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THE NORM OF GAUSSIAN PERIODS

P. HABEGGER

Abstract. Gaussian periods are cyclotomic integers with a long history in number
theory and connections to problems in combinatorics. We investigate the asymptotic
behavior of the absolute norm of a Gaussian period and provide a rate of convergence
in a case of Myerson’s Conjecture for periods of arbitrary odd length. Our method
involves a result of Bombieri, Masser, and Zannier on unlikely intersections in the
algebraic torus as well as work of the author on the diophantine approximations to a
set definable in an o-minimal structure. In the appendix we make a result of Lawton
on Mahler measures quantitative.

1. Introduction

Let f � 1 be an integer and p a prime number. We are interested in the asymptotic
behavior of the norm of

(1) ⇣a1 + ⇣a2 + · · ·+ ⇣af where ⇣ = e2⇡
p
�1/p

as a
1

, . . . , af 2 Z and p vary.
These cyclotomic integers appear naturally in algebraic number theory. We identify

the Galois group of Q(⇣)/Q with F⇥
p = Fp r {0}. Say a

1

, . . . , af represent the elements
of a subgroup G ✓ F⇥

p of order f . Then the sum (1) is the trace of ⇣ relative to the
subfield of Q(⇣) fixed by the said subgroup and it is called a Gaussian period. It has
degree k = [F⇥

p : G] = (p � 1)/f over Q, we refer to Chapter 10.10 of Berndt, Evans,
and Williams’ book [3] for these and other facts. A Gaussian period can be expressed in
terms of p and f for small values of k. Indeed, if k = 1 then G = F⇥

p and the Gaussian
period is of course ⇣ + ⇣2 + · · ·+ ⇣p�1 = �1. Gauss evaluated the sum if k = 2 and the
minimal polynomial of a Gaussian period has been computed if k  4.

The absolute norm of a Gaussian period appears in combinatorial problems, cf. My-
erson’s work [18, 19]. Let A

1

, . . . , Ak 2 F⇥
p denote a complete set of representatives of

F⇥
p /G. Then the cardinality satisfies

(2) #{(x
1

, . . . , xk) 2 Gk : A
1

x
1

+ · · ·+ Akxk = 0}� 1

p
fk =

p� 1

p
�

where

� =
Y

t2F⇥
p /G

 

X

g2G

⇣tg
!

;

note that ⇣t is well-defined for t 2 Fp as is the sum. If A
1

x
1

+ · · · + Akxk were to
attain all values of Fp equally often then � would vanish. As Myerson [18] observed,
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this linear form attains non-zero values equally often. It is tempting to interpret (2)

as an error term. But note that the trivial estimate
�

�

�

P

g2G ⇣
tg
�

�

�

 f leads to the upper

bound (1 � p�1)fk for the modulus of (2). This bound exceeds p�1fk for all p � 3. In
this paper we will improve on the trivial bound if the length f of the Gaussian period
is a fixed prime and p is large.

When well-defined, the logarithmic absolute norm of the Gaussian period is

(3)
1

k
log |�| = 1

p� 1

p�1

X

t=1

log

�

�

�

�

�

X

g2G

⇣tg

�

�

�

�

�

.

Our Theorem 1 below determines the asymptotic behavior of this value as p ! 1 when
f = #G is a fixed prime. Before stating our first result, we survey what is known for
groups G of order f .

Certainly (3) vanishes if G is trivial. If f = 2, then G = {±1} and p is odd. Note
that ⇣ + ⇣�1 = ⇣�1(⇣2 + 1) is a unit in Q(⇣). So (3) is again zero. The value of �, i.e.
its sign, can be computed using the Kronecker symbol.

Already the case f = 3 is more involved. It requires the logarithmic Mahler measure

m(P ) =

Z

1

0

· · ·
Z

1

0

log
�

�

�

P
⇣

e2⇡
p
�1x1 , . . . , e2⇡

p
�1xn

⌘

�

�

�

dx
1

· · · dxn,

of a non-zero Laurent polynomial P 2 C[X±1

1

, . . . , X±1

n ]; for the fact that this integral
converges and other properties we refer to Chapter 3.4 in Schinzel’s book [23]. If p ⌘ 1
(mod 3), then F⇥

p contains an element ✓ of order 3. Myerson, cf. Lemma 21 [19], proved

(4)
1

p� 1

p�1

X

t=1

log
�

�

�

⇣t + ⇣t✓ + ⇣t✓
2
�

�

�

= m(1 +X
1

+X
2

) + o(1)

as p ! 1. The logarithmic Mahler measure of 1 + X
1

+ X
2

was evaluated by Smyth
[26] and equals L0(�1,�) where � is the non-trivial character modulo 3 and L(·,�) is
its associated Dirichlet L-function. Duke [8] gave a new proof of (4) which extended to
a larger class of vectors in F3

p containing the exponent vector (1, ✓, ✓2). Moreover, he
provided a rate of convergence.

Due to a fortunate factorization, the case f = 4 is similar to order 2. Indeed, Theorem
6 [19] implies � = ±1 if p ⌘ 1 (mod 4) and also determines the sign. So the limit in
question is again zero.

For higher order, the approaches in [19] and [8] break down. But Myerson’s Conjecture
[18] predicts convergence of (3) as p ! 1 and the limit point. The full conjecture is
more general as it also covers subgroups of F⇥

q where q is a fixed power of p.
Myerson’s Conjecture has an ergodic flavor. Indeed, using methods from ergodic the-

ory, Lind, Schmidt, and Verbitskiy [15] proved convergence in the following setting.
They suitably averaged the value of the logarithm of the modulus of a polynomial eval-
uated at a finite subgroup of roots of unity. Their polynomials are required to satisfy
an intersection theoretical property with respect to the maximal compact subgroup of
(Cr {0})n. They computed the limit of this average for certain sequences of groups of
roots of unity.
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In this paper we concentrate on the special case when G has fixed odd order. We
prove that (3) converges and compute the limit.

Our method is based on a recent result [12] of the author on diophantine approxima-
tion of sets definable in a polynomially bounded o-minimal structure. It counts strong
rational approximations to a definable set and is related to the Pila-Wilkie Counting
Theorem [21]. Our approach is quantitative in the sense that it can provide a rate of
convergence.

The following theorem is the special case of our main result when #G is an odd prime.
We refer to Corollary 21 below for a more general statement. This corollary contains
the case q = p of Myerson’s Conjecture.

Theorem 1. Suppose f is an odd prime. For a prime p with p ⌘ 1 (mod f) let Gp ✓ F⇥
p

denote the subgroup of order f . Then

(5)
1

p� 1

p�1

X

t=1

log

�

�

�

�

�

�

X

g2Gp

e2⇡
p
�1

tg
p

�

�

�

�

�

�

= m(1 +X
1

+ · · ·+Xf�1

) +O
⇣

p
� 1

5(f�1)2

⌘

as p ! 1; in particular, the logarithm is well-defined for all su�ciently large p.

We have the estimate m(1 +X
1

+ · · ·+Xf�1

)  1

2

log f by Corollary 6 in Chapter 3.4
[23]. This justifies the treatment of (2) as an error term if f = #G is a prime and p is
large.

The value m(1 +X
1

+ · · ·+Xf�1

) is non-zero if f � 3. This implies an amusing
corollary of Theorem 1 on Gaussian periods that are units.

Corollary 2. Suppose f is an odd prime. There are at most finitely many primes p
with p ⌘ 1 (mod f) such that

X

g2G

e2⇡
p
�1

g
p

is an algebraic unit where G ✓ F⇥
p denotes the subgroup of order f .

Gaussian periods and their generalizations were investigated by Duke, Garcia, and
Lutz [9] from several points of view. In Theorem 6.3 they prove that the Galois orbit of
a Gaussian period becomes equidistributed in a suitable sense. Our average (3) involves
the logarithm whose singularity at the origin often makes applying equidistribution
directly impossible, see for example Autissier’s example [1].

Our main technical result is Theorem 20 below. It essentially amounts to a convergence
result when averaging over groups of roots of unity of prime order. It is used to deduce
the theorem and corollary above.

The main di�cult when f = #G � 5 is that the integrand

1 +X
1

+ · · ·+Xf�1

in the logarithmic Mahler measure (5) has singularities along a positive dimensional real
semi-algebraic set.

Our approach requires new tools and we now give a brief overview of the proof of
Theorem 1. As in Duke’s work [8] we start with a basic observation; to simplify notation
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we set n = f � 1. Let a = (a
1

, . . . , an) 2 Zn, then

p�1

Y

t=1

�

1 + ⇣ta1 + · · ·+ ⇣tan
�

is the product of

Pa = 1 +Xa1 + · · ·+Xan

evaluated at all roots of unity of order p. If an > an�1

> · · · > a
1

> 0, then Pa is a
monic polynomial and the product above is the resultant of Pa and 1+X + · · ·+Xp�1.
If this resultant is non-zero, then by symmetry properties we find that (3) equals

(6) � log(n+ 1)

p� 1
+

1

p� 1

d
X

i=1

log |↵p
i � 1|.

where ↵
1

, . . . ,↵d are the roots of Pa. Comparing 1

p�1

log |↵p
i �1| to the local contribution

logmax{1, |↵i|} of the logarithmic Mahler measure m(Pa) is a crucial aspect of the
problem at hand; see Section 2 for details on the Mahler measure. Indeed, by a result
of Lawton [14] the value m(Pa) converges towards the logarithmic Mahler measure of a
multivariate polynomial as in Theorem 1 if |a| ! 1 for a in su�ciently general position.
In a self-contained appendix, we provide a quantitative version of Lawton’s Theorem,
see Theorem 24.

Baker’s theory on linear forms in logarithms yields a lower bound for non-zero values
of |↵p

i�1|. But the current estimates are not strong enough to directly establish Theorem
1, see Duke’s comment after the proof of this Theorem 3 [8]. However, as we shall see
below, strong lower bounds for |↵p

i � 1| are available if |↵i| 6= 1. Indeed, |↵p
i � 1| �

||↵i|p � 1| � ||↵i|� 1|. If |↵i| 6= 1 we will use an old result of Mahler on the separation
of distinct roots of a polynomials to bound ||↵i|� 1| from below. If ↵i lies in µ1, the
set of all roots of unity in C, then a su�ciently strong lower bound for |↵p

i � 1| follows
from simpler considerations.

This estimate gives us su�cient control on each term in the sum (6) subject to the
condition that Pa does not have any root in S1rµ1, here S1 is the unit circle in C. But
it seems unreasonable to expect this hypothesis to hold for all a. To address this concern
we use symmetry in (3). Indeed, this mean is invariant under translating a by an element
of pZn and also by replacing a by ta with t 2 Z coprime to p. We exploit this symmetry
by using a result of Bombieri, Masser, and Zannier [5] on unlikely intersections. This in
combination with Dirichlet’s Theorem in diophantine approximation allows us to assume
that Pa has no roots on S1rµ1 after a suitable transformation as described above. Here
the parity assumption on f in Corollary 21 below is used.

At this point we have a su�cient lower bound for each term of the sum (6). However,
the method cannot proceed if too many terms are close to this bound. Duke [8] already
use the following basic principle. Suppose that for some ↵ = ↵i the distance |↵p � 1| is
small, i.e. at most a fixed power of p�1. Than one can expect that ↵ is close to some
⇣ 2 µp where µp is the set of roots of unity in C of order dividing p. As Pa(↵) = 0 we
find that

(7) |1 + ⇣a1 + · · ·+ ⇣an |
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is small. Myerson [20] proved a lower bound for non-vanishing sums of roots of unity if
n = 1, 2, and 3. His estimates are are polynomial in p�1 and are strong enough to imply
Duke’s result. However, for fixed n � 4 only exponential bounds such as (n + 1)�p are
known to hold in general. They are not good enough for our purposes.

If |↵p
i � 1| is small for many i, we are able to show that (7) is small for many p-th

roots of unity ⇣. This situation can be analyzed using the following theorem that counts
small sums of roots of unity of prime order. Its proof requires recent work of the author
[12] on diophantine approximations on definable sets in an o-minimal structure.

Theorem 3. Let n � 1. For all ✏ > 0 there exist constants c = c(n, ✏) � 1 and

� = �(n, ✏) � 1 with the following property. If p is a prime and ⇣
1

, . . . , ⇣n 2 µp satisfy

1 + ⇣
1

+ · · ·+ ⇣n 6= 0, then

(8) #
�

t 2 Fp : |1 + ⇣t
1

+ · · ·+ ⇣tn| < c�1p��
  cp✏.

As this paper was being finished up, Dimitrov [7] announced a extension to more
general polynomials of Lind, Schmidt, and Verbitskiy’s work for subgroups that are
Cartesian powers. His approach used ideas from diophantine approximation and is
independent from ours.

We hope to expand the connection between counting points approximating a definable
set and questions related to ergodic theory in future work.

2. Notation

The supremum norm on Rn is | · | for any n � 1. We have already seen the definition
of the logarithmic Mahler measure m(P ) if P 2 C[X±1

1

, . . . , X±1

n ] r {0}. The Mahler
measure of P is M(P ) = em(P ).

The absolute logarithmic Weil height, or just height, of an algebraic number ↵ with
minimal polynomial P in Z[X] and leading term p

0

� 1 is

h(↵) =
1

[Q(↵) : Q]
m(P ) =

1

[Q(↵) : Q]
log

0

B

B

@

p
0

Y

z2C
P (z)=0

max{1, |z|}

1

C

C

A

where the second equality follows from Jensen’s Formula. We write H(↵) = eh(↵).
Moreover, we set H(↵

1

, . . . ,↵n) = max{H(↵
1

), . . . , H(↵n)} if ↵
1

, . . . ,↵n are algebraic.

3. Algebraic Numbers Close to the Unit Circle

An algebraic number ↵ 2 C r {1} of degree D = [Q(↵) : Q] can be bounded away
from 1 using Liouville’s Inequality, Theorem 1.5.21 [4],

log |↵� 1| � �D log 2�Dh(↵).

The modulus |↵| = p
↵↵ is again an algebraic number, here and below · denotes complex

conjugation. Its height satisfies

h(|↵|)  1

2
h(↵↵)  h(↵)
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since h(↵) = h(↵). If ↵ is real, then clearly Q(|↵|) = Q(↵). However, for D � 2 we only
have [Q(|↵|) : Q]  D(D � 1) and equality is possible. So Liouville’s Inequality applied
to |↵| gives

log ||↵|� 1| � �D(D � 1) log 2�D(D � 1)h(↵)

if |↵| 6= 1. We will use a result of Mahler to improve on the dependency in D in front of
log 2.

Theorem 4 (Mahler). Let P 2 Z[X] be a polynomial with D = degP � 2. If z, z0 2 C
are distinct roots of P , then

|z0 � z| >
p
3D�(D+2)/2M(P )�(D�1).

Proof. We may assume that P has no multiple roots over C after replacing it by its
squarefree part. The estimate then follows from Theorem 2 [16] as the absolute value of
the new discriminant is at least 1. ⇤
Lemma 5. Let ↵ 2 C be an algebraic number of degree D = [Q(↵) : Q]. If |↵| 6= 1 then

log |↵p � 1| � log ||↵|� 1| � �1� (D + 1) log(2D)� 2(2D � 1)Dh(↵)

for all integers p � 1.

Proof. The first inequality follows from |↵p�1| � ||↵|p�1| = ||↵|�1| · ||↵|p�1+ · · ·+1| �
||↵| � 1|. To prove the second inequality we may assume |↵| � 1/2, in particular
↵ 6= 0. Let P 2 Z[X] denote the minimal polynomial of ↵. We will apply Mahler’s
Theorem to F = P (X)P (1/X)XD 2 Z[X]. Observe that F (↵) = F (↵�1) = 0 and
degF = 2D. Therefore, |↵ � ↵�1| > p

3(2D)�(2D+2)/2M(F )�(2D�1) since |↵| 6= 1. As
M(P (1/X)XD) = M(P ) and since the Mahler measure is multiplicative, we find, after
multiplying with |↵| = |↵|, that

�

�|↵|2 � 1
�

� >
p
3|↵|(2D)�(D+1)M(P )�2(2D�1).

Observe that logM(P ) = Dh(↵) and ||↵|� 1| = ||↵|2 � 1|/(|↵|+ 1). Therefore,

||↵|� 1| >
p
3

|↵|
|↵|+ 1

(2D)�(D+1)M(P )�2(2D�1) �
p
3

3
(2D)�(D+1)e�2(2D�1)Dh(↵)

using |↵| � 1/2. We conclude the proof by taking the logarithm. ⇤

4. A First Estimate

Let n � 1 and p � 2 be integers. For a = (a
1

, . . . , an) 2 Zn we define

(9) �p(a) =
p�1

Y

t=1

|1 + ⇣ta1 + · · ·+ ⇣tan | where ⇣ = e2⇡
p
�1/p.

If p is a prime, then �p(a) is the Q(⇣)/Q norm of the cyclotomic integer 1+⇣a1+· · ·+⇣an
up-to sign. We attach to a the lacunary Laurent polynomial

(10) Pa = 1 +Xa1 + · · ·+Xan 2 Z[X±1].

Say e = max{0,�a
1

, . . . ,�an} � 0, then

(11) XePa = Xe +Xe+a1 + · · ·+Xe+an
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is a polynomial with integral coe�cients, non-zero constant term, and degree d =
max{ai � aj : 0  i, j  n}  2|a|, where a

0

= 0. We write ↵
1

, . . . ,↵d 2 C for
the zeros of XePa with multiplicity, i.e. XePa = p

0

(X � ↵
1

) · · · (X � ↵d) where p
0

� 1
is the leading term of Pa. We note that ↵i 6= 0, 1 for all i.

Our goal in this section is to bound

(12)

�

�

�

�

1

p� 1
log�p(a)�m(Pa)

�

�

�

�

from above, here m(Pa) = m(XePa) = log p
0

+
Pd

i=1

logmax{1, |↵i|} is the logarithmic
Mahler measure of Pa.

As �p(a) is essentially a resultant we can rewrite it as a product over the roots ↵i.
This will allow us to express the di↵erence (12) in terms of these roots.

In the next 4 lemmas we obtain several statements on the roots ↵i in terms of a 2 Zn.

Lemma 6. We have �p(a) = pp
0

(n+ 1)�1

Qd
i=1

|↵p
i � 1|.

Proof. A variant of this calculation can also be found in the proof of Duke’s Theorem 3
[8]. We have

�p(a) =
p�1

Y

t=1

|Pa(⇣
t)| = pp�1

0

d
Y

i=1

 

p�1

Y

t=1

|⇣t � ↵i|
!

= pp�1

0

d
Y

i=1

�

�

�

�

1� ↵p
i

1� ↵i

�

�

�

�

.

The lemma follows since p
0

Qd
i=1

(1� ↵i) = Pa(1) = n+ 1. ⇤
Each ↵i is an algebraic number with Di = [Q(↵i) : Q]  d whose height is bounded

by the next lemma.

Lemma 7. Let i 2 {1, . . . , d}, then Dih(↵i)  m(Pa)  log(n+ 1).

Proof. Recall that ↵i is a root of the polynomial in (11) which, by the Gauss Lemma, is
divisible by the minimal polynomial Q in Z[X] of ↵i. So Dih(↵i) = m(Q)  m(XePa) =
m(Pa) as the logarithmic Mahler measure is additive and non-negative on Z[X] r {0}.
By Corollary 6, Chapter 3.4 [23] the Mahler measure M(Pa) is at most the euclidean
norm of the coe�cient vector of Pa. This gives m(Pa)  log(n+ 1). ⇤

We now come to a lower bound for |↵p
i � 1| which is independent of p under the

assumption that ↵i lies o↵ the unit circle or is a root of unit of order not divisible by p.

Lemma 8. Suppose a 6= 0, let i 2 {1, . . . , d}, and let p � 1 be an integer.

(i) If |↵i| 6= 1, then log |↵p
i � 1| � �18 log(n+ 1)|a| log(2|a|).

(ii) If ↵i is a root of unity and ↵p
i 6= 1, then log |↵p

i � 1| � �2 log(2|a|).
Proof. Observe that |↵i| 6= 1 implies n � 2. According to Lemmas 5 and 7 we have

log |↵p
i � 1| � �1� (Di + 1) log(2Di)� 2(2Di � 1) log(n+ 1)

� �(Di + 1) log(2Di)� 4Di log(n+ 1).

Now Di  2|a| by (11). The first part of the lemma follows from

(2|a|+ 1) log(4|a|) + 8|a| log(n+ 1)  18 log(n+ 1)|a| log(2|a|).
The second part is more elementary. Let m � 2 be the multiplicative order of ↵p

i . If
m � 3, then |↵p

i �1| � sin(2⇡/m) � 2/m. The bound |↵p
i �1| � 2/m certainly also holds
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for m = 2. It is well-known that Euler’s totient function ' satisfies '(m) � p

m/2. As
'(m) = [Q(↵p

i ) : Q]  Di we find m  2D2

i . Hence log |↵p
i � 1| � �2 logDi �

�2 log(2|a|), as Di  2|a|. ⇤
This last lemma allows us to compare log |↵p

i �1| with the corresponding contribution
p logmax{1, |↵i|} in the logarithmic Mahler measure.

Lemma 9. Suppose a 6= 0, let i 2 {1, . . . , d}, and let p � 1 be an integer.

(i) If |↵i| 6= 1, then

(13)
�

�log |↵p
i � 1|� p logmax{1, |↵i|}

�

�  18 log(n+ 1)|a| log(2|a|).
(ii) If ↵i is a root of unity and ↵p

i 6= 1, then
�

�log |↵p
i � 1|��  2 log(2|a|).

Proof. For the proof of part (i) let us first assume |↵i| < 1. Then |↵p
i � 1|  2 and

Lemma 8(i) yields |log |↵p
i � 1||  18 log(n+ 1)|a| log(2|a|), as desired.

If |↵i| > 1 we use that ↵�1

i is a root of P�a. We obtain the same bound as before for
�

�log |↵�p
i � 1|�� = �

�log |↵p
i � 1|� p log |↵i|

�

� and this completes the proof of (i).
To prove (ii) we argue as in the case |↵i| < 1 above but use Lemma 8(ii). ⇤
Suppose for the moment that all ↵i satisfy |↵i| 6= 1 and for sake of simplicity also

p
0

= 1. By Lemma 6 the bound given in part (i) of the last lemma leads to the bound

(14)
d|a| log(2|a|)

p
 2|a|2 log(2|a|)

p

for (12) up-to a factor depending only on n. However, this estimate is not strong enough
for our aims due to the contribution |a|2/p.

To remedy this we begin by splitting up the roots ↵i into two parts depending on a
parameter � � 1. The first part
(15)
B = B(p, a,�) =

�

i : |↵i| < 1 and |↵p
i � 1| < p��

 [ �

i : |↵i| > 1 and |↵�p
i � 1| < p��

 

corresponds to those roots whose p-th power is excessively close to 1. The second part
is the complement

{1, . . . , d}r B.

Later we will bound the cardinality of B.

Proposition 10. Let � � 1, let a 2 Zn r {0}, and let p � 1 be an integer satisfying

|a|  p. Suppose that the only roots of Pa that lie on the unit circle are roots of unity of

order not dividing p. Then �p(a) 6= 0 and

(16)
1

p� 1
log�p(a) = m(Pa) +O

✓ |a| log(2p)
p

(�+#B)

◆

where the implied constant depends only on n.

Proof. We recall Lemma 6, it implies �p(a) 6= 0 under the given circumstances. Let
↵
1

, . . . ,↵d be the roots of Pa with multiplicities, as above.
Say first i 2 {1, . . . , d} r B. If |↵i| < 1, then |↵p

i � 1| � p��. Thus
�

�log |↵p
i � 1|�� 

� log(2p) since � log(2p) � log 2. For |↵i| > 1 we proceed similarly and obtain
�

�log |↵p
i �
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1| � p log |↵i|
�

�  � log(2p). If |↵i| = 1, then by hypothesis ↵i is a root of unity whose
order does not divide p, so Lemma 9(ii) implies |log |↵p

i � 1||  2 log(2|a|)  2 log(2p).
We recall d  2|a| and sum over {1, . . . , d}r B to find

d
X

i=1

i 62B

�

�log |↵p
i � 1|� p logmax{1, |↵i|}

�

�  (d�#B)max{� log(2p), 2 log(2p)}(17)

 4|a| log(2p)�.
If i 2 B then |↵i| 6= 1. We apply Lemma 9(i) and use |a|  p. The bound (13) holds

for #B roots and therefore
X

i2B

�

�log |↵p
i � 1|� p logmax{1, |↵i|}

�

�  18 log(n+ 1)|a| log(2p)#B.

We combine this bound with (17) to obtain

(18)
d
X

i=1

�

�log |↵p
i � 1|� p logmax{1, |↵i|}

�

�  18 log(n+ 1)|a| log(2p)(�+#B).

The logarithmic Mahler measure of Pa is log p
0

+
Pd

i=1

logmax{1, |↵i|} where p
0

� 1
is the leading term of Pa. We use Lemma 6 and apply the triangle inequality to find
that | 1

p�1

log�p(a)�m(Pa)| is at most

1

p� 1

�

�

�

�

log

✓

pp
0

n+ 1

◆

� (p� 1) log p
0

�

�

�

�

+
1

p� 1

d
X

i=1

|log |↵p
i � 1|� (p� 1) logmax{1, |↵i|}|

 log(n+ 1)

p� 1
+ 18 log(n+ 1)

|a| log(2p)
p� 1

(�+#B) +
1

p� 1
m(Pa)

where we used (18). From Lemma 7 we deduce m(Pa)  log(n + 1). So (16) holds
true. ⇤

If we ignore for the moment all logarithmic contributions, then we have traded in d
in (14) for �+#B in (16).

Before continuing we make two elementary, but important, observations on symmetry
properties of �p(a) when p is a prime.

Lemma 11. Let p be a prime and let a 2 Zn
be arbitrary.

(i) If a0 2 Zn
with a ⌘ a0 (mod p), then �p(a) = �p(a0).

(ii) If t 2 Z with p - t, then �p(a) = �p(ta).

Proof. Part (i) follows using the definition (9) and ⇣p = 1. For part (ii) observe that
⇣ 7! ⇣t permutes the factors in (9) since p - t. ⇤

Using this lemma we will transform a0 = ta � b with p - t and b 2 pZn such that |a0|
is small compared to p. This will be done using Dirichlet’s Theorem from diophantine
approximation. A theorem of Bombieri-Masser-Zannier leads to a criterion that rules
out that Pa0 has roots on the unit circle of infinite order. This opens the door to applying
the previous proposition.

In a final step we will need a strong upper bound for B for a su�ciently large but
fixed �. This is where counting rational points close to a definable sets comes into play.



THE NORM OF GAUSSIAN PERIODS 10

5. Lacunary Polynomials with Roots off the Unit Circle

Say n � 2. In this section we investigate a condition on a 2 Zn such that Pa, as
defined in (10), does not vanish at any point of S1 r µ1. It will prove useful to restrict
a to a subgroup ⌦ ✓ Zn and we will introduce a condition on ⌦ that ensures that Pa

does not have any roots in S1 r µ1 for a 2 ⌦ in general position.
Our condition is based on a theorem of Bombieri, Masser, and Zannier [5] on unlikely

intersections in the algebraic torus.
We also make use of (very rudimentary) tropical geometry. Say K is the field of

Puiseux series over C; it is algebraically closed and equipped with a surjective valuation
ord : K ! Q[ {1}. Let X be an irreducible subvariety defined over K of the algebraic
torus Gn

m

. The tropical variety Trop(X ) of X is the closure in Rn of

{(ord(x
1

), . . . , ord(xn)) : (x1

, . . . , xn) 2 X (K)}.
We need the following two basic facts.
First, if Y ✓ X is an irreducible subvariety defined over K, then Trop(Y) ✓ Trop(X );

this follows directly from the definition.
Second, if r = dimX � 1 and after permuting coordinates, the projection of Trop(X )

to the first r coordinates of Rn contains Qr. We prove this using basic algebraic geom-
etry. After permuting coordinates the projection ⇡ : X (K) ! Gr

m

(K) onto the first r
coordinates contains a Zariski open and dense subset of Gr

m

. There exists a polynomial
P 2 K[X±1

1

, . . . , X±1

r ]r {0} such that any point of Gr
m

(K) outside of the zero locus of
P lies in the image of ⇡. Let (a

1

, . . . , an) 2 Qr be arbitrary. For su�ciently general
(c

1

, . . . , cr) 2 Gr
m

(C) the polynomial P does not vanish at (c
1

T a1 , . . . , crT ar) 2 Gr
m

(K).
This point has a pre-image under ⇡ in X (K) and the valuation of its first r coordinates
are a

1

, . . . , ar. This yields our claim.
Einsiedler, Kapranov and Lind’s [10] Theorem 2.2.5 on the structure of Trop(X ) can

be used instead of this second property in the proof of Lemma 12 below.
We write h·, ·i for the standard scalar product on Rn. If ⌦ is a subgroup of Zn, then

we set
⌦? = {a 2 Zn : ha,!i = 0 for all ! 2 ⌦}.

We write e
1

, . . . , en for the standard basis elements of Rn augmented by e
0

= 0.

Lemma 12. Let ⌦ ✓ Zn
be a subgroup of rank m � 2 for which the following property

holds. If (↵, �) 2 Z2 r {0} and if i, j, k, l 2 {0, . . . , n} are pairwise distinct with v =
↵(ei � ej) + �(ek � el), then ⌦ 6✓ (vZ)?. Then there exist finitely many subgroups

⌦
1

, . . . ,⌦N ✓ ⌦ of rank at most m � 1 such that if a 2 ⌦ r
SN

i=1

⌦i then Pa does not

vanish at any point of S1 r µ1.

Proof. We consider an irreducible component X ✓ Gn
m

of the zero set of

(19) 1 +X
1

+ · · ·+Xn and 1 +X�1

1

+ · · ·+X�1

n .

Then dimX = n� 2 as these two polynomials are coprime in C[X±1

1

, . . . , X±1

n ].
Say a = (a

1

, . . . , an) 2 ⌦ such that Pa has a root z 2 S1rµ1. Then 1+za1+· · ·+zan =
0 by definition and after applying complex conjugation we find

1 + z�a1 + · · ·+ z�an = 0.

So za = (za1 , . . . , zan) 2 X (C) for one of the irreducible components above.
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But za also lies in an algebraic subgroup of Gn
m

of dimension 1. According to Bombieri,
Masser, and Zannier’s Theorem 1.7 [5] there are two cases. Either za lies in a finite set
that depends only on X , and hence only on n, or za 2 H(C) where H ✓ Gn

m

is an
irreducible component of an algebraic subgroup with

dimza X \H � max{1, dimX + dimH� n+ 1} = max{1, dimH� 1}.
Moreover, in the second case H comes from a finite set that depends only on n, cf. the
first paragraph of the proof of Theorem 1.7 [5] on page 26.

In the first case we claim that a must lie in one of finitely many subgroups of ⌦ of
rank 1  m � 1. Indeed, we may assume a 6= 0. If z0 2 S1 r µ1 is a root of some Pa0

with a0 2 ⌦ and za = z0a
0
, then a and a0 are linearly dependent as z0 is not a root of

unity. Our claim follows as there are only finitely many possible za in this case. We add
these rank 1 subgroups to our collection of ⌦i.

In the second case there is an irreducible component Y ✓ X \H of positive dimension
at least dimH � 1 that contains za. In this case n � 3. We recall that algebraic
subgroups of Gn

m are in bijection with subgroups of Zn, see Theorem 3.2.19 [4] for
details. Let ⇤ ✓ Zn be a subgroup from a finite set depending only on n with rank
r = n� dimH such that H is contained in the algebraic subgroup defined by all

(20) Xb1
1

· · ·Xbn
n � 1 where (b

1

, . . . , bn) 2 ⇤.

Hence zha,bi = 1 for all b 2 ⇤. As z is not a root of unity we find a 2 ⇤?.
We would like to add ⌦\⇤? to our list of ⌦i. However, we must ensure that its rank

is at most m� 1. Once this is done, our proof is complete.
Suppose the rank does not drop, then [⌦ : ⌦\⇤?]⌦ ✓ ⇤? and hence ⌦ ✓ ⇤? because

⇤? is primitive. We now derive a contradiction from this situation by analyzing ⇤.
Since all monomials (20) vanish onH we find that Trop(H) lies in ⇤?R, the vector sub-

space of Rn generated by ⇤?. We also need to study Trop(X ). Say (x
1

, . . . , xn) 2 X (C).
Since it is a zero of the first polynomial in (19) and by the ultrametric triangle inequal-
ity the minimum among 0, ord(x

1

), . . . , ord(xn) is attained twice. The same argument
applied to the second polynomial in (19) shows that the maximum is attained twice.
Hence Trop(X ) is contained in the finite union of the codimension 2 vector subspaces of
Rn defined by relations

ord(xi) = ord(xj), ord(xk) = ord(xl) with #{i, j, k, l} = 4

and

ord(xi) = ord(xj), ord(xk) = 0 with #{i, j, k} = 3.

By the discussion before this lemma, Trop(Y) ✓ Trop(X )\Trop(H) ✓ Trop(X )\⇤?R.
Moreover, the projection of Trop(Y) to some choice of dimY distinct coordinates of Rn

contains QdimY . So ⇤?R intersected with one of the codimension 2 subspaces mentioned
above must have dimension at least dimY � dimH � 1 = n � r � 1. Therefore,
there exists (↵, �) 2 Z2 r {0} and pairwise distinct i, j, k, l 2 {0, . . . , n} with v =
↵(ei� ej)+�(ek� el) 2 ⇤. Recall that ⌦ ✓ ⇤?. So ⌦ lies in the orthogonal complement
of v, which contradicts the hypothesis of the lemma. ⇤
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Suppose n � 2, let ⌦ ✓ Zn be a subgroup of rank at least 2 and let a 2 Zn. For a
prime p we define

(21) ⇢p(a;⌦) = inf {|!| : ! 2 ⌦ r {0} and h!, ai ⌘ 0 (mod p)}
this is a well-defined real number as the set is non-empty.

Proposition 13. Let ⌦ ✓ Zn
be a subgroup of rank m � 2 that satisfies the following

hypothesis. If (↵, �) 2 Z2 r {0} and if i, j, k, l 2 {0, . . . , n} are pairwise distinct with

v = ↵(ei � ej) + �(ek � el), then ⌦ 6✓ (vZ)?. Then there exists a constant c = c(⌦) � 1
with the following property. Say a 2 ⌦ and let p be a prime with ⇢p(a;⌦) � c. Then

there exist t 2 Z with p - t and ! 2 ⌦ such that a0 = ta� p! 6= 0,

(i) we have |a0|  cp1�1/m
, and

(ii) the Laurent polynomial Pa0 2 Z[X±1] does not vanish at any point of S1 r µ1.

Proof. The proposition follows from combining Lemma 12 with Dirichlet’s Theorem from
diophantine approximation. Indeed, we let ⌦

1

, . . . ,⌦N be the subgroups of ⌦ from this
lemma. If N = 0 we set ⌦

1

= {0}. We will see how to choose c below.
We fix a basis (!

1

, . . . ,!m) of the abelian group ⌦. Then a = ⌫
1

!
1

+ · · · + ⌫m!m,
where ⌫

1

, . . . , ⌫m 2 R are unique.
If p � 3, then Dirichlet’s Theorem, cf. Theorem 1B [24], applied to ⌫

1

/p, . . . , ⌫m/p,
and p � 1 > 1 yields t, ⌫ 0

1

, . . . , ⌫ 0m 2 Z such that 1  t  p � 1 and |t⌫i/p � ⌫ 0i| 
(p � 1)�1/m. The same conclusion holds for p = 2. We set ! =

Pm
i=1

⌫ 0i!i 2 ⌦. Then
|a0/p|  (|!

1

| + · · · + |!m|)(p� 1)�1/m  cp�1/m where a0 = ta� p! for c large enough.
This yields part (i).

As each ⌦i has rank at most m � 1 we have ⌦ \ (⌦i)? 6= 0 for all i. For each i we
fix a non-zero !⇤ 2 ⌦ \ (⌦i)? of minimal norm. If h!⇤, ta � p!i = 0, then h!⇤, ai ⌘ 0
(mod p), since p - t. So |!⇤| � ⇢p(a;⌦) � c by hypothesis. We can avoid this outcome
by fixing c large in terms of the ⌦ \ (⌦i)?. Thus h!⇤, a0i 6= 0. This implies a0 62 ⌦i for
all 1  i  N and in particular a0 6= 0. Part (ii) follows from the conclusion of Lemma
12. ⇤

6. Rational Points Close to a Definable Set

In this section we prove Theorem 3. To do this we temporarily adopt the language of
o-minimal structures. Our main reference is van den Dries’ book [27] and his paper with
Miller [28]. We work exclusively with the o-minimal structure R

an

of restricted analytic
functions. It contains the graph of any function [0, 1]n ! R that is the restriction of an
analytic function Rn ! R.

The main technical tool in this section is a result of the author [12] which we cite in a
special case below. We retain much of the notation used in the said reference. Roughly
speaking, the result gives an upper bound for the number of rational points of bounded
height that are close to a subset of Rn that is definable in R

an

. Note that R
an

is a
polynomially bounded o-minimal structure as required by this reference.

For any subset Z ✓ Rn we write Zalg for the union of all connected, semi-algebraic
sets that are contained completely in Z. For ✏ > 0 we define N (Z, ✏) to be the set of
y 2 Rn for which |x� y| < ✏ for some x 2 Z. We recall that the height H(·) was defined
in Section 2.
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Theorem 14 (Theorem 2 [12]). Let Z ✓ Rn
be a closed set that is definable in R

an

and

let ✏ > 0. There exist c = c(Z, ✏) � 1 and ✓ = ✓(Z, ✏) 2 (0, 1] such that if � � ✓�1

then

#
�

q 2 Qn rN (Zalg, T�✓�) : H(q)  T and there is x 2 Z with |x� q| < T��  cT ✏

for all T � 1.

Proof of Theorem 3. For n = 1 the theorem follows with � = 1 and taking c su�ciently
large. Our proof is by induction on n and we suppose n � 2. We will choose c � 1 and
� � 1 in terms of n and ✏ during the argument.

Let

Z =
n

(x
1

, . . . , xn) 2 [0, 1]n : 1 + e2⇡
p
�1x1 + · · ·+ e2⇡

p
�1xn = 0

o

which is compact and definable in R
an

.
Let us write ⇣j = e2⇡

p
�1qj for j 2 {1, . . . , n} with qj 2 1

p
Z \ [0, 1). Say t is as in the

set (8). For convenience, we identify it with its representative in {0, . . . , p� 1}. Then
(22)

�

�1 + ⇣t
1

+ · · ·+ ⇣tn
�

� < c�1p��,

(⇣
1

, . . . , ⇣n) has precise order p, and t 6= 0. We claim that q̃t = (tq
1

� btq
1

c, . . . , tqn �
btqnc) 2 1

p
Zn\[0, 1)n lies close to Z. Indeed, a suitable version of  Lojasiewicz’s Inequality,

see 4.14.(2) [28], implies that the distance of this point to Z is at most

c
1

�

�

�

1 + e2⇡
p
�1tq1 + · · ·+ e2⇡

p
�1tqn

�

�

�

�

 c
1

c��p���  c
1

c��.

where c
1

> 0 and � > 0 depend only on Z. We may assume c
1

c�� < 1, so

(23) |q̃t � x| < p��� for some x 2 Z.

The vectors q̃
0

, . . . , q̃p�1

are pairwise distinct. So it is enough to bound the number of
q̃t with (23).

If � is su�ciently large, then �� � ✓�1 where ✓ is provided by Theorem 14 applied to
Z and ✏. So there are at most cp✏ many q̃t that are not in the p�✓��-tube around Zalg.

To prove (8) we need only consider those t with |q̃t � x0| < p�✓�� for some x0 =
(x0

1

, . . . , x0
n) 2 Zalg. The algebraic locus Zalg is well understood; see Ax’s work [2] and

how it is applied for example in the proof of Theorem 7 [12]. There exists ; 6= J (
{1, . . . , n} such that 1 +

P

j2J e
2⇡

p
�1x0

j = 0. We subtract this from the partial sum over
the coordinates of t(q

1

, . . . , qn) and get

1 +
X

j2J

⇣tj =
X

j2J

(e2⇡
p
�1tqj � e2⇡

p
�1x0

j).

Thus
�

�

�

�

�

1 +
X

j2J

⇣tj

�

�

�

�

�


X

j2J

�

�

�

e2⇡
p
�1(tqj�btqjc) � e2⇡

p
�1x0

j

�

�

�

 2⇡(n� 1)|q̃t � x0|.

Hence there is a constant c
2

> 0 depending only on n with
�

�

�

�

�

1 +
X

j2J

⇣tj

�

�

�

�

�

< c
2

p�✓��.
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Recall #J  n � 1. Now suppose c0 > 0 and �0 > 0 are the constants from this
theorem applied by induction to the terms in J . We are free to assume that � satisfies
2✓��/2 � c

2

c0 and ✓�� � 2�0. Then c
2

p�✓��  c
2

2�✓��/2p�✓��/2  c0�1p��
0
as p � 2. So

�

�

�

�

�

1 +
X

j2J

⇣tj

�

�

�

�

�

< c0�1p��
0
.

If 1 +
P

j2J ⇣j 6= 0, then (8) follows from induction.
On the other hand, if this sum vanishes, then its Galois conjugates 1+

P

j2J ⇣
t
j vanish

for all t 2 F⇥
p . By hypothesis, the normalized complementary sum

1 +
X

j2Ir{j0}

⇣j⇣
�1

j0

is non-zero; here I = {1, . . . , n}r J and j
0

2 I. We may apply induction since |I|� 1 
n� 2. Using (22) we find

�

�

�

�

�

�

1 +
X

j2Ir{j0}

(⇣j⇣
�1

j0
)t

�

�

�

�

�

�

=
�

�1 + ⇣t
1

+ · · ·+ ⇣tn
�

� < c�1p��.

and there are at most cp✏ possibilities for t. ⇤

7. Counting Small Sums of Roots of Unity

Let Pa be a lacunary Laurent polynomial as in (10) with a 2 Zn where n � 1. The
goal of this section is to bound the number of roots ↵ of Pa coming from B = B(p, a,�)
defined in (15). If ↵p is close to 1, then ↵ is close to a root of unity ⇣ with ⇣p = 1. So
|Pa(⇣)| will be small. Thus 1+⇣a1 + · · ·+⇣an is small in modulus where a = (a

1

, . . . , an).
This is where the counting result proved in Section 6 comes into play.

We make the first part of this approach precise in the next lemma.

Lemma 15. Suppose ↵ = re2⇡
p
�1#

with r 2 (0, 1] and # 2 [0, 1). If p � 2 is an integer

with |↵p � 1|  1/2, then there exists t 2 {0, . . . , p} such that

(24)

�

�

�

�

#� t

p

�

�

�

�

 1

4
p
2
|↵p � 1|.

If in addition a 2 Zn
and Pa(↵) = 0, then

(25)
�

�

�

Pa

⇣

e2⇡
p
�1t/p

⌘

�

�

�

 5n|a||↵p � 1|.

Proof. Observe that |z� 1| � |z|1/2|z/|z|� 1| for all z 2 Cr {0}, see Lemma 11.6.1 [22].
We substitute z = ↵p to find |↵p�1| � rp/2|e2⇡

p
�1#p�1|. Now 1�rp  |rp�1|  |↵p�1|,

so rp � 1� |↵p � 1| � 1/2 by hypothesis. We find

(26)
�

�

�

e2⇡
p
�1#p � 1

�

�

�


p
2|↵p � 1|.

Let t be an integer with |#p� t|  1/2. Then t 2 {0, . . . , p} as # 2 [0, 1). So

(27)
�

�

�

e2⇡
p
�1#p � 1

�

�

�

=
�

�

�

e2⇡
p
�1(#p�t) � 1

�

�

�

� 4|#p� t|
by elementary geometry. Combining (26) with (27) and dividing by p � 2 yields (24).
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To prove the second claim we set ⇠ = e2⇡
p
�1t/p and estimate

|↵� ⇠| = |re2⇡
p
�1# � ⇠|  |r � 1|+ |e2⇡

p
�1# � ⇠| = |r � 1|+ |e2⇡

p
�1(#�t/p) � 1|

 |↵p � 1|+ 2⇡|#� t/p|  (1 + ⇡/
p
8)|↵p � 1|;(28)

where we used |r � 1|  |rp � 1|  |↵p � 1|.
We fix e 2 Z such that XePa(X) is a polynomial with non-zero constant term. Then

|Pa(⇠)| = |⇠ePa(⇠)� ↵ePa(↵)| 
n
X

k=0

|⇠ak+e � ↵ak+e|

here a = (a
1

, . . . , an) and a
0

= 0. Some ak + e vanishes and we use |⇠| = 1 and |↵|  1
to find

|Pa(⇠)|  n max
0kn

{ak + e}|⇠ � ↵|  2n|a||⇠ � ↵|.
We recall (28) to obtain (25). ⇤

Next we show that many elements in B will lead to many di↵erent roots of unity as
given by the lemma above. The reason for this is that roots of lacunary polynomials are
nearly angularly equidistributed by a result of Hayman, known already to Biernacki.

Lemma 16. Let a 2 Zn
and suppose p � 2 is an integer with |a|  p. If � � 1, then

#B  12n#{⇣ 2 µp : |Pa(⇣)| < 5n|a|p��}.
Proof. We may assume a 6= 0. Let us partition B = B(p, a,�) into B<1

= {i 2 B :
|↵i| < 1} and B>1

= {i 2 B : |↵i| > 1}.
We construct a map

 <1

: B<1

! {0, . . . , p}
in the following manner. If i 2 B<1

, then ↵i = |↵i|e2⇡
p
�1# for # 2 [0, 1), which

depends on i, and we have |↵p
i � 1| < p��  1/2. Lemma 15 yields t 2 {0, . . . , p} with

|#� t/p|  |↵p
i � 1|/p32 < p��/

p
32. We set  (i) = t.

We define  >1

: B>1

! {0, . . . , p} in the same spirit. For if i 2 B>1

, then |↵i| > 1
and there is # 2 [0, 1) such that ↵i = |↵i|e�2⇡

p
�1#. We apply the said lemma to ↵�1

i

and P�a to obtain  (i) 2 {0, . . . , p} with |#�  (i)/p| < p��/
p
32.

For i 2 B<1

we get
�

�Pa(⇠
 (i))

�

� < 5n|a|p��
with ⇠ = e2⇡

p
�1/p. If i 2 B>1

, the same bound holds for |P�a(⇠ (i))| = |Pa(⇠� (i))|.
Now #B  2#B<1

or #B  2#B>1

. We assume the former, the latter case is dealt
with similarly.

Let us fix e 2 Z such that Q = XeP (X) is a polynomial with non-zero constant term.
Then degQ  2|a| and Q has at most n+ 1 terms. Elements of B<1

that are in a fiber
of  come from roots of Q that are in an open sector of the complex plane with angle
4⇡p��/

p
32 = ⇡p��/

p
2. By Proposition 11.2.4 [22], such an open sector contains at

most

deg(Q)

2
p
2p�

+ n+ 1  2|a|
2
p
2p�

+ n+ 1  |a|p
2p

+ n+ 1  1p
2
+ n+ 1  3n
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roots of Q, counting multiplicities; here we used � � 1 and |a|  p. Therefore,

#B<1

 3n#
�

0  t  p : |Pa(⇠
t)| < 5n|a|p�� 

We must compensate for the fact that we may be counting 1 = ⇠0 = ⇠p twice, so

#B<1

 6n#
�

0  t  p� 1 : |Pa(⇠
t)| < 5n|a|p�� .

The lemma now follows from #B  2#B<1

. ⇤
Proposition 17. For all ✏ > 0 there exist constants c = c(n, ✏) � 1 and � = �(n, ✏) � 1
with the following property. Let a 2 Zn

and let p be a prime with |a|  p such that Pa

does not vanish at any point of µp. Then

#B(p, a,�)  cp✏.

Proof. Say c0 and �0 are from Theorem 3. We apply Lemma 16 to a fixed � � �0+1 � 2
that satisfies 2���

0�1 � 5nc0 and hence p� � 5nc0p�
0
+1.

Say ⇠ = e2⇡
p
�1/p and a = (a

1

, . . . , an). Now any ⇣ 2 µp with |Pa(⇣)| < 5n|a|p�� equals
⇠t for some t 2 Fp and

�

�1 + ⇠a1t + · · ·+ ⇠ant
�

� < 5n|a|p��  c0�1

|a|
p
p��

0  c0�1p��
0
,

as |a|  p. Recall that 1 + ⇠a1 + · · ·+ ⇠an = Pa(⇠) 6= 0 for a as in the hypothesis. So by
Theorem 3 the number of possible t is at most cp✏ for c su�ciently large in terms of n
and ✏. ⇤

8. Main Technical Result

Suppose n � 2, let ⌦ ✓ Zn be a subgroup of rank at least 2, and let a 2 Zn. We set

(29) ⇢(a;⌦) = inf {|!| : ! 2 ⌦ r {0} and h!, ai = 0}
and recall (21).

Proposition 18. Let ⌦ ✓ Zn
be a subgroup of rank m � 2 that satisfies the hypothesis in

Proposition 13. There exists a constant c = C(⌦) � 1 with the following property. Say

a 2 ⌦ and let p be a prime with ⇢p(a;⌦) � c. There exists a0 2 ⌦r{0} with a0 = at�p!,
where t 2 Z is coprime to p and ! 2 ⌦, such that |a0|  cp1�1/m,�p(a0) = �p(a) 6= 0,

(30) ⇢(a0;⌦) � ⇢p(a;⌦), and

1

p� 1
log�p(a

0) = m(Pa0) +O
⇣

p�
1

2m

⌘

;

here the constant implicit in O(·) depends only on ⌦.

Proof. Let !
1

2 ⌦ r {0}, then hp!
1

, ai ⌘ 0 (mod p), hence ⇢p(a;⌦)  p|!
1

|. By
increasing c we may assume that p is larger than a prescribed constant. Say c

1

� 1 is
the constant from Proposition 13; we may suppose c � max{3, c

1

}. There is t 2 Z not
divisible by p and ! 2 ⌦ such that a0 = ta � p! satisfies 0 < |a0|  c

1

p1�1/m and the
only roots of Pa0 on the unit circle are roots of unity. We may assume |a0| < (p � 1)/2
by increasing c.

Suppose h!
0

, a0i = 0 with !
0

2 ⌦ r {0}. Then h!
0

, ai ⌘ 0 (mod p) as t and p are
coprime. So |!

0

| � ⇢p(a0;⌦) by hypothesis. This implies the inequality in (30).
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Let e 2 Z such thatXePa0 is a polynomial with non-zero constant part, then deg(XePa0) 
2|a0| < p � 1. Since XePa0 has integral coe�cients we find Pa0(⇣) 6= 0 if ⇣ has order p.
Clearly, we also have Pa0(1) = n+ 1 6= 0. So Pa0 does not vanish at any point of µp.

We apply Proposition 17 to ✏ = 1/(2m), a0, and p to conclude #B(p, a0,�)  c
2

p1/(2m)

for constants c
2

,� � 1 that depend only on m and n.
We use this bound in the estimate from Proposition 10 applied to a0, to get �p(a0) 6= 0

and
�

�

�

�

1

p� 1
log�p(a

0)�m(Pa0)

�

�

�

�

 c
3

|a0| log p
p

⇣

�+ c
2

p
1

2m

⌘

 c
4

p�
1

2m

where c
3

and c
4

depend only on m,n, and ✏.
Now recall that a0 = ta � p!, so �p(a0) = �p(ta) = �p(a) 6= 0, by Lemma 11, parts

(i) and (ii), respectively. This completes the proof. ⇤

Let A 2 Matmn(Z) be a matrix with entries aij. We define

(31) PA = 1 +
n
X

j=1

X
a1j
1

X
a2j
2

· · ·Xamj
m 2 Z[X±1

1

, . . . , X±1

m ].

If we consider a 2 Zn as a 1 ⇥ n matrix and identify X
1

with X, then the definitions
(10) and (31) coincide.

Now suppose that ⌦ ✓ Zn is a subgroup of rank m � 1 and assume that the rows
of A are a basis of ⌦. Then the value m(PA) is independent of the choice of basis.
Indeed, if the rows of B 2 Matmn(Z) constitute another basis of ⌦, then A = UB
with U 2 GLm(Z). The Mahler measure is known to be invariant under a change of
coordinates by U , i.e. m(PA) = m(PUB) = m(PB), cf. Corollary 8 in Chapter 3.4 [23].
So m(PA) depends only on ⌦ and we write

(32) m(⌦) = m(PA)

for any A as before.

Theorem 19. Let ⌦ ✓ Zn
be a subgroup of rank m � 2 that satisfies the hypothesis in

Proposition 13 and say ✏ > 0. Suppose a 2 ⌦ and p is a prime such that ⇢p(a;⌦) is

su�ciently large in terms of ⌦. Then �p(a) 6= 0 and

(33)
1

p� 1
log�p(a) = m(⌦) +O

⇣

⇢p(a;⌦)�
1
4n+✏

⌘

as ⇢p(a;⌦) ! 1 where the implicit constant depends only on ⌦ and ✏.

Proof. If ⇢p(a;⌦) is su�ciently large, then by Proposition 18 we have �p(a) 6= 0 and
a0 2 ⌦ with the stated properties.

Let us fix a basis !
1

, . . . ,!m of ⌦ and write A 2 Matmn(Z) for the matrix with rows
!
1

, . . . ,!m. We fix a tuple of independent elements (!⇤
1

, . . . ,!⇤
m) in ⌦ and an integer

d � 1 with h!⇤
j ,!li = 0 if j 6= l and h!⇤

j ,!ji = d for all 1  j, l  m.
It remains to check that m(Pa0) converges to m(PA) = m(⌦). Observe

Pa0 = PA(X
⌫1 , X⌫2 , . . . , X⌫m)

where ⌫ = (⌫
1

, . . . , ⌫m) 2 Zm is determined by a0 = ⌫
1

!
1

+ · · ·+ ⌫m!m.
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Our quantitative version of Lawton’s Theorem, Theorem 24 in the self-contained
appendix, relies on ⇢(⌫;Zm). Say (�

1

, . . . ,�m) 2 Zm r {0} has norm ⇢(⌫;Zn) with
Pm

j=1

�j⌫j = 0. Then hPm
j=1

�j!⇤
j , a

0i = 0 and hence

⇢p(a;⌦)  ⇢(a0;⌦) 
�

�

�

�

�

m
X

j=1

�j!
⇤
j

�

�

�

�

�

 ⇢(⌫;Zm)(|!⇤
1

|+ · · ·+ |!⇤
m|)

where we used (30). The theorem follows as PA has at most n+1 and at least m+1 � 2
non-zero terms. ⇤

9. Applications to Gaussian Periods

Using our method we prove the following theorem from which we will deduce two
applications. Suppose n � 2. Recall that m(⌦) was defined in (32).

A place of a number field is an absolute value on the said number field whose restriction
to Q coincides with the standard complex absolute value or the p-adic absolute value
for a prime p taking the value p�1 at p.

Theorem 20. Let K be a number field, let ↵
1

, . . . ,↵n 2 K, and define the subgroup

⌦ = {(b
1

, . . . , bn) 2 Zn : b
1

↵
1

+ · · ·+ bn↵n = 0}?
of rank m. Let ✏ > 0. We suppose m � 2 and that the following hypothesis holds. The

0 = ↵
0

,↵
1

, . . . ,↵n are pairwise distinct and (↵i � ↵j)/(↵k � ↵l) 62 Q for all pairwise

distinct i, j, k, l 2 {0, . . . , n}. Let p be a prime, v
0

a place of K that extends the p-adic
absolute value, and e(v

0

) the ramification index of K/Q at v
0

. Suppose (a
1

, . . . , an) 2 Zn

with |ai � ↵i|v0 < 1 for all i 2 {1, . . . , n}, then
(34)

1

p� 1

p�1

X

t=1

log
�

�1 + ⇣ta1 + · · ·+ ⇣tan
�

� = m(⌦) +O
⇣

p�
1

4n[K:Q]e(v0)
+✏
⌘

where ⇣ = e2⇡
p
�1/p

as p ! 1 and the implicit constant depends only on ↵
1

, . . . ,↵n, and ✏; in particular,

the logarithm is well-defined for all large p.

Proof. Observe that ⇤ = {(b
1

, . . . , bn) 2 Zn : b
1

↵
1

+ · · · + bn↵n = 0} is a primitive
subgroup of Zn of rank r = n � m. If r � 1 and if M 2 Matrn(Z) is a matrix whose
rows are a basis of ⇤, then

0 ! p⌦
inclusion�����! pZn multiplication by M�����������! pZr ! 0

is a short exact sequence. By the Snake Lemma we find that the image of ⌦ in Fn
p equals

the kernel of multiplication by M taken as an endomorphism Fn
p ! Fr

p.
Say a = (a

1

, . . . , an) 2 Zn is as in the hypothesis. Then the left-hand side of (34)
equals 1

p�1

log�p(a). This mean is invariant under translating a by a vector in pZn, cf.
Lemma 11(i). For all (b

1

, . . . , bn) 2 ⇤ we find

|a
1

b
1

+ · · ·+ anbn|v0 = |(a
1

� ↵
1

)b
1

+ · · ·+ (an � ↵n)bn|v0  max
1in

|ai � ↵i|v0 < 1.

By the previous paragraph we may assume, after adding an element of pZn to a, i.e.
without loss of generality, that a 2 ⌦. The current theorem will follow from Theorem
19.



THE NORM OF GAUSSIAN PERIODS 19

As ⇤?? = ⇤, we find that the hypothesis on ⌦ implies the hypothesis on ⌦ in Propo-
sition 13.

To estimate ⇢p(a;⌦) say ! = (!
1

, . . . ,!n) 2 ⌦ r {0} with h!, ai ⌘ 0 (mod p) and
|!| = ⇢p(a;⌦). We define � = !

1

↵
1

+ · · · + !n↵n 2 K. Observe that � 6= 0 since
⇤ \ ⇤? = {0}. We estimate

|�|v0 = |!
1

(↵
1

� a
1

) + · · ·+ !n(↵n � an) + !
1

a
1

+ · · ·+ !nan|v0  p�1/e(v0).

If v is an archimedean place ofK, then the triangle inequality yields |�|v  n|!|max{|↵
1

|v, . . . , |↵n|v}.
For any non-archimedean place v of K we get a stronger bound due to the ultrametric
triangle inequality, i.e. |�|v  max{|↵

1

|v, . . . , |↵n|v}.
We take the product of |�|v 6= 0 over all places with the appropriate multiplicities

and use the local bounds above in combination with the product formula to obtain

1  �

n|!|eh(↵1)+···+h(↵n)
�

[K:Q]

p�1/e(v0).

So (34) follows from (33) as |!| = ⇢p(a;⌦). ⇤
The following corollary generalizes Theorem 1 to subgroups of F⇥

p of odd order.

Corollary 21. Let f � 3 be an odd integer and ✏ > 0. Say ⇠ is a root of unity of order

f and define

⌦ =
�

(b
1

, . . . , bf�1

) 2 Zf�1 : b
1

(⇠ � 1) + b
2

(⇠2 � 1) + · · ·+ bf�1

(⇠f�1 � 1) = 0
 ?

.

For any prime p with p ⌘ 1 (mod f) let Gp ✓ F⇥
p be the subgroup of order f . Then

1

p� 1

p�1

X

t=1

log

�

�

�

�

�

�

X

g2Gp

⇣tg

�

�

�

�

�

�

= m(⌦) +O
⇣

p�
1

4(f�1)'(f)+✏
⌘

where ⇣ = e2⇡
p
�1/p

as p ! 1 where the implicit constant depends only on f and ✏; in particular, the

logarithm is well-defined for all large p.

We will prove this corollary further down. Here we treat the hypothesis on ⌦ in
Theorem 20 for roots of unity.

Lemma 22. Let ⇣
1

, ⇣
2

, ⇣
3

, ⇣
4

be pairwise distinct roots of unity. If (⇣
1

�⇣
2

)/(⇣
3

�⇣
4

) 2 Q,

then there exist distinct i, j 2 {1, 2, 3, 4} with ⇣i = �⇣j.
Proof. Set ⌘ = ⇣

3

⇣�1

4

, ⇠ = ⇣
1

⇣�1

2

, and ⇣ = ⇣
2

⇣�1

4

and define

x =
⇣
1

� ⇣
2

⇣
3

� ⇣
4

= ⇣
⇠ � 1

⌘ � 1
.

We assume x 2 Q and, after possibly swapping ⇣
1

and ⇣
2

, also x > 0.
Note that the number field K = Q(⇣

1

, ⇣
2

, ⇣
3

, ⇣
4

) has only complex embeddings as it
contains at least 4 roots of unity. So the K/Q-norm NK/Q(·) is never negative. We have

(35) x[K:Q] = NK/Q(x) =
NK/Q(⇠ � 1)

NK/Q(⌘ � 1)
.

We now divide into four cases, depending on whether the orders of ⌘ and ⇠ are prime
powers or not.
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First suppose that neither ⌘ nor ⇠ has order a prime power. Then ⌘� 1 and ⇠� 1 are
units and hence x = 1 by (35). We obtain the vanishing sum of roots of unity

(36) ⌘ � ⇣⇠ + ⇣ � 1 = 0.

If a non-trivial subsum vanishes, then

⌘ � ⇣⇠ = ⇣ � 1 = 0 or ⌘ + ⇣ = �⇣⇠ � 1 = 0 or ⌘ � 1 = �⇣⇠ + ⇣ = 0.

The first and third cases are impossible as ⇣ 6= 1 and ⌘ 6= 1. Thus ⇣⇠ = �1 and this
implies ⇣

1

= �⇣
4

, as desired.
If no non-trivial subsum vanishes, then Mann’s Theorem 1 [17] implies ⌘6 = ⇠6 = ⇣6 =

1. In the current case, ⌘ and ⇠ must have precise order 6. If ⌘ = ⇠, then (36) implies
⌘ = 1 or ⇣ = 1 which contracts the hypothesis. Hence ⌘ 6= ⇠ and thus ⌘⇠ = 1. When
combined with (36) we have

(37) ⇣⇠ =
⌘ � 1

⇠ � 1
⇠ =

⌘⇠ � ⇠

⇠ � 1
=

1� ⇠

⇠ � 1
= �1,

and again ⇣
1

= �⇣
4

.
Now suppose that ⇠ has order pe with p a prime and e � 1 and that the order of ⌘

is not a prime power. Then ⌘ � 1 remains a unit but now NK/Q(⇠ � 1) = p[K:Q(⇠)], so
x'(p

e
) = p. As x is rational, we must have '(pe) = 1, so pe = 2 and thus ⇣

1

⇣�1

2

= ⇠ = �1,
which completes this case.

Similarly, if ⌘ has prime power order and ⇠ does not, then we apply the argument
from the last paragraph to x�1 = ⇣�1(⌘ � 1)/(⇠ � 1) and conclude ⇣

3

⇣�1

4

= ⌘ = �1, as
desired.

Finally, suppose ⌘ has order qe
0
and ⇠ has order pe, here p and q are primes and

e, e0 � 1. Now (35) implies x = p1/'(p
e
)q�1/'(qe

0
) 2 Q. If p 6= q, then pe = qe

0
= 2 and so

⌘ = ⇠ = �1, as desired. So say p = q, hence x = p1/'(p
e
)�1/'(pe

0
) 2 Q and it follows that

1

(p� 1)pe�1

� 1

(p� 1)pe0�1

2 Z

and this entails e = e0. We find x = 1 and are thus back in the situation of the first
case except that ⌘ and ⇠ now have prime power order. We proceed similarly. If a non-
trivial subsum in (36) vanishes, then again ⇣

1

= �⇣
4

. Otherwise Mann’s Theorem yields
⌘6 = ⇠6 = 1. This time ⌘ and ⇠ have equal order which is 2 or 3. If the common order is
2 then we are done. Else wise it is 3 and again we must have ⌘ 6= ⇠ which again implies
⌘⇠ = 1. We conclude ⇣

1

= �⇣
4

as in (37). ⇤
Proof of Corollary 21. Let ⇠ be a root of unity of order f . We set

↵
1

= ⇠ � 1, ↵
2

= ⇠2 � 1, . . . ↵f�1

= ⇠f�1 � 1.

Our aim is to apply Theorem 20 to K = Q(⇠) and n = f � 1 � 2. Say ⌦ is as in the
said theorem.

Observe that

↵
1

Z+ · · ·+ ↵nZ = (⇠ � 1)(Z+ (⇠ + 1)Z+ · · ·+ (⇠f�2 + · · ·+ ⇠ + 1)Z) = (⇠ � 1)Z[⇠]
as ⇠f�1 = �(⇠f�2 + · · · + ⇠ + 1). This group has rank m = '(f) and therefore ⌦ also
has rank m � 2.
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We shall show that the hypothesis on ⌦ in Theorem 20 is satisfied. Indeed, if i, j, k, l 2
{0, . . . , n} are pairwise distinct, then

⇠i � ⇠j

⇠k � ⇠l
2 Q

implies that ⇠ has even order by Lemma 22. This contradicts our hypothesis on f .
Finally, observe that p ⌘ 1 (mod f) means that p splits completely in K. For such p

there is (a
1

, . . . , an) as above (34) where v0 is any place ofK extending the p-adic absolute
value. Here e(v

0

) = 1. Now 1, 1 + a
1

, . . . , 1 + an is a complete set of representatives of
the subgroup of F⇥

p of order f = n+ 1. The corollary follows as
�

�1 + ⇣ta1 + · · ·+ ⇣tan
�

� =
�

�⇣t + ⇣t(1+a1) + · · ·+ ⇣t(1+an)
�

�

for all 1  t  p� 1. ⇤
Proof of Theorem 1. We set ⌦ as in the proof of Corollary 21. Its rank is '(f) = f � 1
as f is a prime by hypothesis. Since ⌦ is a primitive subgroup of Zf�1 we conclude
⌦ = Zf�1. In the definition (32) of m(⌦) we may take A to equal the (f � 1)⇥ (f � 1)
unit matrix. The resulting logarithmic Mahler measure is that of 1+X

1

+· · ·+Xf�1

. ⇤
Proof of Corollary 2. Observe that

P

g2G e2⇡
p
�1g/p is an algebraic integer. In view of

Theorem 1 it su�ces to verify m(1 +X
1

+ · · ·+Xf�1

) 6= 0. The higher dimensional
version of Kronecker’s Theorem classifies integral polynomials whose logarithmic Mahler
measure vanishes, see work of Boyd [6], Lawton [13], and Smyth [25]. As our 1 +X

1

+
· · · + Xf�1

is irreducible and f � 3 we easily deduce from this classification that its
logarithmic Mahler measure is non-zero. ⇤

Appendix On Lawton’s Theorem

In this appendix we provide a rate of convergence for the following theorem of Lawton.
The arguments here do not rely on the rest of the paper. Say n � 1 is an integer. Recall
that the definition of ⇢ is given in (29).

Theorem 23 (Lawton, Theorem 2 [14]). Suppose P 2 C[X±1

1

, . . . , X±1

n ]r{0}. If a 2 Zn
,

then m(P (Xa1 , . . . , Xan)) = m(P ) + o(1) as ⇢(a;Zn) ! 1.

We closely following Lawton’s approach but keep track of estimates to obtain the
following refinement.

Theorem 24. Suppose P 2 C[X±1

1

, . . . , X±1

n ] r {0} has k � 2 non-zero terms and let

✏ > 0. For a = (a
1

, . . . , an) 2 Zn
we have

m(P (Xa1 , . . . , Xan)) = m(P ) +O
⇣

⇢(a;Zn)�
1

4(k�1)+✏
⌘

as ⇢(a;Zn) ! 1 where the implied constant depends on n, P, and ✏.

An important tool is an estimate on the measure of the subset of the unit circle, where
a polynomial takes small values. We use vol(·) to denote the Lebesgue measure on Rn.
For P 2 C[X±1

1

, . . . , X±1

n ] and y > 0 we define

S(P, y) = {x 2 [0, 1)n : |P (e(x))| < y}
where e(x) = (e2⇡

p
�1x1 , . . . , e2⇡

p
�1xn) for x = (x

1

, . . . , xn) 2 Rn.
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Lemma 25 (Lawton, Theorem 1 [14]). For k � 1 there exists a constant Ck > 0 with

the following property. If P 2 C[X] is a monic polynomial with k non-zero terms and

y > 0, then vol(S(P, y))  Cky1/max{1,k�1}

The reference covers the important case k � 2. If k = 1, then |P (e(x))| = 1 for all
x 2 Rn and the claim is clear with C

1

= 1.

Lemma 26. Assume P 2 C[X±1

1

, . . . , X±1

n ]r {0} has k � 1 non-zero terms.

(i) If for all y 2 (0, 1] then vol(S(P, y)) = O
�

y1/(2max{1,k�1})�
where the constant in

O(·) depends only on P .

(ii) If q > 0 then

R

[0,1)n

�

�log |P (e(x))|��qdx is well-defined and finite.

Proof. Our proof of (i) is by induction on n. We may assume that P is a polynomial.
If n = 1, then the lemma follows from Lawton’s Theorem after normalizing P .
Say n � 2. There is nothing to prove if k = 1, so suppose k � 2. We may also assume

that P is a polynomial, hence P = P
0

Xd
n + · · ·+ Pd where P

0

, . . . , Pd 2 C[X
1

, . . . , Xn�1

]
and P

0

6= 0. We abbreviate ⌃ = S(P
0

, y1/2) ✓ [0, 1)n�1. If x0 2 Rn�1 and P
0

(e(x0)) 6= 0,
then P (e(x0), X)/P

0

(e(x0)) is a monic polynomial in X. Fubini’s Theorem implies

vol(S(P, y)) =

Z

⌃

vol(S(P (e(x0), X), y))dx0 +

Z

[0,1)n�1r⌃

vol(S(P (e(x0), X), y))dx0

 vol(⌃) +

Z

[0,1)n�1r⌃

vol(S(P (e(x0), X)/P
0

(e(x0))), y/|P
0

(e(x0))|)dx0

 vol(⌃) +

Z

[0,1)n�1r⌃

vol(S(P (e(x0), X)/P
0

(e(x0))), y1/2)dx0

 vol(⌃) + Cky
1/(2k�2)

since vol(S(P (e(x0), X), y))  1 and by Lemma 25.
By this lemma applied by induction to P

0

2 C[X
1

, . . . , Xn�1

] r {0} we conclude
vol(⌃)  c(P

0

)y1/(2k�2). This yields part (i).
The statement in (ii) is possible known, we give a proof based on (i). For an integer

m � 0 and x 2 Rn we define pm(x) = min{m, | log |P (e(x))||q} � 0 which is interpreted
as m if P (e(x)) = 0. Then pm is a non-decreasing sequence of continuous functions on
[0, 1)n. We set Im =

R

[0,1)n
pm(x)dx. By the Monotone Convergence Theorem it su�ces

to prove that the non-decreasing sequence (Im)m�1

converges. For all su�ciently large
m we have |P (e(x))|  em

1/q
if x 2 [0, 1)n. Observe that pm equals m on S(P, e�m1/q

)
and that it coincides with pm+1

outside this set. Thus for all large m we have

Im+1

� Im =

Z

S(P,e�m1/q
)

(pm+1

(x)� pm(x))dx  vol(S(P, e�m1/q
)) = O

⇣

e�m1/q/(2k)
⌘

as pm+1

(x)  m + 1 and where we used (i), the implied constant is independent of m.
Since

P

m�1

e�m1/q/(2k) < 1 we can use a telescoping sum to show that supm�0

Im < 1,
as desired. ⇤

Let N
0

denote the non-negative integers. Say b 2 N
0

and let g lie in Cb(Rn), the set of
real valued functions on Rn whose derivatives exist up-to and including order b and are



THE NORM OF GAUSSIAN PERIODS 23

continuous. For a multiindex i = (i
1

, . . . , in) 2 Nn
0

we set `(i) = i
1

+ · · ·+ in. If `(i)  b,
then we define @ig = (@/@x

1

)i1 · · · (@/@xn)ing and

|g|Cb = max
i2Nn

0
`(i)b

sup
x2Rn

|@ig(x)|

which is possibly 1.
We now introduce a function that equals log |P (e(·))| away from the singular locus

but is continuous on Rn and attains 0 when P (e(·)) does.
Say � 2 Cb(R) is non-decreasing with �(0) = 0,�(1) = 1, �(x) = 0 if x < 0, and

�(x) = 1 if x > 1. We ask in addition that @i�(0) = @i(1) = 0 for all i 2 {1, . . . , b}. For
example, we could take the anti-derivative of xb(1� x)b that attains 0 at x = 0, scale it
to attain 1 at x = 1, and extend by 0 for x < 0 and by 1 for x > 1.

Say y 2 (0, 1/2]. We define �y as x 7! ((2/y)2x � 1)/3, which rescales [(y/2)2, y2] to
[0, 1], composed with �. Then

|@i(�y)(t)| 
✓

4

3y2

◆i
�

�@i�(t)
�

�

for all i 2 {0, . . . , b} and all t 2 R. Hence

(38) |�y|Cb = Ob,�(y
�2b),

here and below the implied constant depends on the quantities appearing in the sub-
script. Finally, we define  y as

 y(t) =

⇢

1

2

�y(t) log t : t > 0,
0 : t  0.

Then  y 2 Cb(R) and all its derivatives up-to and including order b vanish outside of
((y/2)2, y2). Thus

(39) | y|Cb = Ob,�(y
�2b| log y|)

by the Leibniz product rule applied using (38) and since y 2 (0, 1/2].
Say P 2 C[X

1

, . . . , Xn] and write g(x) = |P (e(x))|2, this is a smooth function Rn ! R
and

(40) |g|Cb = Ob,P,n(1).

We define fy =  y � g. If P (e(x)) 6= 0 with x 2 Rn, then

fy(x) =  y(|P (e(x))|2) = �y(|P (e(x))|2) log |P (e(x))|
and for any x 2 Rn we have

fy(x) =

⇢

0 : if |P (e(x))|  y/2,
log |P (e(x))| : if |P (e(x))| � y.

Moreover, the composition fy : Rn ! [0, 1] lies in Cb(Rn). We can bound its norm using
the following lemma.

Lemma 27. Let b � 0, 2 Cb(R), and g 2 Cb(Rn) satisfy | |Cb < 1 and |g|Cb < 1.

Then | � g|Cb  2b(b�1)/2| |Cb max{1, |g|Cb}b.
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Proof. The lemma is evident for b = 0. So say b � 1 and let i 2 Nn
0

r {0} with
` = `(i)  b. Let j 2 Nn

0

be a standard basis vector with i � j 2 Nn
0

. Using the chain
rule and the Leibniz product rule we find

|@i( � g)|C0 = |@i�j(@j( � g))|C0 = |@i�j(( 0 � g)@jg)|C0  2`�1| 0 � g|C`�1 |g|C` .

Thus |@i( �g)|C0  2b�1| 0�g|Cb�1 |g|Cb  2b(b�1)/2| |Cb max{1, |g|Cb}b, where we applied
this lemma by induction to bound | 0 � g|Cb�1 from above. This upper bound for |@i( �
g)|C0 continues to hold for i = 0 and it is therefore an upper bound for | � g|Cb . ⇤

This lemma, together with (39) and (40), implies

(41) |fy|Cb = Ob,P,n,�(y
�2b|log y|).

From now on we suppose b � n + 1. In the next three lemmas and if not stated
otherwise, P 2 C[X

1

, . . . , Xn]r {0} is a polynomial with k � 2 non-zero terms.

Lemma 28. Suppose a 2 Zn
and y 2 (0, 1/2], then

Z

1

0

fy(at)dt =

Z

[0,1)n
fy(x)dx+Ob,P,�,n

✓ |log y|
y2b

1

⇢(a;Zn)b�n

◆

.

Proof. All implied constants in this proof depend only on b, P,�, and n. The Fourier
coe�cients bfy(m) of fy 2 Cb(R), here m 2 Zn, decay quickly. Indeed, by Theorem

3.2.9(b) [11]1 with s = b and |d@afy(m)|  |@afy|C0  |@afy|Cb where `(i) = b. We
conclude

| bfy(m)| = O

✓ |fy|Cb

|m|b
◆

and so | bfy(m)| = O

✓ |log y|
y2b|m|b

◆

for all m 2 Znr{0} by (41). Say H � 1, then
P

|m|�H | bfy(m)| = O
⇣

|log y|
y2b

P

|m|�H
1

|m|b

⌘

,

and hence
X

|m|�H

| bfy(m)| = O

✓ |log y|
y2b

1

Hb�n

◆

(42)

as b� n � 1
Since the Fourier coe�cients of the continuous function fy are absolutely summable,

its Fourier series converges uniformly to fy. Hence
Z

1

0

fy(at)dt =
X

m2Zn

Z

1

0

bfy(m)e2⇡
p
�1ha,mitdt = bfy(0) +

X

m2Znr{0}
ha,mi=0

bfy(m).

Now bfy(0) equals
R

[0,1)n
fy(x)dx, so the estimate in the assertion follows from (42) and

�

�

�

�

�

�

�

�

X

m2Znr{0}
ha,mi=0

bfy(m)

�

�

�

�

�

�

�

�


X

|m|�⇢(a;Zn
)

| bfy(m)| = O

✓ |log y|
y2b

1

⇢(a;Zn)b�n

◆

. ⇤

1| · | in the reference is the `2-norm
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Lemma 29. Suppose each non-zero term of P has modulus at least 1. If a 2 Zn
such

that ⇢(a;Zn) is su�ciently large in terms of P . Then |P (e(as))| is non-zero for all

s 2 [0, 1] outside a finite set of points. Moreover, if y 2 (0, 1/2] then
Z

1

0

log |P (e(as))|ds =
Z

1

0

fy(as)ds+O
�

y1/(k�1)|log y|�

where the implicit constant depends only on P and n.

Proof. Say a = (a
1

, . . . , an) and suppose that ⇢(a;Zn) is strictly larger than |m�m0| for
all distinct m,m0 in the support of P . Then P (Xa1 , . . . , Xan) has the same coe�cients
as P . It is in particular non-zero and the first claim holds true. For the second claim
we can apply Lawton’s Lemma 4 [14]. ⇤

Lemma 30. Let ✏ > 0. If y 2 (0, 1/2] then
�

�

�

�

Z

[0,1)n
(fy(x)� log |P (e(x))|)dx

�

�

�

�

= O
⇣

y
1

2(k�1)�✏
⌘

where the implied constant depends only on n, P, and ✏.

Proof. Let p > 1 and fix q > 1 such that 1/p+1/q = 1. By definition we get the equality
in

�

�

�

�

Z

[0,1)n
(fy(x)� log |P (e(x))|)dx

�

�

�

�

=

�

�

�

�

Z

[0,1)n
(�y(|P (e(x))|2)� 1) log |P (e(x))|dx

�

�

�

�


Z

[0,1)n
|�y(|P (e(x))|2)� 1| |log |P (e(x))|| dx


✓

Z

[0,1)n
|�y(|P (e(x))|2)� 1|pdx

◆

1/p✓Z

[0,1)n
|log |P (e(x))||q dx

◆

1/q

we used the Hölder inequality in the last step; the final integral is finite by Lemma 26(ii).
As �y(|P (e(x))|2) = 1 if |P (e(x))| � y we have

Z

[0,1)n
|�y(|P (e(x))|2)� 1|pdx =

Z

S(P,y)

|�y(|P (e(x))|2)� 1|pdx  vol(S(P, y)).

Recall k � 2. The current Lemma follows from Lemma 26(i) because we may suppose
1/(2p(k � 1)) � 1/(2k � 2)� ✏. ⇤

Proof of Proposition 24. Without loss of generality, we may suppose that all non-zero
coe�cients of P have modulus at least 1 and that P is a polynomial. We fix b � n + 1
su�ciently large and a su�ciently small ✏0 > 0 with

(43) � �

2(k � 1)
+ ✏0�  � 1

4(k � 1)
+ ✏ where � =

b� n

2b+ 1/(2k � 2)
.

We fix a step function � 2 Cb(R) as above, abbreviate H = ⇢(a;Zn) � 1, and set
y = H��.
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For H large enough we find y  1/2 and that |m(P (Xa1 , . . . , Xan))�m(P )| equals
�

�

�

�

Z

1

0

log |P (e(as))|ds�
Z

[0,1)n
log |P (e(x))|dx

�

�

�

�


�

�

�

�

Z

1

0

fy(as)ds�
Z

[0,1)n
fy(x)dx

�

�

�

�

+

�

�

�

�

Z

1

0

(log |P (e(as))|� fy(as))ds

�

�

�

�

+

�

�

�

�

Z

[0,1)n
(fy(x)� log |P (e(x))|)dx

�

�

�

�

.

Then by Lemmas 28, 29, and 30, the final one applied to a su�ciently small ✏0, this sum
is in

O

✓ |log y|
y2b

1

Hb�n
+ y

1
2(k�1)�✏

0
◆

where the implied constant here and below depends only on b, P,�, and ✏. So the sum
is in

O
⇣

�(logH)H2b�+n�b +H� �
2(k�1)+✏

0�
⌘

The proposition follows for small enough ✏0 as 2b� + n� b = ��/(2k � 2), cf. (43). ⇤
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