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Abstract. In this article, we consider a Bayesian approach towards data assimilation and uncertainty quan-4
tification in di↵usion problems on random domains. We provide a rigorous analysis of parametric5
regularity of the posterior distribution given that the data exhibit only limited smoothness. More-6
over, we present a dimension truncation analysis for the forward problem, which is formulated in7
terms of the domain mapping method. Having these novel results at hand, we shall consider as a8
practical example Electrical Impedance Tomography in the regime of constant conductivities. We9
are interested in computing moments, in particular expectation and variance, of the contour of an10
unknown inclusion, given perturbed surface measurements. By casting the forward problem into the11
framework of elliptic di↵usion problems on random domains, we can directly apply the presented12
analysis. This straightforwardly yields parametric regularity results for the system response and13
for the posterior measure, facilitating the application of higher order quadrature methods for the14
approximation of moments of quantities of interest. As an example of such a quadrature method,15
we consider here recently developed higher order quasi-Monte Carlo methods. To solve the forward16
problem numerically, we employ a fast boundary integral solver. Numerical examples are provided17
to illustrate the presented approach and validate the theoretical findings.18
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1. Introduction. The present article considers the Bayesian approach, see e.g. [11, 13,22

40], to assimilate measured data in the framework of elliptic di↵usion equations on random23

domains. The forward problem is solved by means of the domain mapping method as it has24

been considered in [6, 27, 44]. In particular, we extend here the analysis presented in [27]25

and consider the impact of dimension truncation on the system response. In view of the26

computation of quantities of interest, the Bayesian approach boils down to the approximation27

of high-dimensional integrals. In order to apply the higher order quasi-Monte Carlo methods28

considered in [15, 21], we provide additionally a rigorous and general analysis of the posterior29

measure, for a uniform prior and additive Gaussian noise, in the regime where the system30

response provides only limited smoothness. This might occur in the present setting if the given31

data, like loadings and boundary data, exhibit only limited regularity. The presented analysis32

might be considered as an extension of previous works, see particularly [13, 27]. Having these33

prerequisites at hand, we shall consider Electrical Impedance Tomography (EIT) as a practical34

example. EIT is a non-invasive medical imaging procedure and has been extensively studied35
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2 R. N. GANTNER AND M. D. PETERS

in the context of inverse problems, see e.g. [2, 3, 18, 19, 28]. Exploiting di↵erences in the36

electrical conductivity among di↵erent biological tissues, EIT reconstructs and images these37

conductivities based on surface electrode measurements. In particular, we refer here to the case38

of constant conductivities, where the goal is to determine the shape of an unknown inclusion,39

see e.g. [5, 7, 24, 28, 33]. Especially in the absence of noise, it is possible to reconstruct the40

inclusion from a single pair of current/voltage measurements, cf. [5]. This is in contrast to41

the recent work [17], which also considers Bayesian inversion in the context of EIT. There,42

the authors reconstruct a di↵usion coe�cient (representing varying conductivities) from noisy43

measurements, instead of the shape of the domain.44

Our goal will be to approximate the expected shape of an inclusion, given surface mea-45

surements from the domain’s boundary. The Bayesian framework will allow also arbitrary46

moments to be computed, allowing specification of a “confidence interval” for the inclusion’s47

shape. A major advantage of the model problem under consideration is that it can be e�-48

ciently solved by means of boundary integral equations as it has been done for example in49

[18]. This allows for numerical studies concerning the convergence behaviour of the applied50

higher order quasi-Monte Carlo quadrature.51

The remainder of this article is structured as follows. In Section 2, we introduce the52

Bayesian formulation in a rather abstract fashion and parametric regularity results for the53

posterior measure are derived, given a general regularity estimate for the system response of54

the forward problem. After this, in Section 3, we present the forward model under consider-55

ation, i.e. di↵usion problems on random domains, and provide an analysis for the impact of56

dimension truncation. Section 4 deals with the EIT problem and recasts it into the framework57

of a di↵usion problem on a random domain. We comment also on the discretization by means58

of boundary integral equations. Interlaced polynomial lattice rules are briefly discussed in the59

subsequent Section 5, which are the higher-order quasi-Monte Carlo (HoQMC) methods we60

will use in the computations. In Section 6, a numerical experiment is formulated to compare61

HoQMC to conventional methods and the results are discussed.62

2. Bayesian Inversion.63

2.1. The Bayesian Framework. Let X denote some real and separable Banach space64

and let A(y) : X ! X ⇤ be a bounded linear operator for each given parameter sequence65

y 2 U := [�1/2, 1/2]N . For f(y) 2 X ⇤, we consider the parameteric operator equation66

(1) A(y)q(y) = f(y).67

We require that the system response q satisfies then a regularity estimate of the form68

(2) k@⌫
y q(y)kX  C|⌫|!c|⌫|�⌫ for all ⌫ 2 F↵,69

where we denote by C, c > 0 constants which are independent of the sequence ⌫ and � 2 `p(N)70

for p < 1, and we use the convention �⌫ :=
Q

k�1

�⌫kk . The set F↵ is given by71

F↵ :=
�
⌫ 2 NN

0

: ⌫  ↵
 
, where ↵ 2 F :=

⇢
⌫ 2 NN

0

:
X

k�1

⌫k < 1
�
,72
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HIGHER ORDER QUASI-MONTE CARLO FOR BAYESIAN SHAPE INVERSION 3

i.e. F↵ is the set of all finitely supported index sequences that are bounded by ↵ 2 F .73

Typically, such operator equations emerge from di↵usion problems with random data, as74

random di↵usion coe�cients or right hand sides, see e.g. [4, 9], or even random domains [27].75

Since there exists an s 2 N such that ⌫k = 0 for all k > s for all ⌫ 2 F↵, we shall identify76

index sequences with multi indices ⌫ = [⌫
1

, . . . , ⌫s] 2 Ns without further notice.77

Throughout what follows, we will assume the components of y to be stochastically inde-78

pendent and identically uniformly distributed, i.e. we endow the set U with the structure of79

a probability space with respect to the product measure80

µ
0

(dy) =
Y

k�1

dyk.81

This measure will be referred to as the prior measure. We denote by82

G : U ! X , y 7! q(y)83

the uncertainty-to-solution map, which maps a given instance y 2 U of the parameter sequence84

to the corresponding solution q(y) 2 X .85

In forward UQ, the goal is to compute the expectation, with respect to the prior measure86

µ
0

, of a quantity of interest � : X ! Z, which is usually assumed to be a continuous linear87

functional of the parametric solution q(y). The goal of Bayesian inverse UQ as in [11] is to88

incorporate noisy measurements of solutions to (12), after potentially incomplete observations.89

This is modeled by first considering a bounded, linear observation operator O 2 L(X , Y ) for90

a Banach space Y , which models e.g. point evaluation of the system response q, or averaging91

over a certain subdomain. In the following, we assume Y = RK with K < 1, i.e. we assume92

only finitely many measurements of the system response. Then, we define the uncertainty-to-93

observation mapping G by94

(3) G = O �G : U ! Y, y 7! G(y) = O�q(y)�.95

The measured data � is modeled as resulting from an observation by O, perturbed with96

additive Gaussian noise, � = O�u(y?)
�
+ ⌘, where y? is the unknown, exact parameter, and97

⌘ ⇠ N (0,�). Hereby, we assume � to be a known symmetric, positive definite covariance98

matrix � 2 RK⇥K .99

The goal will then be to predict expectations of the quantity of interest �, which in general100

is an arbitrary continuous functional of the solution. In particular, it needs not contain the101

observation operator, thus allowing prediction of “unobservable” phenomena, given perturbed102

measurements of observable output. To that end, we define the Gaussian potential, also103

referred to as the least-squares or data misfit functional, by �
�

: U ⇥ Y ! R,104

(4) �
�

(y, �) :=
1

2
k� � G(y)k2

�

=
1

2

�
� � G(y)�|��1

�
� � G(y)�.105

Given the prior measure µ
0

, Bayes’ formula yields an expression for a posterior measure106

µ� on U , given the data �.107
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4 R. N. GANTNER AND M. D. PETERS

Theorem 1. Assume that the potential �
�

: U ⇥ Y ! R is µ
0

-measurable for � 2 Y . Then108

the conditional distribution of y given �, denoted by y|�, exists and is denoted by µ�. It is109

absolutely continuous with respect to µ
0

and its Radon-Nikodym derivative is given by110

(5)
dµ�

dµ
0

(y) =
1

Z
exp

�� �
�

(y, �)
�
,111

with Z :=
R
U exp

�� �
�

(y, �)
�
µ
0

(dy) > 0.112

Proof. See e.g. [11].113

The goal of computation is thus to approximate the posterior expectation Eµ�
[�(q)] =114

Z 0/Z, where Z is given in Theorem 1 and115

(6) Z 0 :=

Z

U
�
�
q(y)

�
exp

�� �
�

(y, �)
�
µ
0

(dy).116

The numerical approximation of Eµ�
[�(q)] will consist of three parts:117

(i) truncation of the infinite-parametric problem (1) to s > 0 parameters y(s) = [y
1

, . . . , ys]| 2118

U (s) := [�1/2, 1/2]s,119

(ii) approximation of the solution q(s)
�
y(s)

�
to the dimensionally truncated problem by a120

solution q(s)h

�
y(s)

�
obtained using a suitable discretization, and121

(iii) approximation of the resulting s-dimensional integral over y(s) 2 U (s).122

For the latter, instead of resorting to Markov Chain Monte Carlo (MCMC) methods which123

converge at a (low) rate of N�1/2 in the number of evaluations N of the forward model [32],124

we will adopt a direct, deterministic approach similar to [8, 40] and considered in the form125

used here for linear, a�ne-parametric problems in [13, 14]. To that end, we have to pro-126

vide parametric regularity estimates for the posterior measure, which will be provided in the127

following subsection.128

2.2. Parametric regularity of the posterior. As stated above, it is well known that the129

system response q satisfies in relevant applications a parametric regularity estimate of the130

form (2). Therefore, we will take this estimate as a starting point for our analysis.131

In view of Lemma 15 from the Appendix, we obtain the following straightforward result.132

Lemma 2. Assume that the solution q(y) to an operator equation of the form (1) satisfies133

(2) with � 2 `p(N) for p < 1. Then the system response q satisfies the decay estimate134

k@⌫
y q(y)kX  C

1� c�
⌫!c|⌫|e�⌫ for all ⌫ 2 F↵.135

where e�k := �k/�k with a positive sequence � 2 `1(N) and c� := k�k`1(N) < 1.136

This means that, given a su�ciently fast decay of the sequence �, we can always replace the137

factor |⌫|! by ⌫! due to modifying � by an `1-sequence, e.g.
�
k�1�"/ec

 
k
for arbitrary " > 0138

and a normalization constant ec > 0.139

Now, let O 2 L(X ;RK) and let G(y) be defined as in (3). We want to analyze the behavior140

of the density141

exp
�� �

�

(y, �)
�
,142
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where the functional �
�

(y, �) is given by (4). Since O is linear and bounded, we have143

(7)
��@⌫

y

�Oq(y)
���

RK =
��O�@⌫

y q(y)
���

RK  kOkL(X ;RK
)

C|⌫|!c|⌫|�⌫ for all ⌫ 2 F↵.144

For the sake of simplicity let � be the identity matrix. Then, we start by considering145

@⌫0
x

exp

✓
� 1

2
x

|
x

◆
.146

In the univariate case, we know that147

@⌫0
x exp

✓
� 1

2
x2
◆

= (�1)⌫
0
exp

✓
� 1

2
x2
◆
H⌫0(x),148

where H⌫0 is the probabilists’ Hermite polynomial of degree ⌫ 0. By a tensor product argument,149

we obtain150

@⌫0
x

exp

✓
� 1

2
x

|
x

◆
= (�1)|⌫

0| exp

✓
� 1

2
x

|
x

◆
H⌫0(x).151

Herein, the tensor product Hermite polynomial is given by152

H⌫0(x) := H⌫01
(x

1

) · · ·H⌫0K
(xK).153

Since the Hermite polynomials satisfy154

|H⌫0(x)|  cH exp

✓
x2

2

◆p
⌫ 0! with cH := 1.0685,155

cp. [1], we have the following bound on the multivariate squared exponential function156
����@

⌫0
x

exp

✓
� 1

2
x

|
x

◆����  cKH
p
⌫ 0!.157

Now, consider the a�ne transform x 7! ��1/2(� � x), then we achieve the bound158
����@

⌫0
x

exp

✓
� 1

2
(� � x)|��1(� � x)

◆����  cKH
p
⌫ 0!k�k�

|⌫0|
2

2

.159

In particular, this implies that160

 (x) := exp
�� 1/2(� � x)|��1(� � x)

�
161

is an entire function on RK . We make use of the following result from [10].162

Theorem 3. Let f(x) : RK ! R be an entire function and g(i) 2 C↵
�
U (s)

�
for i = 1, . . . ,K.163

Then, the derivatives of h(y) := f
�
g(1)(y), . . . , g(K)(y)

�
: U (s) ! R are given according to164

(8) @⌫
yh(y) = ⌫!

X

1|⌫0|

@⌫0
x

f(x)|
x=0

⌫ 0!

X

s(⌫,⌫0
)

KY

i=1

⌫0iY

j=1

@
µ

(i)
j

y g(i)(y)

µ(i)
j !

for all ⌫ 2 F↵.165

Herein, the set s(⌫,⌫ 0) is defined as166

s(⌫,⌫ 0) :=

(⇣
µ(1)

1

, . . . ,µ(1)

⌫01
, . . . ,µ(K)

1

, . . . ,µ(K)

⌫0K

⌘
: µ(i)

j 2 Ns and
KX

i=1

⌫0iX

j=1

µ(i)
j = ⌫

)
.167
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6 R. N. GANTNER AND M. D. PETERS

Proof. See [10] for a proof of this statement.168

Combining this estimate with the bound (7), gives the main result of this section.169

Theorem 4. Given that � 2 `p(N) for p < 1/2, the derivatives of exp
�� �

�

(y, �)
�
can be170

bounded according to171
��@⌫

y exp
�� �

�

(y, �)
���  C(�,�,O)K |⌫|!(2c)|⌫|e�⌫ for all ⌫ 2 F↵,172

where e�k := �k/�k with a positive sequence � 2 `1(N), c� := k�k`1(N) < 1, and C(�,�,O) > 0173

is a constant.174

Proof. From Lemma 2 and estimate (7), we derive that175
��@⌫

yG(y)
��
RK  C(�,O)⌫!c|⌫|e�⌫ for all ⌫ 2 F↵,176

where C(�,O) := CkOkL(X ;RK
)

/(1� c�).177

Now, the application of Theorem 3 gives us, cp. (8),178

@⌫
y exp

�� �
�

(y, �)
�
= ⌫!

X

1|⌫0|

@⌫0
x

 (x)|
x=0

⌫ 0!

X

s(⌫,⌫0
)

KY

i=1

⌫0iY

j=1

@
µ

(i)
j

y G(i)(y)

µ(i)
j !

.179

We estimate180

��@⌫
y exp

�� �
�

(y, �)
���  ⌫!

X

1|⌫0|

��@⌫0
x

 (x)|
x=0

��
⌫ 0!

X

s(⌫,⌫0
)

KY

i=1

⌫0iY

j=1

��@
µ

(i)
j

y G(i)(y)
��

µ(i)
j !

181

 ⌫!
X

1|⌫0|

cKHk�k�
|⌫0|
2

2p
⌫ 0!

X

s(⌫,⌫0
)

KY

i=1

⌫0iY

j=1

C(⌫,O)µ(i)
j !c|µ

(i)
j |e�µ

(i)
j

µ(i)
j !

182

 ⌫!c|⌫|e�⌫
X

1|⌫0|

cKHk�k�
|⌫0|
2

2p
⌫ 0!

C(⌫,O)|⌫
0|
X

s(⌫,⌫0
)

1.183

184

Thus, it remains to estimate the cardinality of the set s(⌫,⌫ 0). The number of weak integer185

compositions for ⌫k of length |⌫ 0| is given according to, see e.g. [29],186

����µ
1

, . . . , µ|⌫0|
�
: µi 2 N and µ

1

+ . . .+ µ|⌫0| = ⌫k
 �� =

✓
⌫k + |⌫ 0|� 1

|⌫ 0|� 1

◆
.187

By multiplying the number of possible compositions in each component, we can determine188

the cardinality of the set s(⌫,⌫ 0) by189

|s(⌫,⌫ 0)| =
sY

k=1

✓
⌫k + |⌫ 0|� 1

|⌫ 0|� 1

◆
.190

We may bound this cardinality due to the estimate obtained by Lemma 17, i.e.191

sY

k=1

✓
⌫k + |⌫ 0|� 1

|⌫ 0|� 1

◆
 |⌫|!

⌫!

✓|⌫|+ |⌫ 0|� 1

|⌫ 0|� 1

◆
 |⌫|!

⌫!
2|⌫|+|⌫0|.192
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HIGHER ORDER QUASI-MONTE CARLO FOR BAYESIAN SHAPE INVERSION 7

Therefore, we arrive at193

��@⌫
y exp

�� �
�

(y, �)
���  |⌫|!(2c)|⌫|e�⌫

X

1|⌫0|

cKHk�k�
|⌫0|
2

2p
⌫ 0!

�
2C(�,O)

�|⌫0|
.194

Obviously, the series195

1X

⌫0
i=0

cHk�k�
⌫0
i
2

2p
⌫ 0
i!

�
2C(�,O)

�⌫0
i196

is absolutely convergent with respect to each particular direction ⌫ 0
i. Let its limit be C(�,�,O).197

Hence, by taking the product of this limit with respect to the K components of ⌫ 0, we arrive198

at the assertion.199

3. Forward model.200

3.1. The domain mapping method. In this section, we formulate the di↵usion problem201

on random domains as is has been addressed in [27]. To that end, let (⌦,A,P) denote a202

complete and separable probability space with �-algebra A and probability measure P. Here,203

complete means that A contains all P-null sets. For a given Banach space X , we introduce204

the Bochner space Lp
P(⌦;X ), 1  p  1, which consists of all equivalence classes of strongly205

measurable functions v : ⌦! X whose norm206

kvkLp
P(⌦;X )

:=

8
>><

>>:

✓Z

⌦

kv(·,!)kpX dP(!)
◆

1/p

, p < 1

ess sup
!2⌦

kv(·,!)kX , p = 1
207

is finite. If p = 2 and X is a separable Hilbert space, then the Bochner space Lp
P(⌦;X ) is208

isomorphic to the tensor product space L2

P(⌦) ⌦ X . For more details on Bochner spaces, we209

refer the reader to [31].210

Now, given a random domain D(!) ⇢ Rd for d = 2, 3, we assume the existence of a211

reference domain D
0

⇢ Rd and of a uniform C1-di↵eomorphism V : D
0

⇥ ⌦! Rd, i.e.212

(9) kV(!)kC1
(D0;Rd

)

, kV�1(!)kC1
(D0;Rd

)

 C
uni

for P-a.e. ! 2 ⌦,213

such that D(!) is implicitly given by the relation214

D(!) = V(D
0

,!).215

Particularly, since V 2 L1�⌦;C1(D
0

)
� ⇢ L2

�
⌦;C1(D

0

)
�
, the vector field V exhibits a216

Karhunen-Loève expansion of the form217

V(x,!) = E[V](x) +
1X

k=1

Vk(x)Yk(!).218
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8 R. N. GANTNER AND M. D. PETERS

The anisotropy which is induced by the spatial parts {Vk}k, describing the fluctuations around219

the nominal value E[V](x), is encoded by220

(10) �k := kVkkW 1,1
(D0;Rd

)

.221

For our modeling, we shall also make the following common assumptions.222

Assumption 5.223

(i) The random variables {Yk}k take values in [�1/2, 1/2].224

(ii) The random variables {Yk}k are independent and identically distributed.225

(iii) The sequence {�k}k is at least in `1(N).226

By an appropriate reparametrization, we can achieve that E[V](x) = x. Moreover, if we227

identify the random variables by their image y 2 U = [�1/2, 1/2]N, we end up with the228

representation229

(11) V(x,y) = x+
1X

k=1

Vk(x)yk.230

The Jacobian of V with respect to the spatial variable x is thus given by231

J(x,y) = I+
1X

k=1

V

0
k(x)yk.232

Introducing the parametric domains D(y) := V(D
0

,y), the forward problem which we con-233

sider here becomes:234

Find q 2 H1

�
D(y)

�
such that235

(12)
��q(y) = 0 in D(y),

q(y) = g on @D(y).
236

To guarantee the solvability of the model problem for every realization of the parameter y 2 U ,237

it is reasonable to postulate that the Dirichlet data g are defined on the entire hold-all domain238

D := [y2UD(y). Moreover, to derive regularity results that are independent of the parameter239

dimension, it is necessary that g is an analytic function see [27]. Nevertheless, in view of (2),240

we shall weaken this estimate and only require that there holds241

(13) k@⌫
y (�g �V)(y)kL1

(D0)
 C|⌫|!c|⌫|�⌫ for all ⌫ 2 F↵242

for some constants C, c > 0. Thus, it would be su�cient to postulate �g 2 C |↵|�D(y)
�
for243

all y 2 U . Hence, we can reformulate the problem by making the ansatz244

q(y) = q
0

(y) + g.245

This results in:246

Find q
0

2 H1

0

�
D(y)

�
such that247

��q
0

(y) = �g in D(y),

q
0

(y) = 0 on @D(y).
248
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HIGHER ORDER QUASI-MONTE CARLO FOR BAYESIAN SHAPE INVERSION 9

From this, we can easily derive the variational formulation:249

Find q
0

2 H1

0

�
D(y)

�
such that there holds for all v 2 H1

0

�
D(y)

�
that250

Z

D(y)
rq

0

(y)rv dx =

Z

D(y)
(�g)v dx.251

Now, defining252

(14) A(x,y) :=
⇥
J

|
J

⇤�1

(x,y) detJ(x,y) and f̂(x,y) := (�g)
�
V(x,y)

�
detJ(x,y),253

we arrive at the variational formulation on the reference domain D
0

, which reads:254

Find q̂
0

2 H1

0

(D
0

) such that there holds for all v 2 H1

0

(D
0

) that255
Z

D0

A(y)rq̂
0

(y)rv dx =

Z

D0

f̂(y)v dx.256

We note that q
0

(y) = q̂
0

�V�1(y) and for all y 2 U , we derive257

(15)
��@⌫

y q̂0(y)
��
H1

0 (D0)
 C|⌫|!c|⌫|�⌫ for all ⌫ 2 F↵,258

for a sequence � 2 `p(N) for some p < 1, given here by (10), and some constants C, c > 0,259

see [27] for the details. A regularity estimate similar to (15) particularly accounts for the260

system response q̂ of the forward problem (12) transported to D
0

, which is a straightforward261

consequence of the smoothness requirements (13) in the Dirichlet data and the application of262

the Faà di Bruno’s formula.263

3.2. Dimension truncation. In this subsection, we shall supplement the analysis pre-264

sented in [27] by discussing the error of dimension truncation. As a starting point, we con-265

sider the general representation (11) of the vector field. We refer to s as the truncation266

dimension or parametric dimension of the problem. By considering now sequences of the267

form y = {y
1

, . . . , ys, 0, . . .}, the following lemma is immediate.268

Lemma 6. Let the Jacobian of the truncated expansion of the vector field V be defined as269

J

(s)(x,y) := I+
sX

k=1

V

0
k(x)yk and set "(s)� :=

1X

k=s+1

�k.270

Then, there holds271
1

C
uni

 ��J(s)(y)
��
L1

(D0;Rd⇥d
)

 C
uni

272

with the same constant as in (9), where the bounds hold uniformly in s.273

Given su�cient summability of the sequence �, we obtain the following bound on the274

truncation error.275

Lemma 7. Let "(s)� be defined as in Lemma 6. Assume that the sequence � is nonincreasing,276

�
1

� �
2

. . ., and assume additionally that there exists p 2 (0, 1) such that � 2 `p(N). Then,277

(16) "(s)�  C(p,�)s�✓(1/p�1),278

with C(p,�) = min
�
(1/p� 1)�1, 1

�k�k`p and ✓ = 1 in general. If
R
1/2
�1/2 yj µ0

(dyj) = 0 for all279

j 2 N, we have ✓ = 2.280
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10 R. N. GANTNER AND M. D. PETERS

Proof. See e.g. [15, Thm. 2.6] and [36].281

Now, we consider the impact of truncation on detJ(y) and
⇥
J

|
J

⇤
(y) separately.282

Lemma 8. The determinant of the truncated Jacobian satisfies the estimate283

�� detJ(y)� detJ(s)(y)
��  dCd�1

uni

"(s)� .284

Proof. For the determinant function and two matrices M,M0 2 Rd⇥d with bounded285

columns kMik2, kM0
ik2  c for i = 1, . . . , d and c > 0, we know286

| detM� detM0|  dcd�1kM�M

0k
2

.287

Obviously, we can bound each column of J and J

(s) by C
uni

. Therefore, we arrive at288

�� detJ(y)� detJ(s)(y)
��  dCd�1

uni

��
J(y)� J

(s)(y)
��
2

 dCd�1

uni

"(s)� .289

Lemma 9. For the truncation of the matrix
⇥
J

|
J

⇤�1

(y), there holds the estimate290

��⇥
J

|
J

⇤�1

(y)� ⇥�J(s)
�|
J

(s)
⇤�1

(y)
��
L1

(D0;Rd⇥d
)

 2

C
uni

"(s)� +O
�
"(s)�
�
2

.291

Proof. A straightforward calculation yields292

��[J|
J](y)� ⇥�J(s)

�|
J

(s)
⇤
(y)
��
L1

(D0;Rd⇥d
)

 2C
uni

"(s)� +O
�
"(s)�
�
2

.293

Therefore, a first order Taylor expansion gives us, see e.g. [30],294

��⇥
J

|
J

⇤�1

(y)� ⇥�J(s)
�|
J

(s)
⇤�1

(y)
��
L1

(D0;Rd⇥d
)

295

 2C
uni

"(s)�

��⇥
J

|
J

⇤
(y)
��
L1

(D0;Rd⇥d
)

��⇥
J

|
J

⇤�1

(y)
��2
L1

(D0;Rd⇥d
)

+O
�
"(s)�
�
2

296

 2
C
uni

C2

uni

"(s)� +O
�
"(s)�
�
2

,297
298

where we applied the bounds299

��⇥
J

|
J

⇤�1

(y)
��
L1

(D0;Rd⇥d
)

 1/C2

uni

and
��⇥
J

|
J

⇤
(y)
��
L1

(D0;Rd⇥d
)

 C2

uni

.300

Having these lemmata at hand, we can bound the truncation error in the di↵usion matrix301

and in the right hand side.302

Theorem 10. The truncation errors in the di↵usion matrix and in the right hand side303

satisfy the error estimates304

��
A(y)�A

(s)(y)
��
L1

(D0;Rd⇥d
)

 (2 + d)Cd�1

uni

"(s)� +O
�
"(s)�
�
2

305

and306 ��f̂(y)� f̂ (s)(y)
��
L1

(D0)
 (d+ C

uni

)k�gkW 1,1Cd�1

uni

"(s)� .307

In these estimates, the quantities A

(s)(y) and f̂ (s)(y) are simply obtained by replacing J in308

(14) by J

(s).309
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HIGHER ORDER QUASI-MONTE CARLO FOR BAYESIAN SHAPE INVERSION 11

Proof. By the application of the triangle inequality, we can now simply bound the trun-310

cation error for the di↵usion matrix according to311

��
A(y)�A

(s)(y)
��
L1

(D0;Rd⇥d
)

312


���A(y)� ⇥J|

J

⇤�1

(y) detJ(s)(y)
���
L1

(D0;Rd⇥d
)

313

+
���
⇥
J

|
J

⇤�1

(y) detJ(s)(y)�A

(s)(y)
���
L1

(D0;Rd⇥d
)

314

 1

C2

uni

dCd�1

uni

"(s)� +
2

C
uni

"(s)� Cd
uni

+O
�
"(s)�
�
2

315

 (2 + d)Cd�1

uni

"(s)� +O
�
"(s)�
�
2

.316317

where we applied the bounds318

��⇥
J

|
J

⇤
(y)
��
L1

(D0;Rd⇥d
)

 1

C2

uni

and
�� detJ(s)(y)

��  Cd
uni

.319

In complete analogy, we can bound the truncation error in the right hand side according320

to321 ��f̂(y)� f̂ (s)(y)
��
L1

(D0)

 ��f̂(y)� (�g �V)(y) detJ(s)(y)
��
L1

(D0)

+
��(�g �V)(y) detJ(s)(y)� f̂ (s)(y)

��
L1

(D0)

 k�gkL1
(D)

dCd�1

uni

"(s)� + k�gkW 1,1
(D)

"(s)� Cd
uni

 (d+ C
uni

)k�gkW 1,1Cd�1

uni

"(s)� .322

From Lemma 6, we infer that the di↵usion matrix A

(s)(y) is always elliptic, i.e. there323

holds324

z

|
A

(s)(x,y)z � a
min

> 0 for all z 2 Rd uniformly in s.325

Thus, let q̂(s)
0

2 H1

0

(D
0

) be the unique solution of the variational formulation326

Z

D0

A

(s)(y)rq̂(s)
0

rv dx =

Z

D0

f̂ (s)(y)v dx.327

Having the impact of truncating the Jacobian on the di↵usion coe�cient and the right hand328

side at hand, we may now bound the respective error of the solution in analogy to Strang’s329

lemma.330

Theorem 11. There holds for a constant C > 0, which depends on the domain D
0

, the331

spatial dimension d as well as k�gkW 1,1 and C
uni

, the error estimate332

���q̂
0

� q̂(s)
0

�
(y)
��
H1

0 (D0)
 C

a
min

�
1 + kq̂

0

(y)kH1
0 (D0)

�
"(s)� +O

�
"(s)�
�
2

.333
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12 R. N. GANTNER AND M. D. PETERS

Proof. Making use of the ellipticity of the bilinear form induced by A

(s)(y), we have334

a
min

���q̂
0

� q̂(s)
0

�
(y)
��2
H1

0 (D0)
335


Z

D0

A

(s)(y)r�q̂
0

� q̂(s)
0

�
(y)r�q̂

0

� q̂(s)
0

�
(y) dx336

=

Z

D0

A

(s)(y)rq̂
0

(y)r�q̂
0

� q̂(s)
0

�
(y) dx�

Z

D0

f̂ (s)(y)
�
q̂
0

� q̂(s)
0

�
(y) dx337

=

Z

D0

�
A

(s) �A

�
(y)rq̂

0

(y)r�q̂
0

� q̂(s)
0

�
(y) dx338

�
Z

D0

�
f̂ (s) � f̂

�
(y)
�
q̂
0

� q̂(s)
0

�
(y) dx339

 ��A(y)�A

(s)(y)
��
L1

(D0;Rd⇥d
)

���q̂
0

� q̂(s)
0

�
(y)
��
H1

0 (D0)
kq̂

0

(y)kH1
0 (D0)

340

+
��f̂(y)� f̂ (s)(y)

��
H�1

(D0)

���q̂
0

� q̂(s)
0

�
(y)
��
H1

0 (D0)
.341

342

Now, we exploit343

��f̂(y)� f̂ (s)(y)
��
H�1

(D0)
 cP

p
|D

0

|��f̂(y)� f̂ (s)(y)
��
L1

(D0)
,344

where cP > 0 is the Poincare constant for D
0

and |D
0

| is the Lebesgue measure of D
0

. Then,345

simplifying this expression and inserting the bounds from Theorem 10 results in346

���q̂
0

� q̂(s)
0

�
(y)
��
H1

0 (D0)
 1

a
min

(2 + d)Cd�1

uni

"(s)� kq̂
0

(y)kH1
0 (D0)

+O
�
"(s)�
�
2

+
1

a
min

cP
p
|D

0

|(d+ C
uni

)k�gkW 1,1Cd�1

uni

"(s)� .
347

4. Electrical Impedance Tomography. Now, let D ⇢ R2 denote a simply-connected and348

convex domain with Lipschitz continuous boundary ⌃ := @D. Inside the domain, we suppose349

that there exists a simply connected subdomain S b D with boundary � := @S. The boundary350

� shall be of co-dimension 1 and, thus, separate the interior domain S and the outer domain351

D. The resulting, annular domain D \ S shall be referred to as D.352

S � D ⌃

Figure 1: The domain D with inner and outer boundaries � and ⌃, respectively, and the
inclusion S.
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HIGHER ORDER QUASI-MONTE CARLO FOR BAYESIAN SHAPE INVERSION 13

A sketch of the situation can be found in Figure 1. The inner domain S models a material353

of constant conductivity that is significantly di↵erent from the (also constant) conductivity of354

the material in the annular domain D. We are interested in the identification of the inclusion355

S. To that end, for a given voltage distribution g
D

2 H1/2(⌃), we measure the corresponding356

current distribution g
N

2 H�1/2(⌃). This means that we are looking for a domain D which357

satisfies the overdetermined boundary value problem358

(17)

�q = 0 in D,

�int
0,�q = 0 on �,

�int
0,⌃q = g

D

on ⌃,

�int
1,⌃q = g

N

on ⌃.

359

Herein, the operators �int
0,� and �int

0,⌃ denote the interior trace operators at � and ⌃, re-360

spectively, whereas �int
1,⌃ is the co-normal derivative at ⌃. Instead of successively solving this361

problem by an optimization procedure, as it has been done in e.g. [18], we will approach it here362

by means of Bayesian inversion. In this context, we assume that the measured Neumann data363

at ⌃ are subject to uncertainty and assume a prior distribution on the parameters describing364

the boundary. In order to quantify the resulting uncertainty inherent in this problem, we365

reformulate the associated forward problem in terms of an elliptic di↵usion problem which is366

stated on a random domain.367

Due to our lack of knowledge on the shape of the inclusion, we consider the interior368

domain to be random. This uncertainty is incorporated by assuming the interior boundary to369

be P-a.s. star-shaped and modeling it according to370

(18) �(!) =
�
x = �(t,!) 2 R2 : �(t,!) = u(t,!)e(t), t 2 I

 
,371

where �(t,!) is a random field. Furthermore, let e(t) := [cos(t), sin(t)]| denote the radial372

direction and I := [0, 2⇡] be the interval for the angle t. We note that with the techniques373

presented in the previous section it is possible to treat more general inclusions. Nevertheless,374

our particular choice facilitates a sensible definition of an expected shape. Additionally, the375

variance (or higher moments) of the parameters can be computed, yielding via (18) a confi-376

dence region for the inclusion. In accordance with [25], we define the boundary’s mean and377

variance as378

E[�(!)] =
�
x 2 R2 : x = E[u(t,!)]e(t), t 2 I

 
379

V[�(!)] =
�
x 2 R2 : x = V[u(t,!)]e(t), t 2 I

 
.380381

To that end, the radial function u(t,!) � c > 0 has to be in the Bochner space L2

�
⌦;C2

per

(I)
�
,382

where C2

per

(I) denotes the Banach space of periodic, twice continuously di↵erentiable func-383

tions, i.e.384

C2

per

(I) :=
�
f 2 C2(I) : f (i)(0) = f (i)(2⇡), i = 0, 1, 2

 
,385

equipped with the norm386

kfkC2
per(I)

:=
2X

i=0

max
x2I

��f (i)(x)
��.387

This manuscript is for review purposes only.



14 R. N. GANTNER AND M. D. PETERS

If u(t,!) is described by its expectation388

E[u](t) =
Z

⌦

u(t,!) dP(!)389

and its covariance390

Cov[u](t, t0) = E[u(t,!)u(t,!)] =
Z

⌦

u(t,!)u(t0,!) dP(!),391

then we can represent it by its Karhunen-Loève expansion, cf. [37],392

u(t,!) = E[u](t) +
1X

k=1

uk(t)Yk(!).393

Herein, the functions {uk(')}k are scaled versions of the eigenfunctions of the Hilbert-Schmidt394

operator associated to Cov[u](t, t0). Common approaches to numerically recover the Karhunen-395

Loève expansion from these quantities are e.g. given in [26, 42]. By construction, the random396

variables {Yk(!)}k in the Karhunen-Loève expansion are uncorrelated. For our modeling, we397

shall also impose the conditions of Assumption 5, where we modify the third condition as398

follows:399

(iii)’ The sequence {�̂k}k :=
�kukkW 1,1

(0,2⇡)

 
k
is at least in `1(N).400

The domain D(!) shall now be identified by its boundaries �(!) and ⌃. Then, we face401

the following forward problem:402

Find q 2 H1

�
D(!)

�
such that403

(19)
��q(!) = 0 in D(!),

q(!) = g on @D(!),
404

where g|
�(!) = 0 and g|

⌃

= g
D

.405

The parametric regularity may now be obtained as in the previous section. To that end,406

we cast the forward model into the framework of the domain mapping method as it has been407

done in [27] and employ the regularity results presented there. The boundary �(!) in (18) is408

already parametrized with respect to the reference boundary �
0

:= E[�]. Hence, it is sensible409

to introduce the reference domain D
0

⇢ R2 that is enclosed by the boundaries �
0

and ⌃.410

Thus, by a suitable extension, we can achieve that �(!) is given by the application of a411

vector field V : D
0

⇥⌦! R2, i.e. �(!) = V(�
0

,!). If �
0

is of class C2, a possibility to define412

V is given as follows:413

(20) V(x,!) := x+
1X

k=1

uk(argPx)


cos(argPx)
sin(argPx)

�
B(kx� Pxk

2

)Yk(!),414

where Px is the orthogonal projection of x onto �
0

and B : [0,1) ! [0, 1] is a smooth blending415

function with B(0) = 1 and B(t) = 0 for all t � c for some constant c 2 (0,1). Notice that416

if �
0

is of class C2, the orthogonal projection P onto �
0

and thus V(x,!) is at least of class417

C1, cf. [34]. Choosing c su�ciently small, we can guarantee that V(⌃,!) = ⌃. Finally, after418
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a possible scaling of the perturbation’s amplitude, we can always guarantee that this choice419

of V satisfies the uniformity condition (9), cp. [43]. Now, assuming that420

�k :=

����uk

cos(argP ·)
sin(argP ·)

�
B(k ·�P · k

2

)

����
W 1,1

(D0,R2
)

421

is still in `1(N), we can carry over the regularity results from the previous section to our422

forward model (19) one-to-one.423

Remark 12. Since we aim at reconstructing the inclusion S from measurements of the424

Neumann data at the fixed boundary ⌃ and since we impose that V(⌃,!) = ⌃, the Cauchy425

data, i.e. Dirichlet data and Neumann data, are independent of the particular choice of the426

blending function.427

4.1. Discretization. Our approach to determine for the given pair [�int
0,⌃q, �

int

0,�(y)q] = [f, 0]428

the respective solution q(x,y) to (12) relies on the reformulation of the boundary value prob-429

lem as a boundary integral equation by means of Green’s fundamental solution430

k(x,x0) = � 1

2⇡
log kx� x

0k
2

.431

Namely, the solution q(x,y) of (17) is given in each point x 2 D(y) by Green’s representation432

formula433

(21) q(x,y) =

Z

�(y)[⌃
k(x,x0)�int

1

q(x0,y)� @k(x,x0)

@n
x

0
�int
0

q(x0,y) ds
x

0 .434

Using the jump properties of the layer potentials, we arrive at the direct boundary integral435

formulation which reads436

(22)
1

2
�int
0

q(x,y) =

Z

�(y)[⌃
k(x,x0)�int

1

q(x0,y) ds
x

0 �
Z

�(y)[⌃

@k(x,x0)

@n
x

0
�int
0

q(x0,y) ds
x

0 ,437

where x 2 �(y) [ ⌃. If we label the boundaries by A,B 2 {�(y),⌃}, then (22) includes the438

single layer operator439

(23) V : C(A) ! C(B),
�VAB⇢

�
(x) = � 1

2⇡

Z

A
log kx� x

0k
2

⇢(x0) ds
x

0 ,440

and the double layer operator441

(24) K : C(A) ! C(B),
�KAB⇢

�
(x) =

1

2⇡

Z

A

hx� x

0,n
x

0i
kx� x

0k2
2

⇢(x0) ds
x

0 ,442

with the densities ⇢ 2 C(A) being the Cauchy data of q on A. The equation (22) in combi-443

nation with (23) and (24) indicates the Dirichlet-to-Neumann map, which for problem (12)444

induces the following system of integral equations445

(25)

 V
⌃⌃

V
⌃�(y)

V
�(y)⌃ V

�(y)�(y)

� 
⇢
⌃

⇢
�(y)

�
=


1/2 Id+K

⌃⌃

K
⌃�(y)

K
�(y)⌃ 1/2 Id+K

�(y)�(y)

� 
f
0

�
.446
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16 R. N. GANTNER AND M. D. PETERS

The boundary integral operator on the left hand side of this coupled system of boundary inte-447

gral equations is uniformly elliptic and continuous provided that diam
�
D(y)

�
= diam(⌃) < 1.448

This guarantees the unique solvability by the Lax-Milgram lemma.449

For the approximation of the unknown Cauchy data, we use the collocation method based450

on trigonometric polynomials. Applying the trapezoidal rule for the numerical quadrature451

and the regularization technique along the lines of [35] to deal with the singular integrals,452

we arrive at an exponentially convergent Nyström method provided that the data and the453

boundaries and thus the solution are analytic. More precisely, we have the following result.454

Proposition 13. Let ⇢ 2 Ck
�
@D(y)

�
be the solution to (25). Then, there holds455

k⇢� ⇢nkL1
(D(y))  Cn�kk⇢kCk

(D(y)),456

where ⇢n is obtained from the Nyström method with n = 2j points for some j 2 N.457

Proof. For a proof of this statement, see [35].458

Thus, if the density ⇢ is even analytic, we arrive at the error estimate459

k⇢� ⇢nkL1
(D(y))  C exp(�cn),460

for some constants C, c > 0.461

5. Higher-Order Quasi-Monte Carlo. In light of the recent development of higher-order462

quasi-Monte Carlo (QMC) methods, in particular so-called interlaced polynomial lattice (IPL)463

rules [12, 15, 23], and their application to problems in uncertainty quantification [13, 16, 21],464

we consider here the approximation of prior and posterior expectations by such deterministic465

QMC rules. IPL rules are adapted to the integrand function in a preprocessing step using the466

Component-by-Component (CBC) algorithm [38, 39], which requires as an input some bounds467

on the parametric derivatives of the integrand. By the analysis of the previous section, we468

have such bounds at our disposal.469

We consider approximations of Z, Z 0 given in Theorem 1 and (6), respectively, where we470

assume a uniform prior distribution µ
0

(dy) =
Qs

k=1

dyk on the truncated parameter sequence,471

which we denote here by y
1:s. Given a collection PN = {y

0

, . . . ,yN�1

} ⇢ [0, 1]s of QMC points472

in s dimensions, the QMC approximation QN,s of the prior mean of a function g : U ! R is473

given by474

(26) E[g] =
Z

U
g(y)µ(dy) ⇡ QN,s[g] :=

1

N

N�1X

n=0

g

✓
yn � 1

2

◆
.475

With the choices g(y) = exp
�� �(y, �)� and g(y) = �

�
q(y)

�
exp

�� �(y, �)�, we obtain the476

integrals Z and Z 0, which we approximate with (26). The posterior mean is then simply given477

as the ratio Eµ�
[� � q] = Z 0/Z, see Theorem 1.478

5.1. Interlaced Polynomial Lattice Rules. To give the points yn, n = 0, . . . , N � 1,479

we require some definitions and notation. A polynomial lattice rule (without interlacing) is480

a rule with N = bm points for some prime b and a positive integer m, and is given by a481

generating vector q whose components qj(x) are polynomials over the finite field Zb of degree482
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less than m. Let Zb[x] denote the set of polynomials over Zb. We associate with each integer483

n = 0, . . . , bm�1 a polynomial n(x) =
Pm�1

k=0

⇠kxk, where ⇠k are the digits of n in base b, that484

is n = ⇠
0

+ ⇠
1

b+ ⇠
2

b2 + . . .+ ⇠m�1

bm�1. To obtain points in [0, 1] from the generating vector485

q, we require the mapping vm : Zb(x�1) ! [0, 1) given for integer w by486

vm

 1X

k=w

⇠kx
�k

!
=

mX

k=max(1,w)

⇠kb
�k.487

For an irreducible polynomial P 2 Zb[x] of degree m, the j-th component of the n-th point of488

the point set PN is given by489

(yn)j = vm

✓
n(x)qj(x)

P (x)

◆
.490

To obtain orders of convergence higher than one, we consider an additional interlacing step.491

To this end, we denote the digit interlacing function of ↵ 2 N points as D↵ : [0, 1)↵ ! [0, 1),492

D↵(x1, . . . , x↵) =
1X

a=1

↵X

j=1

⇠j,ab
�j�(a�1)↵,493

where ⇠j,a is the a-th digit in the expansion of the j-th point xj 2 [0, 1) in base b�1, xj =494

⇠j,1b�1+ ⇠j,2b�2+ . . .. For vectors in ↵s dimensions, digit interlacing is defined block-wise and495

denoted by D↵ : [0, 1)↵s ! [0, 1)s with496

D↵(x1, . . . , x↵s) =
�
D↵(x1, . . . , x↵), D↵(x↵+1

, . . . , x
2↵), . . . , D↵(x

(s�1)↵+1

, . . . , xs↵)
�
.497

For a generating vector q 2 (Zb[x])↵s containing ↵ components for each of the s dimensions,498

the interlaced polynomial lattice point set is D↵( ePN ) ⇢ [0, 1)s, where ePN ⇢ [0, 1)↵s denotes499

the (classical) polynomial lattice point set in ↵s dimensions with generating vector q. For500

more details on this method, see e.g. [12, 15, 23]. The following theorem states the higher order501

rates that are obtainable under suitable sparsity assumptions of the form stated in Section 2.502

Proposition 14 (Thm. 3.1 from [15]). For m � 1 and a prime b, let N = bm denote the503

number of QMC points. Let s � 1 and � = (�j)j�1

be a sequence of positive numbers, and let504

�s = (�j)1js denote the first s terms. Assume that � 2 `p(N) for some p < 1.505

If there exists a c > 0 such that a function F satisfies for ↵ := b1/pc+ 1 that506

(27) |(@⌫
yF )(y)|  c |⌫|!�⌫

s for all ⌫ 2 {0, 1, . . . ,↵}s, s 2 N,507

then an interlaced polynomial lattice rule of order ↵ with N points can be constructed in508

O(↵ sN logN + ↵2 s2N) operations, such that for the quadrature error holds509

(28) |Is(F )�QN,s(F )|  C↵,�,b,pN
�1/p,510

where the constant C↵,�,b,p < 1 is independent of s and N .511
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5.2. Combined Error Estimate. As mentioned in Section 2, we consider three approxi-512

mations to the exact solution: dimension truncation, discretization of the partial di↵erential513

equation (PDE), and quadrature approximation of the high-dimensional Bayesian integrals.514

Combining Theorem 11 with (16) and considering the estimate (28) and Theorem 13, we515

obtain by the triangle inequality the following total error bound, where p < 1 denotes the516

summability of the sequence � in a bound of the form (2) on the integrand function,517

��I[�(q)]�QN [�(q(s)n )]
��  C

�
s�✓(1/p�1) + n�k +N�1/p

�
,518

where C > 0 is independent of the parametric dimension s, the number of discretization points519

n and the number of QMC points N .520

6. Numerical Experiments.521

6.1. Setup. We consider the parametric problem (12) with the uncertain domain bound-522

ary �(!) parametrized as described in Section 4. More precisely, we shall impose that the523

Karhunen-Loève expansion is given by a Fourier series with random coe�cients, i.e.524

u(',!) = u
0

(') + �
1X

k=1

Yk(!)uk(').525

Letting Yk 2 [�1/2, 1/2] be uniformly distributed, we can identify the random variables526

{Yk}k by their image y 2 U = [�1/2, 1/2]N. We additionally assume a constant nominal527

value u
0

(') ⌘ u
0

2 (0,1) and write u
2k(') = #

2k cos(k') and u
2k�1

= #
2k�1

sin(k') yielding528

the parametric representation529

(29) u(',y) = u
0

+ �
1X

k=1

ykuk('),530

where we choose throughout the following u
0

= 0.3, � = 0.125 and #
2k = #

2k�1

= k�⇣ . The531

last choice enforces the decay sup' |uk(')|  Ck�⇣ where we choose ⇣ = 4, implying that532

the unknown boundary � of the inclusion is at least four times continuously di↵erentiable.533

We truncate the sum (29) at s = 100 terms, and are interested in the convergence of the534

QMC approximation to the resulting 100-dimensional integral with respect to the number of535

quadrature points.536

In the present context, considering the parametrization (18), we will be interested in537

computing prior (µ = µ
0

) and posterior (µ = µ�) expectation and variance,538

Eµ[�(y)] =
�
x 2 R2 : x = Eµ[u(t,y)]e(t), t 2 I

 
(30)539

Vµ[�(y)] =
�
x 2 R2 : x = Vµ[u(t,y)]e(t), t 2 I

 
.(31)540541

Based on the analysis in Section 2.2, we consider higher-order quasi-Monte Carlo with542

smoothness-driven product and order dependent (SPOD) weights, as introduced in [15]. For543

the experiments presented here, we used generating vectors constructed by the fast CBC544

method and made available in [22], with parameters ↵ = ⇣, sequence �j = �#j , and Walsh545

coe�cient bound C = 0.1. The construction was executed for ⇣ 2 {2, 3, 4}; see below for546
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(a) (b)

Figure 2: a Simulation setup with outer boundary ⌃, the nominal inner boundary �
0

, and
locations of the K = 16 sensors. b Realizations of the inclusion �(y) resulting from the IPL
point set with m = 5.

a discussion of the di↵erent cases. See also [21] for more computational details on CBC547

construction of IPL rules and the mentioned parameters. For the implementation, we used a548

custom boundary integral solver coupled with the gMLQMC library [20] for applying higher-order549

QMC.550

As observation operator O, we consider the evaluation of the solution’s Neumann data551

@q/@n in K = 16 equi-spaced points (with respect to the angle) on the outer boundary ⌃, and552

thus � = O(q) + ⌘ 2 R16. As quantity of interest, we are interested in the interior boundary,553

which we represent as a vector of radius values of length M , for equispaced points in the angle554

'. Thus, the QoI �(q(y)) 2 RM is, for each parameter vector y, a discrete approximation of555

the shape of the inclusion. Figure 2 shows a setup of the experiment with the enclosing ellipse556

⌃ (semiaxes 0.45 and 0.3), the nominal domain �
0

, and various realizations of the parametric557

domain �(y). Finally, the prescribed Dirichlet data at ⌃ are given by g
D

(x) = x2
1

� x2
2

.558

6.2. Results. The prior and posterior expectations of the domain shape are given in559

Figure 3, which shows that incorporation of measurement data gives a reasonable estimate560

of the “true” shape. Moreover, the Bayesian framework allows specification of a confidence561

interval to assess the inherent uncertainty in the model and measurement process; in this562

example, the true shape is fully contained in the 1�-confidence interval around the posterior563

mean, whereas the prior mean deviates significantly.564

We are particularly interested in the verification of convergence rates of the approximations565

to the high-dimensional integrals Z and Z 0 from Theorem 1 and (6) using interlaced polynomial566

lattice rules (IPL). The prior expectation of the inclusion’s shape in this case does not depend567

on the solution to the PDE (17); moreover, it is by the parametrization (20) simply an a�ne568

function of the parameters yj . Prescribing a decay ⇣ = 4, we thus expect due to (28) a569
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convergence rate of N�4 for the prior expectation, for interlacing factor ↵ = 4. In the case570

where the QoI depends on the solution, the condition that the sequence of W 1,1-norms in �k571

from (10) is summable implies the loss of one order of convergence, which would imply the572

rate N�3 for the prior approximation, and the use of ⇣ = 3 also in the CBC construction.573

For the posterior, Theorem 4 implies an additional loss of one order of convergence; assuming574

the condition in (2) on the parameter-to-solution map G : y ! q(y; ·) for 1/⇣ < p < 1/3, we575

thus obtain an expected higher-order QMC convergence rate of N�⇣+2. For the case of ⇣ = 4576

considered here, we thus expect N�2 when using IPL rules with interlacing factor ↵ � 2. We577

note that the generating vectors used in the posterior mean approximation were based on578

⇣ = 2 with interlacing factor ↵ = 2.579

We consider both the prior and posterior expectations of the quantity of interest �, which,580

as described above, yields a discrete approximation of the boundary ry(') with M points581

'
1

, . . . ,'M . We compute the error by approximating the L2-norm over the angle ', given for582

the prior by583

k(Eµ0 �QN )[ry(·)]k2L2
([0,2⇡]) =

Z
2⇡

0

⇣
Eµ0 [ry(')]�QN [ry(')]

⌘
2

d'(32)584

⇡ 1

M

MX

i=1

⇣
Eµ0 [ry('i)]�QN [ry('i)]

⌘
2

,585

586

and analogously for the posterior mean Eµ�
over y 2 U . Due to the lack of an analytically587

given exact solution, we use a reference solution computed with N = 220 points using an588

interlaced polynomial lattice (IPL) rule, and consider in the following convergence plots the589

values N = 2k for k = 1, . . . , 19. As a comparison to IPL rules, we also compute Halton and590

“plain vanilla” Monte Carlo (MC) estimates of the involved integrals for the same values of591

N , where the expected convergence rates in this case are N�1 and N�1/2, respectively. For592

MC, we approximate the L2-error by averaging over R = 10 repetitions.593

Figures 4 and 5 show the convergence of approximations to the prior and posterior ex-594

pectation obtained using the methods mentioned above. A linear least squares fit is included595

to measure the convergence rate; the points used in the fit correspond to the points at which596

the linear fit is evaluated. Note that in Figure 4, the prior expectation does not involve the597

solution of the PDE, thus we obtain the full rate N�⇣ . If the QoI were to depend on the598

solution q(y), we would expect a rate N�⇣+1. In Figure 5, various values of the observation599

noise covariance � are considered. For small �, concentration e↵ects cause the performance600

of the methods to deteriorate, as is to be expected, see e.g. [41]. The expected IPL rate here601

is N�2, which can be seen for large �.602

7. Conclusion. In this article we have described the application of higher-order Quasi-603

Monte Carlo methods to a Bayesian approach for shape uncertainty quantification based on604

a parametric partial di↵erential equation forward model. In particular, we have established a605

rigorous analysis of the posterior measure and a truncation analysis for the forward model. The606

presented bounds on mixed partial derivatives of the posterior imply higher-order convergence607

rates of the quadrature error versus the number of nodes. The obtained convergence rates608

depend on the quantity of interest and choice of either prior or posterior measure. Numerical609
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Figure 3: Prior and posteror expectations of the inclusion for � = (0.1)2. The grey shaded
area is a 1�-confidence interval, which in this case contains the “truth” �(y?). It can be seen
that the prior expectation deviates significantly from �(y?).

results conducted for an elliptic equation arising in Electrical Impedance Tomography confirm610

the theoretically derived rates in s = 100 parametric dimensions. A comparison with Halton611

and Monte Carlo sampling shows the superiority of the applied interlaced polynomial lattice612

rules in the case where the observation noise covariance is not too small.613

Acknowledgments. We would like to thank Christoph Schwab for suggesting the present614

analysis and Helmut Harbrecht for the fruitful discussions and many helpful remarks.615

Appendix A. Multivariate Combinatorics. We start this section by defining the arith-616

metic for multi-indices. To that end, let ↵,� 2 Ns for some s 2 N with s � 1. The set617

of natural numbers is always supposed to include the element 0, i.e. 0 2 N. We define the618

addition and subtraction of two multi-indices in the canonical way. Moreover, we define619

↵� := ↵�1
1

· · ·↵�s
s620

with the convention 00 = 1. The modulus of ↵ is given by621

|↵| :=
sX

i=1

↵i622

and its factorial is defined according to623

↵! := ↵
1

! · · ·↵s!.624
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Figure 4: Approximations to the prior expectation with IPL, Halton and MC rules. The
expected rates are N�4 for IPL, N�1 for Halton and N�1/2 for MC, which are all confirmed
by these results.

Then, we can also define the multivariate binomial coe�cient625

✓
↵

�

◆
:=

↵!

(↵� �)!�!
,626

where we assume �  ↵ and the relation  has to be understood component-wise.627

The following lemma is a special case of formula (7.4) in [9].628

Lemma 15. Let � = {�k}k 2 `1(N) with �k � 0. Moreover, assume that c� := k�k`1 < 1.629

Then, it holds630
X

⌫

|⌫|!
⌫!

�⌫ =
1

1� c�
for all ⌫ 2 F .631

and therefore there exists a constant with |⌫|!/⌫!�⌫  c for all ⌫ 2 F .632

Proof. Let F (s) := {⌫ 2 F : ⌫k = 0 for all k > s}. Then, we have obviously F = [s2NF (s).633

Now, there holds for all ⌫ 2 F (s) that634

X

⌫

|⌫|!
⌫!

�⌫ =
1X

k=0

X

|⌫|=k

k!

⌫!
�⌫ =

1X

k=0

✓ sX

j=1

�j

◆k


1X

k=0

ck� =
1

1� c�
635

by the multinomial theorem and the limit of the geometric series. Since the derived bound is636

uniform in the support size s 2 N of the index sequences, we arrive at the assertion.637
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(a) � = 102. (b) � = 12.

(c) � = (0.1)2. (d) � = (0.01)2.

Figure 5: Convergence of IPL, Halton and MC approximations to the posterior expectation
for di↵erent �, with the error computed as in (32) wrt. a reference solution with N = 220 IPL
points.

Lemma 16. For all ↵,�, r 2 N with r > 0 it holds638

✓
↵+ r � 1

r � 1

◆✓
� + r � 1

r � 1

◆
 (↵+ �)!

↵!�!

✓
↵+ � + r � 1

r � 1

◆
.639
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Proof. It holds640

✓
↵+ r � 1

r � 1

◆✓
� + r � 1

r � 1

◆
 (↵+ �)!

↵!�!

✓
↵+ � + r � 1

r � 1

◆
641

()
✓
↵+ r � 1

r � 1

◆
(� + r � 1)!

�!(r � 1)!
 (↵+ �)!

↵!�!

(↵+ � + r � 1)!

(↵+ �)!(r � 1)!
642

()
✓
↵+ r � 1

r � 1

◆
(� + r � 1)!  (↵+ � + r � 1)!

↵!
643

()
✓
↵+ r � 1

r � 1

◆

✓
↵+ � + r � 1

� + r � 1

◆
.644

645

The last inequality is true due to the monotonically increasing diagonals in Pascal’s triangle.646

This proves the assertion.647

Lemma 17. It holds for ↵ 2 Ns,↵0 2 Ns0 that648

sY

i=1

✓
↵i + |↵0|� 1

|↵0|� 1

◆
 |↵|!

↵!

✓|↵|+ |↵0|� 1

|↵0|� 1

◆
.649

Proof. The proof is by induction on s. For s = 1, we have650

✓
↵
1

+ |↵0|� 1

|↵0|� 1

◆
=

↵
1

!

↵
1

!

✓
↵
1

+ |↵0|� 1

|↵0|� 1

◆
,651

which holds with equality. Let the induction hypothesis be valid for s � 1 and set ↵s�1

=652

[↵
1

, . . . ,↵s�1

]. Then, we derive with the previous lemma that653

sY

i=1

✓
↵i + |↵0|� 1

|↵0|� 1

◆
 |↵s�1

|!
↵s�1

!

✓|↵s�1

|+ |↵0|� 1

|↵0|� 1

◆✓
↵s + |↵0|� 1

r � 1

◆

 |↵s�1

|!
↵s�1

!

(|↵s�1

|+ ↵s)!

|↵s�1

|!↵s!

✓|↵s�1

|+ ↵s + |↵0|� 1

|↵0|� 1

◆

=
|↵|!
↵!

✓|↵|+ |↵0|� 1

|↵0|� 1

◆
.

654
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