(c− 1)
|α|!µαc|α|+1.

Now, since c ≥ 2, we have c  2(c− 1) and hence also
∥∥@α

y u(y)
∥∥
H1(D)

 |α|!µαc|α|+1.
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This completes the proof. ⇤

4.3. Numerical quadrature in the parameter. Because of the regularity es-
timates shown before, we can refer to [13, Lemma 7], which is a straightforward
consequence from the results in [21], for the convergence rate of the quasi-Monte
Carlo method (QMC) based on the Halton-points. Therefore, under the assump-
tions made there, we can conclude that, for any δ > 0, there is a constant Cδ such
that ∥∥∥∥E[u]−

1

N

NX

i=1

u(ξi)

∥∥∥∥
H1(D)

 CδN
δ−1.

A similar result also accounts for the variance V[u], see eg. [14].
For the sparse grid quadrature (SG), assume that γk  ck−r for some constants

c, r > 0. Then, the anisotropic sparse Gauss-Legendre quadrature on level q with
N(q) points satisfies the error estimate

kE[u]−Aw(q,M)ukH1
0
(D)  CN(q)−r/(2 log logM)kukC(⇤;H1

0
(D))

with a constant C > 0, see [10]. Herein, we have wk := log
(

1
γk

+
p
1 + 1/γ2

k

)
, see

eg. [4], and

Aw(q,M) :=
X

α2Yw(q,M)

cw(α)Qα with cw(α) :=
X

β2{0,1}M

hα+β,wiq

(−1)|β|,

where Qα denotes the tensor product Gauss-Legendre quadrature operator of de-
gree dα/2e.2 The set Yw(q,M) is given according to

Yw(q,M) :=
{
α 2 N

M
0 : q − kwk1  hα,wi  q

 
.

With similiar arguments as in [14], the convergence result again carries over to V[u].

5. Numerical results

We will now consider two examples of the model problem (1) with a diffusion co-
efficient of form (3) using the unit cube D := (0, 1)3 as the domain of computations.
In both examples, we set the global strength a to a := 0.12 and, for convenience,
segment the boundary @D into three disjoint parts:

Γ0 := {1} ⇥ (0, 1)⇥ (0, 1),

Γ1 := {0} ⇥ (0, 1)⇥ (0, 1) and

Γ2 := @D \ (Γ0 [ Γ1).

Moreover, we choose the description ofV to be defined by E[V](x) :=
⇥
1 0 0

⇤T
and

Cov[V](x,x0) := 0.01 exp

✓
−
∥∥x− x0

∥∥2
2

50

◆2
4
1 0 0
0 9s2(x,x

0) 0
0 0 9s3(x,x

0)

3
5 ,

where

sj(x,x
0) := 16 · xj(1− xj) · x0

j(1− x0
j).

2Note that the quadrature operator Aw(q,M) rather refers to the sparse grid combination
technique than the actual sparse grid quadrature operator.
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The effect of the function sj is to suppress the covariance along the normal direction
on the boundary Γ2. Some samples of the normalized vector field V/kVk2 used
for our examples, which are computed on the level 3 discretisation, are shown in
Figure 7 as stream traces. By their definition, the stream traces are tracing our
notable diffusion direction.

The numerical implementation is performed with aid of the problem-solving envi-
ronment DOLFIN [17], which is a part of the FEniCS Project [17]. The Karhunen-
Loève expansion of the vector field V is computed by the pivoted Cholesky de-
composition, see [11, 12] for the details. For the finite element discretization, we
employ a sequence of triangulations Tl, subsequently we will call the index l the
level, yielded by successive uniform refinement, ie. cutting each tetrahedron into
8 tetrahedra. Level 0 consists of 6 · 23 = 48 tetrahedra. Then, we use element-
wise constant functions and the truncated pivoted Cholesky decomposition for the
Karhunen-Loève expansion approximation and continuous element-wise linear func-
tions in space. The truncation criterion for the pivoted Cholesky decomposition is
that the relative trace error is smaller than 10−4 · 4−l; see Table 1 for the resulting
parameter dimensions M . Since the exact solutions of the examples are unknown,
the errors will have to be estimated. Therefore, in this section, we will estimate
the errors for the levels 0 to 5 by substituting the exact solution with the approxi-
mate solution computed on the level 6 triangulation T6 using the quasi-Monte Carlo
quadrature based on Halton points with 104 samples.

For every level, we also define the number of samples used by the different
quadrature methods. For the quasi-Monte Carlo method based on Halton points,
we choose

NQMC
l :=

l
2l/(1−δ) · 10

m

with δ := 0.2; see Table 1 for the resulting values of Nl. For the sparse grid
quadrature, we set ql = 2l + 2. Based on these choices, we expect to see an
asymptotic rate of convergence of 2−l in the H1-norm for the mean and in the W 1,1-
norm for the variance; see again Table 1 for the resulting values of NSG

l := N(ql).
As a validation for the reference solution, we consider here also the convergence of
a Monte Carlo quadrature, using NMC

l := 4l samples on the level l, with respect
to this reference. Note that to obtain an approximation for the mean square error,
we average five realisations of the Monte Carlo (MC) estimator.

l 0 1 2 3 4 5

NQMC
l 10 24 57 135 320 762

NSG
l 1 7 29 87 265 909

NMC
l 1 4 16 64 256 1024

M 16 24 28 34 44 53

Table 1. The number of samples for the first six levels and the
respective parameter dimensions.

5.1. Example. In the first example, we set the source to f(x) ⌘ 1 and consider
homogeneous Dirichlet data, ie. we set ΓD = Γ0 [ Γ1 [ Γ2 and ΓN = ;.
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Visualisations of the reference solution’s mean and variance are shown in Fig-
ure 1. Note that, to enable a view of the inside, all data with coordinates [x1, x2, x3]

T

such that x2 + x3 > 1 are clipped.
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Figure 1. Mean and variance of the solution.

Figures 2 and 3 show the estimated errors of the solution’s mean on the left
hand side and of the solution’s variance on the right hand side, each versus the
discretisation level for the different quadrature methods. As expected, each of the
quadrature methods achieves the predicted rate of convergence, however QMC and
SG provide slightly better errors in case of the variance.

0 2 4
10−2

10−1

Level l

E
st
im

at
ed

er
ro
r

QMC

SG

MC

slope 2−l

Figure 2. H1-error in
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5.2. Example. The data in this example are given as follows. We remove the
source, ie. f(x) ⌘ 0, and consider

ΓN := Γ0 [ Γ1 with g(x) :=

(
1, x 2 Γ0,

−1, x 2 Γ1,

and ΓD := Γ2.
The respective visualisations of the reference solution’s mean and variance are

depicted in Figure 4.
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Figure 4. Mean and variance of the solution.

Figures 5 and 6 exhibit the estimated errors of the solution’s mean on the left
hand side and of the solution’s variance on the right hand side, each versus the
discretisation level for the different quadrature methods. Again, each of the quad-
rature methods achieves the predicted rate of convergence. As in the previous
example QMC and SG provide slightly better errors in case of the variance.

6. Conclusion

In this article, we have introduced the diffusion coefficient (3) that may be used
to model anisotropic diffusion that has a notable direction of diffusion with an
associated strength, which both are considered to be subject to uncertainty; this
is encoded by the vector field V. While this type of diffusion coefficient does not
model all possible anisotropic diffusion coefficients, it can be used to model both
diffusion in media that consist of thin fibres or thin sheets, given that either the
diffusion between the fibres or in the sheets is isotropic with a global strength that
is not subject to uncertainty.

We derived, based on the decay of the Karhunen-Loève expansion of V, re-
lated decay rates for the solution’s derivatives; given a sufficiently fast decaying
Karhunen-Loève expansion, this regularity then provides dimension independent
convergence when considering the quasi-Monte Carlo quadrature to approximate
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quantities of interest that require the integration of the solution with respect to the
random parameter. Furthermore, it also allows the use of other quadrature meth-
ods like the anisotropic sparse grid quadrature which has been considered in the
numerical experiments. The numerical results corroborate the theoretical findings.

Lastly, note that the model for the diffusion coefficient may, for example, be
generalised to

A(x, !) := a(x, !)I+
⇣∥∥V(x, !)

∥∥
2
− a(x, !)

⌘V(x, !)VT(x, !)

VT(x, !)V(x, !)
,

without effecting regularity. With this type of diffusion coefficient, the diffusion ac-
counted for between the fibres or in the sheets is still isotropic, but can be spatially
varying and also subject to uncertainty. We especially note that for two spatial
dimensions this generalisation already models all types of random anisotropic dif-
fusion coefficients.
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