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Abstract

We develop and analyse two population-based models of the transmission dynamics of the
worm parasite Opisthorchis viverrini. The life cycle of O. viverrini includes humans, cats
and dogs as definitive hosts; and snails and fish as intermediate hosts. The first model has
only one definitive host (humans) while the second model has two additional hosts: the
reservoir hosts, cats and dogs. We define reproduction numbers and endemic equilibrium
points for the two models. We use prevalence data for the five hosts from two islands in Lao
People’s Democratic Republic to estimate distributions of parameter values. We use these
distributions to compute the sensitivity index and the partial rank correlation coe�cient of
the basic reproduction number and the endemic equilibrium point to the parameters. We
calculate distributions of the host-specific type-reproduction number to show that humans
are necessary to maintain transmission and can sustain transmission without additional
reservoir hosts. Therefore interventions targeting humans could be su�cient to interrupt
transmission of O. viverrini.
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1. Introduction

Food-borne trematodiases are some of the most neglected of the so-called neglected
tropical diseases. They are caused by digenetic trematodes, which live in the biliary duct
of their host animal [1]. The disease opisthorchiasis is caused by the worm parasites
Opisthorchis viverrini, O. felineus and Clonorchis sinensis. The liver fluke O. viverrini is
endemic in Asia, mainly in Thailand, Lao People’s Democratic Republic (Lao PDR) and
Cambodia [2]. Worldwide 9–10 million people are infected with this liver fluke [2, 3] and
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67.3 million are at risk of infection. Transmission is found in areas where humans have the
habit of eating raw, pickled or undercooked fish [4].

Figure 1 shows the life cycle of O. viverrini (and correspondingly of O. felineus and
C. sinensis). The first intermediate hosts of O. viverrini are snails of the genus Bithynia
[5]. Freshwater snails ingest eggs, where they hatch to become miracidia. After approx-
imately two months, infected snails release cercariae. The free-swimming cercariae pene-
trate through the skin of the second intermediate hosts, Cyprinidae fish [6], and become
fully infective metacercariae after 21 days [1].

The definitive hosts of O. viverrini, humans and other mammals like cats and dogs, get
infected through the consumption of undercooked fish infected with metacercariae. A dish
with raw fish can contain hundreds of viable O. viverrini metacercariae [7]. The immature
worm of O. viverrini migrates from the duodenum into the biliary tract. After one month
the worm matures into an adult worm and mates within the lumen of the bile ducts and
gall bladder. The eggs of the worm travel through the bile ducts, enter the lumen and pass
out with the faeces [8]. The daily output of infected humans ranges between 3,000 and
36,000 eggs per gram of stool. The life span of the worms in humans is around ten years.
The whole life cycle of O. viverrini has a duration of four months [2, 6].

Infection with worms leads to many liver diseases including cholangitis, obstructive
jaundice, hepatomegaly, biliary periductal fibrosis, cholecystitis, and cholelithiasis. Treat-
ment of worms usually consists of three doses of praziquantel, which is cheap, safe and
e↵ective in killing worms. However, treatment of any subsequent liver disease is expensive
and di�cult. Chronic infection with O. viverrini can also lead to the bile duct cancer,
cholangiocarcinoma [8]. This kind of cancer is rare but with a poor prognosis [9].

Dogs
Cats

Humans

Eggs

SnailsCercariaeFish

Figure 1: Schematic of the life cycle of O. viverrini
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There are no published papers in mathematical modelling of O. viverrini, but there is
one on modelling the related parasite C. sinensis. Song et al. developed a catalytic model
to estimate equilibrium transmission rates [10]. However, catalytic models are based on
linear ordinary di↵erential equations (ODEs) with constant coe�cients, so they cannot
capture the nonlinear dynamics of transmission.

There are also many publications on modelling schistosomiasis, a similar disease with
only one intermediate host, the snail. Schistosome parasites infect the human as cercariae
in the free-swimming stage, whereas O. viverrini cercariae infect fish [11]. The first model
of schistosmiasis was by Hairston in 1965. He used life-tables to calculate the net repro-
ductive rate of the parasite, modelling female and male worms separately [12]. In the same
year, Macdonald developed a dynamic model with the probability of pairing worms and the
proportion of hosts with paired worms [13]. Go↵mann and Warren adopted the Kermack-
McKendrick susceptible-infectious-recovered (SIR) model to humans and snails, including
the free swimming miracidia and cercariae [14]. N̊asell and Hirsch developed a stochastic
model of the intensity of infection [11]. Anderson and May developed an ODE model with
the mean worm burden in the human host. They split the snails into three groups: sus-
ceptible, latent and shedding [15]. Habbema simulated a stochastic model of the intensity
and prevalence in individual humans [16]. We base our model on Anderson and May by
tracking the mean worm burden instead of the prevalence of infection in humans, because
infectivity to snails and human morbidity depend on the intensity of infection. Similar to
previous schistosomiasis models for snails, we use susceptible-infectious models for snails
and fish.

To create a basis for the mathematical modelling of food-borne trematodes with population-
based models, we develop two di↵erent models. We first develop a simple model that only
includes infection in fish, snails and humans. We then develop a second model that also
includes infection in cats and dogs. These models allow us to better understand the role
of domestic pets in the transmission dynamics of O. viverrini.

For these models, we define the equilibrium points, the basic reproduction number
and the host-specific type-reproduction numbers. We support these definitions by explicit
calculations supported by Mathematica 10.0.2. We then use data from Lao People’s Demo-
cratic Republic to estimate reasonable distributions for the parameter values of the models.
We conduct sensitivity analysis using these distributions on the equilibrium points and the
reproduction numbers for both models to determine weak points in the parasite’s life cycle
and the role of each mammalian host in maintaining transmission. We perform all the
numerical computations in Matlab R2016a.

2. Basic transmission model

In the basic transmission model we assume that only fish, snails and humans are in-
volved into the life cycle of O. viverrini, ignoring the reservoir hosts: cats and dogs. We
model the mean worm burden in human and the prevalences of infected snails and fish.
The deterministic population-based ordinary di↵erential equation (ODE) model represents
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the base transmission dynamics of O. viverrini. It is given by

dwh

dt
= �hfNf if � µphwh, (1a)

dis
dt

= �shNhwh(1� is)� µsis, (1b)

dif
dt

= �fsNsis(1� if )� µf if , (1c)

with the state variables shown in Table 1 and the parameters shown in Table 2.

Variable Description
wh Mean worm burden per human host
wd Mean worm burden per dog host
wc Mean worm burden per cat host
is Proportion of infectious snails
if Proportion of infectious fish

Table 1: State variables of the opisthrochiasis models

The mean worm burden per human host wh increases with the consumption of infected
fish. This includes the number of fish, the proportion of infectious fish and the transmission
rate of parasites to humans per fish, �hfNf if , and decreases with the death of parasites,
µphwh. The proportion of infectious snails is, depends on the total adult worm population
and the eggs they produce that enter the aquatic environment, �shNhwh(1� is). Snails are
infected until they die at a total rate, µsis. The proportion of infectious fish has similar
dynamics. Their rate of infection depends on the number of infectious snails and the snails’
rate of releasing cerceriae, �fsNsis(1 � if ). The fish remain infected until they die at a
total rate, µf if .

2.1. Existence and uniqueness of the solution

The system with the equations (1) is well-posed and epidemiologically relevant in the
strip S ⇢ R3. The strip S is defined by the boundaries of the solutions of the system
(wh, is, if ),

S =


0,

Nf�hf

µph

�
⇥ [0, 1]2 .

The right hand side of the ODE system (1) is continuous with continuous partial derivatives
in S. We assume that an initial condition exists in the strip S. We can then show that a
solution of the system cannot leave this strip S:
(i) If wh = 0, then

dwh

dt
= �hfNf if � µph · 0 � 0,
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and, if wh = Nf�hf

µph
, then

dwh

dt
= �hfNf if � µph ·

Nf�hf

µph
 0.

(ii) If is = 0, then

dis
dt

= �shNhwh · 1� µs · 0 � 0,

and, if is = 1, then

dis
dt

= �shNhwh · 0� µs · 1  0.

(iii) If if = 0, then

dif
dt

= �fsNsis · 1� µfs · 0 � 0,

and, if if = 1, then

dif
dt

= �fsNsis · 0� µfs · 0  0.

It finally follows with the Picard-Lindelöf theorem that a unique solution exists for the
ODE system (1) in the strip S.

2.2. Equilibrium points

Definition 1 (Disease free equilibrium point). The disease free equilibrium, also called
trivial equilibrium point, is the steady state solution with no disease in the population.

Definition 2 (Endemic equilibrium point). The endemic equilibrium point is the steady
state solution with all state variables positive, where the disease persists in the population.

Setting the derivatives equal to zero, the equilibrium points are given as the solution of

0 = �hfNf i
⇤
f � µphw

⇤
h,

0 = �shNhw
⇤
h(1� i

⇤
s)� µsi

⇤
s,

0 = �fsNsi
⇤
s(1� i

⇤
f )� µf i

⇤
f .

The system has two solutions, the disease free and the endemic equilibrium point. The
disease free equilibrium point is characterized by E

BM
0 = (w⇤

h, i
⇤
s, i

⇤
f ) = (0, 0, 0). The
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endemic equilibrium point EBM
e = (w⇤

h, i
⇤
s, i

⇤
f ) corresponds to

w

⇤
h =

�hf�sh�fsNsNhNf � µphµsµf

�shNhµph(�fsNs + µf )
, (2a)

i

⇤
s =

�hf�sh�fsNsNhNf � µphµsµf

�fsNs(�hf�shNhNf + µphµs)
, (2b)

i

⇤
f =

�hf�sh�fsNsNhNf � µphµsµf

�hf�shNhNf (�fsNs + µf )
, (2c)

which is in the interior of S if �hf�sh�fsNsNhNf > µphµsµf .

2.3. Basic reproduction number

Definition 3 (Basic reproduction number). The basic reproduction number R0 is the
average number of new cases of an infection (or number of parasite o↵spring) caused by
one typical infected individual (or one parasite), from one generation to the next, in a
population with no pre-existing infections.

To determine R0, we define the next-generation matrix (NGM) K. This matrix relates
the numbers of newly infected individuals or number of adult parasites in consecutive
generations. R0 is then defined as the dominant eigenvalue of K.

The linearised infection subsystem describes the production of newly infected individu-
als and changes in the states of already infected individuals. To derive the next-generation
matrix K, we decompose the matrix, which describes the linearised model, into two matri-
ces, T and ⌃. T describes transmission: the production of new infections; and ⌃ describes
transition: the changes in state. K is defined as the product of �T and ⌃�1 and R0 is
the spectral radius, ⇢, of K. Therefore, R0 = ⇢(�T⌃�1).

The interpretation of the (i,j)-th entry of ⌃�1 is the expected time that an individual,
who presently has the infected state j, will spend in the infected state i. The (i,j)-th entry
of T is the rate at which an individual in the infected state j produces individuals with the
infected state i. Therefore, the (i,j)-th entry of the NGM K is the expected number of the
infected o↵spring with the state i who are infected by an individual currently in infected
state j [17].

The transmission matrix is

T =

2

4
0 0 �hfNf

�shNh 0 0
0 �fsNs 0

3

5
,

and the transition matrix is

⌃ =

2

4
�µph 0 0
0 �µs 0
0 0 �µf

3

5
.
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The next-generation matrix of the basic model is therefore

K = �T⌃�1 =

2

64
0 0 �hfNf

µf
�shNh

µph
0 0

0 �fsNs

µs
0

3

75 .

The eigenvalues of the next-generation matrix K are

�1 = 3

s
�hf�sh�fsNhNsNf

µphµsµf
,

�2 = �(�1)
1
3 3

s
�hf�sh�fsNhNsNf

µphµsµf
,

�3 = (�1)
2
3 3

s
�hf�sh�fsNhNsNf

µphµsµf
.

All eigenvalues have the same modulus, so the (not strictly) dominant eigenvalue is �1, the
only real and positive eigenvalue of K. Hence, it follows that

R0 = 3

s
�hf�sh�fsNhNsNf

µphµsµf
. (3)

The ecological definition of the basic reproduction number is the number of o↵spring
adult worms produced by a single adult worm in its life time, in the absence of density-
dependence. This number corresponds to the cube of R0 defined in (3) to include all life
stages of the parasite.

2.4. Stability of the equilibrium points

The basic reproduction number provides a threshold condition for the stability of the
disease free equilibrium point. If R0 < 1, then the disease free equilibrium point is locally
asymptotically stable, and if R0 > 1 it is unstable. We conjecture that the disease free
equilibrium point is globally asymptotically stable if R0  1 because we do not expect any
non-equilibrium asymptotic dynamics but we do not have a proof for this.

The endemic equilibrium exists if and only if �hf�sh�fsNhNsNf > µphµsµf , that is
R0 > 1. To investigate the local stability of the endemic equilibrium point, we use the
Routh-Horwitz Criterion (Proposition 1 in the Appendix) to determine the signs of the
real parts of the eigenvalues of the Jacobian matrix.
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The Jacobian matrix of the basic model at the endemic equilibrium point is

J =

2

4
�µph 0 �hfNf

�shNh(1� i

⇤
s) �(�shNhw

⇤
h + µs) 0

0 �fsNs(1� i

⇤
f ) �(�fsNsi

⇤
s + µf )

3

5

=:

2

4
�j1,1 0 j1,3

j2,1 �j2,2 0
0 j3,2 �j3,3

3

5
,

for w

⇤
h, i

⇤
s and i

⇤
f , defined in (2). The eigenvalues of the Jacobian matrix are calculated

by setting the characteristic polynomial p(�) = det(J � �E) to zero. This leads to the
equation

�

3 + �

2(j1,1 + j2,2 + j3,3) + �(j1,1j2,2 + j1,1j3,3 + j2,2j3,3)

+ j1,1j2,2j3,3 � j1,3j2,1j3,2
!
= 0.

We can determine the ai of the Routh-Horwitz criterion in Proposition 1 for i = 0, 1, 2, 3:

a0 = 1,

a1 = j1,1 + j2,2 + j3,3,

a2 = j1,1j2,2 + j1,1j3,3 + j2,2j3,3,

a3 = j1,1j2,2ij3,3 � j1,3j2,1j3,2.

With all the ai’s at hand, we can calculate the Tk’s for k = 0, 1, 2 and see if they are
positive or negative:

T0 = a0 = 1 > 0,

T1 = a1 > 0,

T2 = det


a1 a0

a3 a2

�
> 0 , �hf�sh�fsNhNsNf > µphµsµf , R0 > 1.

From the Routh-Hurwitz criterion it follows that the roots of the characteristic poly-
nomial p(�) have negative real parts and thus the eigenvalues of J. This means that the
endemic equilibrium is locally asymptotically stable whenever R0 > 1.

3. Model with reservoir hosts

In the second transmission model we add cats and dogs as reservoir hosts to the basic
transmission model. We extend the basic model (1) by including two additional variables:
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the mean number of adult parasites per hosts in dogs (wd) and cats (wc). This leads to

dwh

dt
= �hfNf if � µphwh, (4a)

dwd

dt
= �dfNf if � µpdwd, (4b)

dwc

dt
= �cfNf if � µpcwc, (4c)

dis
dt

= (�shNhwh + �sdNdwd + �scNcwc)(1� is)� µsis, (4d)

dif
dt

= �fsNsis(1� if )� µf if . (4e)

The additional state variables are given in Table 1 and the additional parameters are given
in Table 2.

3.1. Existence and uniqueness of the solution

The existence and the uniqueness of the solution (wh, wd, wc, is, if ) of the ODE system
(4) follows in complete analogy to Section 2.1 in the strip S ⇢ R5 given by

D =


0,

Nf�hf

µph

�
⇥

0,

Nf�df

µpd

�
⇥

0,

Nf�cf

µpc

�
⇥ [0, 1]2 .

3.2. Equilibrium points

For the model with reservoir hosts (4) we solve the following system

0 = �hfNf i
⇤
f � µphw

⇤
h,

0 = �dfNf i
⇤
f � µpdw

⇤
d,

0 = �cfNf i
⇤
f � µpcw

⇤
c ,

0 = (�shNhw
⇤
h + �sdNdw

⇤
d + �scNcw

⇤
c )(1� i

⇤
s)� µsi

⇤
s,

0 = �fsNsi
⇤
s(1� i

⇤
f )� µf i

⇤
f ,

to determine the equilibrium points. We see that ERM
0 = (w⇤

h, w
⇤
d, w

⇤
c , i

⇤
s, i

⇤
f ) = (0, 0, 0, 0, 0)

is the disease free equilibrium point and show the existence of at most one endemic equi-
librium point. We calculated an analytic expression for this endemic equilibrium but do
not present it here because of its length.
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3.3. Basic reproduction number

To define the reproduction number of the model with reservoir hosts (4), we use the
same method as for the basic model before. Hence, we obtain the transmission matrix

T =

2

66664

0 0 0 0 �hfNf

0 0 0 0 �dfNf

0 0 0 0 �cfNf

�shNh �sdNd �scNc 0 0
0 0 0 �fsNs 0

3

77775

and the transition matrix

⌃ =

2

66664

�µph 0 0 0 0
0 �µpd 0 0 0
0 0 �µpc 0 0
0 0 0 �µs 0
0 0 0 0 �µf

3

77775
.

The next-generation matrix is thus defined as

K = �T⌃�1 =

2

6666664

0 0 0 0 �hfNf

µf

0 0 0 0 �dfNf

µf

0 0 0 0 �cfNf

µf
�shNh

µph

�sdNd

µpd

�scNc

µpc
0 0

0 0 0 �fsNs

µs
0

3

7777775
.

The eigenvalues of the next-generation matrix K are the roots of the characteristic poly-
nomial:

det(K� �E) =

��

5 + �

2�fsNs

µs

✓
�cfNf

µf

�scNc

µpc
+

�sdNd

µpd

�dfNf

µf
+

�hfNf

µf

�shNh

µph

◆
!
= 0
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Straightforward calculation yields:

�1 = �2 = 0,

�3 =
3

s
�fsNs

µs

3

s
�cfNf

µf

�scNc

µpc
+

�sdNd

µpd

�dfNf

µf
+

�hfNf

µf

�shNh

µph
,

�4 = �(�1)
1
3

3

s
�fsNs

µs

3

s
�cfNf

µf

�scNc

µpc
+

�sdNd

µpd

�dfNf

µf
+

�hfNf

µf

�shNh

µph
,

�5 = (�1)
2
3

3

s
�sfNs

µs

3

s
�cfNf

µf

�scNc

µpc
+

�dfNf

µf

�sdNd

µpd
+

�hfNf

µf

�shNh

µph
.

Since �4 and �5 are complex numbers, �3 is the dominant real eigenvalue of K, and the
reproduction number is

R0 =
3

s
�fsNs

µs

3

s
�cfNf

µf

�scNc

µpc
+

�sdNd

µpd

�dfNf

µf
+

�hfNf

µf

�shNh

µph
.

The endemic equilibrium point exists if and only if R0 > 1. We expect that is locally
asymptotically stable for R0 > 1 but did not prove this.

3.4. Type reproduction numbers

To determine the role of cats and dogs in maintaining transmission, we analyse host-
specific type-reproduction numbers. They are given by the spectral radii of the next-
generation matrices with leaving out one or more host types [18]. Ui is the host-specific
and Qj is the host excluded reproduction number, which are defined as

Ui = ⇢(Ki),

Qj = ⇢(I�Kj),

where Ki is the next-generation matrix of only including host i. In this multi-host pop-
ulation with n types of hosts, the reservoir community is defined as the minimum set
of hosts with U > 1. A maintenance host is the minimum of m (m  n) di↵erent
hosts which satisfy U > 1 and Q < 1 [19]. With the type reproduction number, we
can define the reservoir community and subdivide the hosts into maintenance and non-
maintenance hosts. Transmission is not possible without snails and fish, so we always
include them in the model while determining the role of the three mammalian hosts, that
means i 2 {humans (h), dogs (d), cats (c)}.
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Population with an endemic infectious disease: R0 > 1

Reservoir community (U > 1 and Q < 1)

Maintenance host (U > 1)
Non-Maintenance host

Figure 2: Definition of reservoir, maintenance, and non-maintenance hosts in a population with an endemic

infectious disease, figure based on [19, Figure 3]

The di↵erent next-generation matrices and their spectral radii are given by

Uh(= Qd,c) = ⇢(Kh) = ⇢

0

BBBBB@

2

666664

0 0 0 0 �hfNf

µf

0 0 0 0 0
0 0 0 0 0

�shNh

µph
0 0 0 0

0 0 0 �fsNs

µs
0

3

777775

1

CCCCCA

= 3

s
NfNhNs�hf�sh�fs

µfµphµs
,

Ud(= Qh,c) = ⇢(Kd) = ⇢

0

BBBBB@

2

666664

0 0 0 0 0

0 0 0 0 �dfNf

µf

0 0 0 0 0
0 �sdNd

µpd
0 0 0

0 0 0 �fsNs

µs
0

3

777775

1

CCCCCA

= 3

s
NfNsNd�df�fs�sd

µfµpdµs
,
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Uc(= Qh,d) = ⇢(Kc) = ⇢

0

BBBBB@

2

666664

0 0 0 0 0
0 0 0 0 0

0 0 0 0 �cfNf

µf

0 0 �scNc

µpc
0 0

0 0 0 �fsNs

µs
0

3

777775

1

CCCCCA

= 3

s
NfNsNc�cf�fs�sc

µfµpcµs
,

Qh(= Ud,c) = ⇢(Kd,c) = ⇢

0

BBBBBB@

2

6666664

0 0 0 0 0

0 0 0 0 �dfNf

µf

0 0 0 0 �cfNf

µf

0 �sdNd

µpd

�scNc

µpc
0 0

0 0 0 �fsNs

µs
0

3

7777775

1

CCCCCCA

= 3

s
Ns�fs

µs

✓
NfNd�df�sd

µfµpd
+

NfNc�cf�sc

µfµpc

◆
,

Qc(= Uh,d) = ⇢(Kh,d) = ⇢

0

BBBBBB@

2

6666664

0 0 0 0 �hfNf

µf

0 0 0 0 �dfNf

µf

0 0 0 0 0
�shNh

µph

�sdNd

µpd
0 0 0

0 0 0 �fsNs

µs
0

3

7777775

1

CCCCCCA

= 3

s
Ns�fs

µs

✓
NfNh�hf�sh

µfµph
+

NfNd�df�sd

µfµpd

◆
,

and

Qd(= Uh,c) = ⇢(Kh,c) = ⇢

0

BBBBBB@

2

6666664

0 0 0 0 �hfNf

µf

0 0 0 0 0

0 0 0 0 �cfNf

µf
�shNh

µph
0 �scNc

µpc
0 0

0 0 0 �fsNs

µs
0

3

7777775

1

CCCCCCA

= 3

s
Ns�fs

µs

✓
NfNh�hf�sh

µfµph
+

NfNc�cf�sc

µfµpc

◆
.
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4. Sensitivity analysis

Sensitivity analysis describes what happens to some dependent variables when one or
more independent parameters are changed [20]. Thus, we can see the influence of the
di↵erent parameter to the basic reproduction number, the host-specific type-reproduction
number and the endemic equilibrium point.

4.1. Data and parameter values

Data on prevelance of infection in cats, dogs, snails, and fish; and on intensity of
infection in humans was collected from two islands Don Khon and Don Som, Champasack
province, Lao People’s Democratic Republic (Lao PDR), from October 2011 to August
2012. The number hosts tested and found positive is shown in Table 3 [21]. Additional
data on the number of worm eggs per gram of human stool is not shown here.

We assume triangular distributions as prior distributions for the model parameters and
estimate ranges and modes from the data in Table 3, literature, and expert opinions, as
shown in Tables 4 and 5. We assume that the mean life span of parasite in humans (µph)
is 10 years, mean life span of a snail (µs) is 1 year and of a fish (µf ) is 2.5 years [22]. We
assume that parasites in cats (µpc) and dogs (µpd) die after 4 years, which is the average
life span of cats and dogs in the area. We use the population sizes of humans from the
study in Lao PDR [21]. From discussions with local village chiefs, we assume that there
are half as many dogs as humans and a third as many cats as humans. We further expect
that there are a lot more snails than fish. We calculate the modes of the transmission
parameters (�) by assuming �sh = �sd = �sc and solving the system of equations (4) of
the endemic equilibrium point for the data given in Table 3 (after converting the mean
worm burden in humans, cats, and dogs to prevalence as described in Section 4.2. For the
basic model (1), we multiply �sh from the reservoir model by three to account for increased
transmission from humans in the absence of reservoir hosts. We estimate wide ranges for
the transmission parameters and the population sizes of snails and fish because we have
little data on these values.

4.2. Sample construction and maximum likelihood estimation

We use a Bayesian sampling resampling approach to better estimate parameter distri-
butions. We first draw 100,000 sample sets of parameter values, for both the basic and
the reservoir hosts models, from the prior triangular distributions with modes and ranges
described in Tables 4 and 5. We filter out samples that correspond to values of R0 < 1.
In the basic model 92,872 (93%) parameter sets correspond to R0 > 1 and in the reservoir
hosts model 84,548 (85%) correspond to R0 > 1.

For the resampling, we calculate probabilities from the likelihood that the solution of
the equations is at the equilibrium point corresponding to the data in Table 5 (and the
eggs per gram in each human tested). We define the likelihood function L of the model
with reservoir hosts (4) as

L = LhLdLcLsLf ,
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and of the basic model (1) as
L = LhLsLf ,

where

Lh =
nh!

ph!(nh � ph)!
(i⇤h)

ph (1� i

⇤
h)

(nh�ph)
,

Ld =
nd!

pd!(nd � pd)!
(i⇤d)

pd (1� i

⇤
d)

(nd�pd)
,

Lc =
nc!

pc!(nc � pc)!
(i⇤c)

pc (1� i

⇤
c)

(nc�pc)
,

Ls =
ns!

ps!(ns � ps)!
(i⇤s)

ps (1� i

⇤
s)

(ns�ps)
,

Lf =
nf !

pf !(nf � pf )!

�
i

⇤
f

�pf (1� i

⇤
f )

(nf�pf )
,

assuming that the equilibrium prevalences i⇤h, i
⇤
d, i

⇤
c , i

⇤
s, and i

⇤
f are binomially distributed.

For the three mammalian hosts we need to convert the mean worm burden at the endemic
equilibrium into prevalence of infection. For humans we have data on both prevalence and
intensity of infection (eggs per gram in stool for each human). We use the pre-calculated
relationship from literature, y = x

2 to convert the eggs per gram in stool, y, into mean
worm burden, x, [23]. We assume a negative binomial distribution for the number of worms
per person, leading to the relation between mean number of eggs per person (M) and the
prevalence (P ) [24],

P = 1�
✓
1 +

M

k

◆�k

. (5)

We assume that cats and dogs have the same relationship between mean worm burden
and eggs per gram in stool and the same distribution for the number of worms per host as
humans. The prevalence of infection in humans is P = 0.6066 (calculated from Table 3) and
the mean number of eggs per person is M = 1108.2, so from equation (5), k = 0.10020566.
It follows that the prevalences in cats and dogs are

i

⇤
c = 1�

 
1 +

(w⇤
c )

2

k

!�k

,

i

⇤
d = 1�

 
1 +

(w⇤
d)

2

k

!�k

.

We resample 2,000 sets of parameter values with probability proportional to the likelihood
function with replacement1 [25, 26].

1
MatlabR2016a: bootstrp
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To optimize all the infection rates (�), we maximize2 the logarithm of the likelihood
function starting from the resampled parameter set with the highest likelihood [27, 28].
The maximum likelihood estimates are shown in Table 6.
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(b) Model with reservoir hosts

Figure 3: Distributions of the basic reproduction number R0 of the basic (1) and the model with reservoir

hosts (4) calculated for the resampled parameter distributions from Section 4.2.

4.3. Threshold conditions

The basic reproduction number R0 calculated for each of these 2,000 samples is shown
in Figure 3. Note that values of R0 < 1 are excluded because we assume the existence of
the endemic equilibrium point. For this equilibrium point, we numerically show that all
eigenvalues of the Jacobian matrix have negative real parts so it is locally asymptotically
stable.

We calculate the distributions of the type reproduction numbers from the resampled
distributions of the parameter values (Figure 4). Humans, snails, and fish belong to the
reservoir community because their host-specific type-reproduction number is likely bigger
than 1 (U > 1) and their host excluded type-reproduction number is likely smaller than
1 (Q < 1). Humans, snails, and fish are also maintenance-hosts, because they are the
minimum set which satisfies U > 1. The host specific type-reproduction number of cats
and dogs is smaller than 1 (Ud, Uc < 1), so they are non-maintenance hosts.

The host-specific type-reproduction numbers, calculated with the parameter values in

2
MatlabR2016a: fminsearch
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Table 6 from the maximum likelihood estimation, are

Uh = 1.0925, Qh = 0.4089,

Ud = 0.3015, Qd = 1.1038,

Uc = 0.7176, Qc = 1.1001.

4.4. Local sensitivity analysis

The local sensitivity index is the ratio of the relative change in the variable and the
relative change in the variable. Hence, we define the normalized forward sensitivity index
of a variable u and the parameter p as, see [29],

⌥u
p :=

du

dp
⇥ p

u

. (6)

We first use the formula in (6) to calculate the sensitivity index of R0 in the basic
model (1) with respect to �hf :

⌥R0
�hf

=
dR0

d�hf
⇥ �hf

R0
=

1

3�
2
3
hf

3

s
�sh�fsNhNsNf

µphµsµf
⇥ �hf

3

q
�hf�sh�fsNhNsNf

µphµsµf

=
1

3
.

The calculation is similar for the sensitivity indices of R0 with respect to �sh,�fs,Nh,Ns

and Nf . For the sensitivity indices of R0 with respect to µph, µs and µf we have, for
example,

⌥R0
µph

=
dR0

dµph
⇥ µph

R0
= � 1

3µ
4
3
ph

3

s
�hf�sh�fsNhNsNf

µsµf
⇥ µph

3

q
�hf�sh�fsNhNsNf

µphµsµf

= �1

3
.

Therefore if, for example, �hf increases by 100%, then R0 increases by 33%. If µph

increases by 100%, then R0 decreases by 33%. Since the sensitivity index of R0 is inde-
pendent of any other parameters, it is valid locally and globally. Due to the same absolute
value of the sensitivity index, all parameters are equally important for R0.

The sensitivity index of the state variables at the endemic equilibrium of the basic
model is for example
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dw⇤
h

d�hf
⇥ �hf

w

⇤
h

=
�sh�fsNhNfNs

�shNhµph(�fsNs + µf )
⇥ �hf

�shNhµph(�fsNs + µf )

�hf�sh�fsNhNfNs � µphµsµf

=
�hf�sh�fsNhNfNs

�hf�sh�fsNhNfNs � µphµsµf
.

Figure 6 (a) shows the sensitivity index of w⇤
h for the parameter values from Table 4. The

local sensitivity analysis for the model with reservoirs host (4) is performed as described
in formula (6). The results for R0 are shown in Figure 5 (b) and the results for w

⇤
h are

shown in Figure 6 (b).

4.5. Global sensitivity analysis and numerical simulation

We use partial rank correlation coe�cients (PRCC) to analyse the sensitivity globally
and to compare the influence of the parameters on R0 and on the endemic equilibrium
point. To calculate the PRCC, we used the Matlab implementation of the PRCC function
developed in [30]3. The function was run on the 2,000 samples from Section 4.2.

Figures 5 (c) and (d) show, from the top to the bottom, the influence of the change
in the parameter on R0 and Figures 6 (c) and (d) show the influence on w

⇤
h in the basic

model (1) and in the model with reservoir hosts (4). The closer the absolute value is to
one, the more influence the parameter has on the output.

In the basic model (1), the death rate of snails (µs) has the most global influence on
R0, followed by the death rate of parasites in humans (µph) and the death rate of fish (µf ).
However there is little di↵erence between the parameter values, so the basic model is not
able to di↵erentiate between the sensitivity of the parameters on R0. For the model with
reservoir hosts (4), the death rates of snails and fish (µs, µf ), followed by death rate of
parasites in humans (µph) have the most global influence on R0.

The death rate of parasites in humans (µph) has the most global influence on the mean
worm burden of humans at the endemic equilibrium point w⇤

h in both models, followed by
the fish to human transmission rate (�hf ) and the number of fish (Nf ).

In Figure 7 we show two dimensional sensitivity analysis of R0 (of both models) to the
population sizes of the five hosts with all other parameters as in Table 6. Figure 7 (a)
shows the dependence of R0 of the basic model (1) when the numbers of snails (Ns) and
fish (Nf ) are varied. R0 depends more strongly on the population size of snails than of
fish. The sensitivity of R0 for the model with reservoir hosts (4) is presented in Figures 7
(b)–(d). Figure 7 (b) shows the variation of R0 to the number of snails (Ns) and fish (Nf ).
Similar to the basic model, R0 increases faster with more snails faster than with more fish.
In Figure 7 (c), we see that R0 increases faster with the number of dogs (Nd) than with
the number of cats (Nc). Figure 7 (d) shows that when the numbers of humans (Nh) and
cats (Nc) are varied, R0 increases more rapidly with the number of cats.

3
http://malthus.micro.med.umich.edu/lab/usanalysis.html (24.10.2016)
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We show numerical simulations of the basic model (1) and of the model with reservoir
hosts (4) in Figure 8. For both models the parameter values are given in Table 6 and the
initial conditions are wh = 1, wd = 1, wc = 1, is = 0 and if = 0. We use the Dormand-
Prince method 4 to integrate over the time interval [0, 70000], which corresponds to a time
period of 190 years.

5. Discussion

We analysed two population-based models of transmission dynamics of the O. viver-
rini. The basic model (1) includes the intermediate hosts snails and fish, and humans as
definitive hosts. We extended this model to a model with reservoir hosts (4) by including
cats and dogs as additional definitive hosts. We proved that the models are mathemat-
ically and epidemiologically well-posed. We obtained an explicit expression for the basic
reproduction number R0. We defined the disease-free and the endemic equilibrium points,
showed the criterion for the existence of these points points, and investigated their stability
with respect to R0. We used Bayesian sampling-resampling with data from two islands
in Lao PDR to construct distributions for the parameter values. We finally simulated the
mean worm burden in the definitive hosts and the prevalence in the intermediate hosts
over time.

The host-specific type-reproduction number defines the number of new infection from
one infected individual when certain types of hosts are excluded from the model. It helps
to identify the reservoir community and their maintenance hosts. We showed that humans,
snails, and fish are maintenance-hosts because they can sustain transmission on their own.
Furthermore, transmission is not possible if any of these species is removed from the cycle,
so they are also reservoir hosts. This implies that it is possible to interrupt transmission
with interventions that only target humans and ignore cats and dogs. For example, im-
proving sanitation to an high enough level would be su�cient to eliminate opisthorchis
transmission in Lao PDR.

The basic model could not di↵erentiate between the sensitivity of the parameters on
the basic reproduction number, R0. Sensitivity analysis of the model with reservoir hosts
showed that R0 depends mostly on the death rate of parasites in humans (µph), of snails
(µs), and of fish (µf ), and the population sizes of snails (Ns) and fish (Nf ). Increasing the
death rate of parasites in humans (µph) is possible through regular treatment of humans
with praziquantel. Increasing the death rates of snails (µs) and fish (µf ) is more di�cult,
but reducing the number of snails is possible through snail control. Improved sanitation
(which lowers �sh) and safe fish production (which lowers �hf ) have a moderate e↵ect on
reducing R0.

There are some di↵erences in the sensitivity indices of the equilibrium mean worm
burden in humans (w⇤

h) between the basic and the model with reservoir hosts and between
the local and global analysis (Figure 6). However, the death rate of parasites in humans

4
MatlabR2016a: ode45
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(µph), the transmission rate from fish to humans (�fs) and the number of fish (Nf ) most
often have a high sensitivity index. This suggests that regular treatment of humans and
safe fish production are the most e↵ective intervention in reducing the parasite burden in
humans. Sensitivity analysis of the model with reservoir hosts (4) showed that the cats
have more influence on the worm burden in humans than dogs.

In both models, we ignored seasonality, the age of humans, the dynamics of infection
in fish and the latent period in snails and fish. Transmission of O. viverrini follows a
seasonal pattern because of increases in the number of snails and fish in the rainy season.
This implies that interventions could be more e↵ective if targeted in the right season.
Additionally it may also be possible that in the rainy season, cats or dogs could sustain
transmission. We also assume all humans are the same and ignore the fact that babies
are born without infection and children have a lower worm burden than adults. Since
humans accumulate parasites over their life times, heterogeneity in the distribution of
worms in humans may lead to sustained transmission even at lower mean worm burdens.
The infection rate from fish to the definitive hosts (�hf , �df , �cf ) depends on the intensity
of infection in fish. We ignore the intensity of infection in fish, but model the prevalence
of infected fish. Similar to the heterogeneity in humans, the heterogeneity of intensity of
infection in fish could lead to higher transmission. Infected snails and fish are not infectious
immediately but need some time for the parasite to develop. This latent period could lead
to a lower prevalence of infectious snails and fish, because infected snails and fish can die
before becoming infectious. We plan to investigate the implication of these assumptions in
future work.

This work suggests that including cats and dogs in a model of opisthorchis allows us
to better di↵erentiate the most important parameters for maintaining transmission and
reducing worm burden in humans. However cats and dogs are not necessary to maintain
transmission so it would be possible to eliminate O. viverrini by only targeting humans
with e↵ective interventions such as regular treatment, safe fish production and improved
sanitation.

Appendix

Proposition 1 (Routh-Horwitz criterion, see [31]). For a polynomial

f(x) = a0x
3 + a1x

2 + a2x+ a3 = 0 (.1)

with ai 2 R for i = 0, 1, 2, 3, the number of roots with positive real parts is equal to the
number of sign changes in either one of the sequences

T0, T1,
T2

T1

or

T0, T1, T1T2,
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where

T0 = a0 > 0, T1 = a1, T2 = det


a1 a0

a3 a2

�
.

Given a0 > 0, all roots have negative real parts if and only if T0, T1 and T2 are all positive.
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Parameter Description Dimension
Nh Population size of humans Animals
Nd Population size of dogs Animals
Nc Population size of cats Animals
Ns Population size of snails Animals
Nf Population size of fish Animals
µph Per capita death rate of adult parasites in

humans (includes additional mortality due to
death of humans)

1/Time

µpd Per capita death rate of adult parasites in
dogs (includes additional mortality due to
death of dogs)

1/Time

µpc Per capita death rate of adult parasites in cats
(includes additional mortality due to death of
cats)

1/Time

µs Per capita death rate of snails 1/Time
µf Per capita death rate of fish including mor-

tality through fishing by humans
1/Time

�hf Transmission rate from infectious fish to hu-
mans per person per fish

1/(Time ⇥ Animals)

�df Transmission rate from infectious fish to dogs
per dog per fish

1/(Time ⇥ Animals)

�cf Transmission rate from infectious fish to cats
per cat per fish

1/(Time ⇥ Animals)

�sd Infection rate of snails per parasite in a dog
host

1/(Time ⇥ Animals)

�sc Infection rate of snails per parasite in a cat
host

1/(Time ⇥ Animals)

�sh Infection rate of snails per parasite in a hu-
man host

1/(Time ⇥ Animals)

�fs Infection rate of fish per snail 1/(Time ⇥ Animals)

Table 2: Parameters of the opisthorchiasis model
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Variable Description Value
nh number of tested humans 994
ph number of positive tested humans 603
nd number of tested dogs 68
pd number of positive tested dogs 17
nc number of tested cats 64
pc number of positive tested cats 34
ns number of tested snails 3102
ps number of positive tested snails 9
nf number of tested fish 628
pf number of positive tested fish 169

Table 3: Total number tested and positive hosts from two islands in Lao PDR [21].

Variable Value Range Unit
�hf 4.898⇥ 10�5 [4.898⇥ 10�6

, 9.795⇥ 10�5] 1/(Animal x Day)
�sh 9.160⇥ 10�11 [9.160⇥ 10�12

, 1.832⇥ 10�10] 1/(Animal x Day)
�fs 3.477⇥ 10�5 [3.477⇥ 10�6

, 6.954⇥ 10�5] 1/(Animal x Day)
Nh 14542 [1454.2, 29084] Animals
Ns 20000 [2000, 40000] Animals
Nf 8000 [800, 16000] Animals
µph

1
10⇥365

⇥
1

20⇥365 ,
1

1⇥365

⇤
1/Days

µs
1

1⇥365

⇥
1

2⇥365 ,
1

0.1⇥365

⇤
1/Days

µf
1

2.5⇥365

⇥
1

5⇥365 ,
1

0.25⇥365

⇤
1/Days

Table 4: Parameter values and ranges of the basic model (1)
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Variable Value Range Unit
�hf 4.898⇥ 10�5 [4.898⇥ 10�6

, 9.795⇥ 10�5] 1/(Animal x Day)
�df 4.110⇥ 10�6 [4.110⇥ 10�7

, 8.220⇥ 10�6] 1/(Animal x Day)
�cf 4.414⇥ 10�5 [4.414⇥ 10�6

, 8.829⇥ 10�5] 1/(Animal x Day)
�sh 3.053⇥ 10�11 [3.053⇥ 10�12

, 6.107⇥ 10�11] 1/(Animal x Day)
�sd 3.053⇥ 10�11 [3.053⇥ 10�12

, 6.107⇥ 10�11] 1/(Animal x Day)
�sc 3.053⇥ 10�11 [3.053⇥ 10�12

, 6.107⇥ 10�11] 1/(Animal x Day)
�fs 3.477⇥ 10�5 [3.477⇥ 10�6

, 6.954⇥ 10�5] 1/(Animal x Day)
Nh 14542 [7271, 21813] Animals
Nd 7271 [3635.5, 10906.5] Animals
Nc 4847 [2423.5, 7270.5] Animals
Ns 20000 [2000, 40000] Animals
Nf 8000 [800, 16000] Animals
µph

1
10⇥365

⇥
1

20⇥365 ,
1

1⇥365

⇤
1/Days

µpd
1

4⇥365

⇥
1

8⇥365 ,
1

0.4⇥365

⇤
1/Days

µpc
1

4⇥365

⇥
1

8⇥365 ,
1

0.4⇥365

⇤
1/Days

µs
1

1⇥365

⇥
1

2⇥365 ,
1

0.1⇥365

⇤
1/Days

µf
1

2.5⇥365

⇥
1

5⇥30 ,
1

0.25⇥365

⇤
1/Days

Table 5: Parameter values and ranges of the model with reservoir hosts (4)
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Basic model Model with reservoir hosts
Parameter MLE MLE
�hf 3.5004⇥ 10�5 5.0034⇥ 10�5

�df - 2.5322⇥ 10�6

�cf - 1.6864⇥ 10�5

�sh 8.8758⇥ 10�11 7.3474⇥ 10�11

�sd - 8.3955⇥ 10�11

�sc - 1.9027⇥ 10�11

�fs 1.5144⇥ 10�5 4.0902⇥ 10�5

Nh 9, 045 17, 006
Nd - 8, 062
Nc - 4, 951
Ns 23, 337 22, 321
Nf 4, 593 5, 152
µph

1
2.1641⇥365

1
1.3148⇥365

µpd - 1
1.0081⇥365

µpc - 1
1.6260⇥365

µs
1

1.6998⇥365
1

1.8210⇥365

µf
1

1.7099⇥365
1

0.3808⇥365

Reproduction number
R0 1.1112 1.1112

Table 6: Maximum likelihood estimation (MLE) and the corresponding basic reproduction number (R0)
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Figure 4: Distributions of the host-specific type-reproduction numbers of the model with reservoir hosts

(4) calculated from the resampled parameter distributions from Section 4.2.28
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Figure 5: Local sensitivity indices and partial rank correlation coe�cients (PRCC) of the basic reproduc-

tion number R0 for the basic model (1) and the model with reservoir hosts (4).
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Figure 6: Local sensitivity indices and partial rank correlation coe�cients (PRCC) of mean worm burden

in humans at the endemic equilibrium point w⇤
h of the basic model (1) and the model with reservoir hosts

(4).
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Figure 7: Basic reproduction number R0 for the basic model (1) and the model with reservoir hosts (4)

varying population sizes of two hosts with all other parameters as in Table 6.
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(b) Model with reservoir hosts

Figure 8: Numerical simulations of the opisthorchiasis models (1) and (4) with the Dormand-Prince method

over a time line of 70,000 days. The initial values are 1 for the worm burdens and 0 for the prevalences.

The parameter values are in Table 6.
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