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Zero estimates with moving targets

W.D. Brownawell and D.W. Masser

Abstract. Zero estimates have a classical history in diophantine approximation and tran-

scendence, as well as more recent applications to counting rational points on analytic sets.

We give some examples showing that the sharpest conceivable results can be false, and in

some cases the natural guess has even to be doubled. A by-product is a “non-degenerate”

case of the (unproved) “Zilber Nullstellensatz” in connexion with “Strong Exponential Clo-

sure”.

2010 MSC codes. 03C99, 30C15, 32A60, 33E05.

1. Introduction. Let f = f(z), g = g(z) be entire or meromorphic functions of a single

complex variable z. If they are analytic at some z = a, then the simplest argument

from linear algebra enables us to find for each pair of integers L � 0,M � 0 a non-zero

polynomial P = P (X,Y ) in C[X,Y ], of degree at most L in X and of degree at most M

in Y , such that the function � = �(z) = P (f, g) vanishes at z = a to order at least

T = (L+ 1)(M + 1)� 1.

For this means �(t)(a) = 0 with the derivatives �(t) = (d/dz)t� for t = 0, 1, . . . , T � 1,

which are T homogeneous linear equations in the T + 1 unknown coe�cients of P .

In applications to the theory of diophantine approximation and transcendence, a key

role is played by upper bounds for such orders of vanishing. It usually su�ces to have

a bound of the form C(L + 1)(M + 1), where C is independent of L,M . The argument

above shows C < 1 is not possible; but there are rather few f, g for which a result is known

even with C < 2. It is easy to check for f = z, g = ez, and even that the order cannot

exceed T . But if } denotes a Weierstrass elliptic function, then despite much work of many

authors, it remains unknown for f = z, g = }(z). To our knowledge the best result is due

to Gelfond in Lemma 4 (page 251) of [F], which implies an upper bound 2T + 1

2

(L+ 1)2.

The theme of the present paper is that the arguments from linear algebra can some-

times be misleading, and we illustrate this with two classes of examples.
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First we shall prove that the order of vanishing of P (z,}(z)) can be at least T + 1 if

a is carefully chosen.

Theorem 1. Given } and positive integers L,M , there is a point a at which } is analytic,

and a non-zero polynomial P (X,Y ) of degree at most L in X and of degree at most M in

Y , such that P (z,}(z)) has a zero of order at least LM + L+M + 1 at z = a.

As mentioned above, this is false for the exponential analogue P (z, ez).

We believe that the order of vanishing of P (z,}(z)) can even be at least T + 2 if } is

carefully chosen as well as a. That is, we have

Conjecture. Given positive integers L,M , there is } and a point a at which } is analytic,

and a non-zero polynomial P (X,Y ) of degree at most L in X and of degree at most M in

Y , such that P (z,}(z)) has a zero of order at least LM + L+M + 2 at z = a.

This is even more false, and even somewhat meaningless, for the exponential analogue.

We give some evidence for small L,M to support the conjecture.

Thus instead of treating a and } as fixed, we are thinking of them as moving targets.

Here moving the targets has a relatively modest e↵ect. We can exhibit a much greater

e↵ect by considering several zeroes instead of a single one. Thus given a
1

, . . . , a
N

with

N  T where f, g are analytic, the linear algebra arguments show that we can find P 6= 0,

again of degree at most L in X and of degree at most M in Y , with � = P (f, g) having

zeroes at these points. Choosing N = T , we get T di↵erent zeroes. Now here the e↵ect of

moving the targets a
1

, . . . , a
N

is enormous: a given �, such as ez � 1 or even ez � z, will

usually have infinitely many zeroes, and in this case we can improve the number of zeroes

from T to 1.

The situation changes if we consider repeated zeroes; that is, with multiplicity at least

two.

As (ez�1)0 = ez 6= 0, the function ez�1 has no repeated zeroes. Similarly (ez�z)0 =

ez � 1 = z � 1 6= 0 if ez = z, so the same is true of ez � z.

Of course we can construct repeated zeroes by linear algebra. Given a
1

, . . . , a
N

now

with 2N  T , we can find P 6= 0 such that � has repeated zeroes at these points. By

choosing N as the integer part [T
2

] we get at least [T
2

] such zeroes (without multiplicity).

We believe that this can always be essentially doubled. However if P happens to be a
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square P 2

0

here, then we can usually get infinitely many repeated zeroes just by considering

�
0

= P
0

(f, g). Thus in order to exclude such trivialities we should search among squarefree

P . In fact we are able to find P which are even irreducible over C.

We continue our theme by proving that if M = 1 then indeed � = P (z, ez) can have

as many as T � 1 = 2L such zeroes if the targets a
1

, . . . , a
N

are carefully chosen.

Theorem 2. Given a positive integer L, there is a non-zero irreducible polynomial P (X,Y )

of degree at most L in X and of degree at most 1 in Y , such that P (z, ez) has at least 2L

di↵erent zeroes of order at least 2.

A relatively simple argument (see section 6) shows also that the expected T = 2L+1

is not possible. But for general M , even here for the simple exponential function, the

correct upper bounds seem to be unknown. One can show following [BM] (see just below)

that if P is squarefree, then P (z, ez) has at most finitely many repeated zeroes and in fact

at most 2LM . For general M we do not know if this can be halved.

Actually in applications one often needs upper bounds for sums of orders of zeroes

at various points (usually with some sort of group structure corresponding to a group

variety - see Philippon’s paper [P] for some very general results). Thus the linear algebra

arguments show that we can find P 6= 0 with

NX

n=1

ord(�; a
n

) � T

where ord(�; a) is the order of vanishing of � = P (f, g) at a. Incidentally here as well the

correct upper bounds for exponential functions are unknown when N � 2. Of course the

bound NT is trivial. This for L = M = 1 is 3N . In turn this for N = 2 is 6; and when

� = P (z, ez) it is not too hard to improve this to 4 when a
1

6= a
2

, which is then best

possible. But what happens for N = 3 here?

Baker and Wüstholz in [BW] (pages 102,103) have also commented on the problems

of proving the zero estimates expected from linear algebra:

We remark that the most troublesome factor here is r! that appears on the right-hand

side of ( ) and arises as a consequence of the multihomogeneous degree theory; we have no

heuristic explanation as to why this factor should occur and indeed it would seem that it

should not be present if one counts conditions as usual in transcendence theory and one

believes in the philosophy of Dyson type lemmas. The elucidation of this phenomenon

would be of much interest.
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And Wüstholz earlier in [W] (page 193) had speculated: It seems to have something

to do with infinity.

We certainly have no explanation either. The simplest non-trivial case of the argu-

ments in [BW],[W] are just with our � = P (z, ez). If � has a large order zero then so

has the derivative �0. This is also P#(z, ez) for P# in C[X,Y ] (here P# = �P for the

di↵erential operator � = (@/@X)+Y (@/@Y ), not needed here). We may usually form the

resultant Q of P, P# with respect to Y , a polynomial combination of P, P#. So Q(z) is a

corresponding combination of �,�0 and also has a large order zero. But the zeroes of Q(z)

are easy to count in terms of its degree. This is of course the basic simple idea in [BM].

But the nasty surprise is that the natural bound for the degree, 2LM in our situation, is

roughly our quantity T = LM + L+M multiplied by another troublesome factor 2 = 2!.

Thus it is di�cult to prevent this factor entering the zero estimates.

An example is that above for repeated zeroes. Each of these gives a zero of Q. One

can check that Q is not identically zero (again see section 6 for the case M = 1). So there

are at most 2LM of them as claimed.

It is amusing to note that Theorem 2 says that in the case M = 1 this bound is sharp,

so we seem to have shown that this particular troublesome factor is actually needed; and

furthermore by using resultants!

Our concept of moving targets is not quite the one more usually encountered in Vojta

Theory. But it may have some relevance to Bombieri-Pila-Wilkie Theory, where refine-

ments of the proofs call for zero estimates involving unknown points certainly without any

group structure (see for example Proposition 1 of [Mas] page 2038). However there we

have no multiplicities.

The paper is arranged as follows. In section 2 we prove Theorem 1 using Wronskians

and degenerate elliptic functions. Then in section 3 we discuss some evidence for the

Conjecture.

In section 4 we prove an auxiliary result (Proposition 1) about polynomials which arise

from the resultant used above. Then section 5 contains another auxiliary result (Propo-

sition 2) about exponential-polynomial equations. This is relevant to Zilber’s “Strong

Exponential Closure Axiom” for “pseudoexponential fields”, which over C becomes a con-

jecture, here proved in a significant special case. Finally it is a relatively simple matter in

section 6 to prove Theorem 2.

As this paper was being completed, we received a copy of the preprint [DFT], in which
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D’Aquino, Fornasiero and Terzo also prove our Proposition 2 along similar lines (based on

circulated notes of the present second author).

2. Proof of Theorem 1. We start o↵ with an easy

Lemma 1. Let f
1

, . . . , f
S

be meromorphic functions with Wronskian W .

(i) If f
1

, . . . , f
S

are analytic at a point a with W (a) = 0, then there are constants

c
1

, . . . , c
S

, not all zero, such that c
1

f
1

+ · · ·+ c
S

f
S

has a zero of order at least S at a.

(ii) If f
1

, . . . , f
S

have poles of orders 1, . . . , S respectively at a point b, then W has a

pole of order S2 at b.

Proof. For (i) again the natural order is S � 1, so there is here too an extra 1. The

result is practically obvious: the Wronskian matrix with entries f (t�1)

s

(a) (s, t = 1, . . . , S)

is singular and so the columns are linearly dependent.

For (ii) we can argue by induction on S using the well-known fact that the Wronskian

of gf
1

, . . . , gf
S

is gSW . With g = 1/f
1

we reduce to a Wronskian of S � 1 functions,

which after multiplication also by 1/f
1

have poles of orders 1, . . . , S�1. The result follows

because S2 = S + (S � 1) + (S � 1)2.

Thus to prove Theorem 1 we take S = (L + 1)(M + 1) and the f
s

as the zl}m (l =

0, . . . , L,m = 0, . . . ,M). Now the Wronskian W is actually an elliptic function; that is, no

powers of z survive the determinant expansion. This can be seen for example by noting

that if ! is any period of } then replacing z by z + ! has the e↵ect of acting on the f
s

by

a unimodular matrix. This action extends to the whole Wronskian matrix. So by taking

determinants we see that W (z) = W (z + !). Thus W is indeed elliptic. It is certainly

non-zero, because z,} are well-known to be algebraically independent and so the f
s

are

linearly independent. So as long as we can show that W is not identically constant, it has

a zero at some z = a and we are done thanks to Lemma 1(i).

If L = 1 we can show this as follows. After rearrangement the zl}m (l = 0, . . . , L,m =

0, . . . ,M) have poles of orders �1, 0, 1, . . . , 2M at z = 0. Multiplying by 1/z2, we find from

Lemma 1(ii) that W has a pole at z = 0 of order �2S + (2M + 2)2 = S(S � 2) � 8, and

indeed cannot be constant.

So henceforth we assume that L � 2. Now from the famous di↵erential equation

}02 = 4}3 � g
2

} � g
3

we see that W is a polynomial in },}0, g
2

, g
3

. If we give these

the usual weights 2,3,4,6 respectively, then the polynomial is quadrihomogeneous. Thus
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if W were identically constant, then it would be a (non-zero weighted) polynomial in the

invariants g
2

, g
3

. So it is a product of factors ↵g3
2

� �g2
3

. If some projective (↵,�) is not

(1, 27), then we could make the factor vanish by specializing to a particular }. But this

would mean that the particular z,} are algebraically dependent. The only way out is that

W has the form �(g3
2

� 27g2
3

)k with k � 0.

If k 6= 0 then we can make this vanish by specializing to a degenerate }. A suitable

“multiplicative” one is

}1(z) = �1

3
+ sin�2(z),

which satisfies the di↵erential equation

}02
1 = 4}3

1 � 4

3
}1 � 8

27
= 4

✓
}1 � 2

3

◆✓
}1 +

1

3

◆
2

with

g
2

=
4

3
, g

3

=
8

27
, g3

2

� 27g2
3

= 0.

Now we could deduce that z,}1 would be algebraically dependent, still impossible.

If k = 0 we could consider the “additive” degenerate }11(z) = 1/z2 satisfying

}02
11 = 4}3

11 with g
2

= g
3

= 0. Then W = � stays non-zero. Here z,}11 do be-

come algebraically dependent; and, more to the point, because L � 2 the zl}m

11 (l =

0, . . . , L,m = 0, . . . ,M) become linearly dependent (for example just 1 = z2}11), an-

other contradiction.

This completes the proof of Theorem 1. The use of various degenerate elliptic functions

suggests that generalizations to abelian functions may not be so easy, possibly involving

dimensions of various moduli spaces.

Here is what the proof gives when L = M = 1. For any x = }(a) satisfying

x4 +
1088391168g3

2

g2
3

(g2
2

� 27g2
3

)2
x2 +

203119913336832g3
2

g4
3

(g2
2

� 27g2
3

)3
x+

296148833645101056g6
2

g4
3

(g2
2

� 27g2
3

)4
= 0

(exhibiting the degeneracy in action) there is a non-zero function

p
00

+ p
10

z + p
01

}(z) + p
11

z}(z) (2.1)

having a zero of order at least 4 at z = a.

3. The Conjecture. One can find some support for the Conjecture by pushing Lemma

1(i) a bit further to involve W (a) = W 0(a) = 0.
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Thus for L = 1,M = 1 one finds with }02 = 4}3 � 4} (so j = 1728) and a with

}(a) = i,}0(a) = 2� 2i (corresponding to a point of order 4) that (2.1) with

p
00

= �2ia� i� 1, p
10

= 2i, p
01

= �2a+ 1� i, p
11

= 2

has a zero of order 5 at z = a; here T = 3. In fact it is the only example up to elliptic

isomorphism, Galois conjugation, sign change and scalar multiplication.

And for L = 2,M = 1 one finds with }02 = 4}3 � 4 (so j = 0) and a with }(a) =

1,}0(a) = 0 (corresponding to a point of order 2) that the function

p
00

+ p
10

z + p
20

z2 + p
01

}(z) + p
11

z}(z) + p
21

z2}(z)

with

p
00

= 1 + 2a2, p
10

= �4a, p
20

= 2, p
01

= �1 + a2, p
11

= �2a, p
21

= 1

has a zero of at least order 7 (actually order 8) at z = a; here T = 5. There are similar

examples with }(a) any primitive cube root of unity and again }0(a) = 0.

And also for }02 = 4}3 � 10}� 6 (so j = 432000

7

) and for example

}(a) = �1 +

p
2

2
, }0(a) = i

q
6� 2

p
2

(also corresponding to a point of order 4).

And for L = 3,M = 1 one finds again }02 = 4}3 � 4 (so j = 0) and a with }(a)3 = 1,

as well as }02 = 4}3 � 50} + 70 (so j = � 2160000

73

) and a such that x = }(a) satisfies

x4 � 4x3 + 25x2 � 90x+ 345

4

= 0 (apparently not torsion) giving a zero of order at least 9

at z = a; here T = 7. In fact there are examples with the other j-values

j =
46008000± 7560000

p
37

11
.

Going up to L = 4,M = 1 one finds six more j-values giving a zero of order at least 11;

namely

j =
864000

59
, j =

�101628000± 15876000
p
41

61
.

and the solutions of

551j3 � 690888528000j2 + 10273651200000000j + 20155392000000000000 = 0.
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And finally for L = 2,M = 2 one finds (as well as j = 1728)

j = �54000

79
, j =

205875000± 25515000
p
65

47

and the solutions of

233j3 � 23878800j2 + 2208870000000j + 1968300000000000 = 0.

In fact as L,M increase it seems very likely that the number of j-values increases;

and that is why we believe our conjecture.

4. Preliminaries. A key result, actually one of algebraic independence (see section 6),

for dealing with the case M = 1 in Theorem 2 is the following, where we identify non-zero

polynomials of degree at most D up to constant multiples with points of projective P

D

.

Proposition 1. The formula

Q = P
0

P
1

+ P
0

P 0
1

� P 0
0

P
1

defines a surjective morphism from P

L

⇥P

L

to P

2L

.

Proof. It is a morphism because if P
0

6= 0 has exact degree l
0

� 0 and P
1

6= 0 has exact

degree l
1

� 0 then Q has exact degree l
0

+ l
1

� 0 so Q 6= 0.

We assume it is not surjective and we will obtain a contradiction.

Thanks to projectivity the image is a proper subvariety of P
2L

(see for example [M]

page 33). In fact the morphism defines a map from C

L+1⇥C

L+1 to C

2L+1 and the image

of this then lies in a proper subvariety. We introduce coordinates by writing

P
0

=
LX

l=0

p
l0

X l, P
1

=
LX

l=0

p
l1

X l, Q =
2LX

k=0

q
k

Xk,

so that the q
k

are polynomials in the p
lm

. Then the Jacobian J with 2L+ 2 rows

✓
@q

0

@p
lm

, . . . ,
@q

2L

@p
lm

◆
(l = 0, 1, . . . , L; m = 0, 1)

acquires in the usual way a non-trivial relation between the 2L+1 columns, and therefore

has rank at most 2L.
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This in turn delivers two linearly independent row relations. Thus for generic P
0

, P
1

in

C[X] (of degrees at most L so exactly L) there are two linearly independent row relations

in the corresponding J .

We now introduce new polynomials to express a given row relation

LX

l=0

✓
a
l0

@q
k

@p
l0

+ a
l1

@q
k

@p
l1

◆
= 0 (k = 0, 1, . . . , 2L).

It is equivalent to the single relation

LX

l=0

(a
l0

Q
l0

+ a
l1

Q
l1

) = 0 (4.1)

where

Q
l0

=
@Q

@p
l0

= X lP
1

+X lP 0
1

� lX l�1P
1

(l = 0, 1, . . . , L),

Q
l1

=
@Q

@p
l1

= X lP
0

�X lP 0
0

+ lX l�1P
0

(l = 0, 1, . . . , L).

Then (4.1) can be written

A
0

P
1

+A
0

P 0
1

�A0
0

P
1

+A
1

P
0

�A
1

P 0
0

+A0
1

P
0

= 0 (4.2)

with

A
0

=
LX

l=0

a
l0

X l, A
1

=
LX

l=0

a
l1

X l.

Now (4.2) is satisfied with

A
0

= P
0

, A
1

= �P
1

and so we recover one of the two row relations mentioned above.

However there is a second such relation independent of this. So by taking linear

combinations we could assume that there is a relation with A
0

of degree at most L � 1.

Now (4.2) shows that also A
1

has degree at most L � 1. Then (4.2) gives a set of 2L

homogeneous linear equations in the 2L surviving coe�cients of A
0

, A
1

, and we will show

that the (generic) determinant does not vanish, giving the contradiction A
0

= A
1

= 0.

Actually it su�ces to show that for some specialized P
0

, P
1

the system (4.2) implies

A
0

= A
1

= 0; for then the specialized determinant does not vanish. Computational

experiment guided the unlikely-looking choice

P
0

= XL, P
1

= XL + t
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with any irrational t. Now (4.2) can be rearranged to

XL�1(XA
0

+ LA
0

�XA0
0

+XA
1

� LA
1

+XA0
1

) + t(A
0

�A0
0

) = 0. (4.3)

Thus XL�1 divides A
0

�A0
0

. By comparing degrees we see that either A
0

= A0
0

or (without

loss of generality) XL�1 = A
0

�A0
0

.

The first possibility clearly implies A
0

= 0; but then (4.3) gives XA
1

�LA
1

+XA0
1

= 0

which implies A
1

= 0 also by comparing degrees. So in the first case A
0

= A
1

= 0 as

desired.

The second possibility XL�1 = A
0

� A0
0

determines A
0

uniquely in Q[X]. Now (4.3)

reads (after dividing by XL�1)

XL + LA
0

+XA
1

� LA
1

+XA0
1

+ t = 0.

By looking at the coe�cients of XL, XL�1, . . . , X successively it can be seen that

a
L�1,1

, a
L�2,1

, . . . , a
01

are in Q. However the constant terms then show that �La
01

+ t is also in Q. This means

that the second possibility cannot occur, and thereby completes the proof of Proposition

1.

5. Exponential-algebraic equations. Here we state and prove our result on the exis-

tence of solutions.

In one variable it is well-known and easy to prove that if P (X,Y ) is any polynomial

involvingX and Y then P (z, ez) has a complex zero. For example we can solve the equation

ez = F (z) with a non-constant polynomial F . And if F is allowed to be an “algebraic

function” then we get the general case. In even just two complex variables this seems not

to be known, even with polynomials.

Let us look at the simple ez = z. As exponential functions can grow rapidly, one can

try to dampen the growth by guessing at z ⇡ 2⇡ik for a large integer k. With some sort

of iterative procedure one gets pretty quickly some sort of expansion

z = 2⇡ik + log(2⇡ik) +
log(2⇡ik)

2⇡ik
� 1

2

(log(2⇡ik))2

(2⇡ik)2
+

log(2⇡ik)

(2⇡ik)2
+ · · · . (5.1)
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So one can well imagine that there infinitely many zeroes, and this can be proved in several

ways - see for example Corollary 2.4 (page 794) of Marker [Mar].

Now to two variables. Say we want to solve

ez = w, ew = z (5.2)

o↵ the diagonal z = w. We could eliminate w to get ee
z

= z; but this seems not to be

helpful. As above we pick integers k, h and guess z ⇡ 2⇡ik, w ⇡ 2⇡ih; more precisely

z = 2⇡ik + ⇣, w = 2⇡ih+ !.

We get e⇣ = 2⇡ih + ! and so a good guess for ⇣ is (any determination of) log(2⇡ih).

Similarly for ! about log(2⇡ik). In fact it turns out now that the resulting approximation

z ⇡ 2⇡ik + log(2⇡ih), w ⇡ 2⇡ih+ log(2⇡ik) (5.3)

is good enough for the application of Newton’s Method, provided k, h are both large enough

and roughly the same size.

Numerically we get after four iterations on k = 100, h = 200 (to avoid the diagonal in

(5.2) above) stability up to

z = 7.1374477685 . . .+629.8842042013 . . . i, w = 6.4456001954 . . .+1258.1965268827 . . . i.

And the method is robust enough that it works for any rational or even algebraic

functions on the right-hand sides of (5.2), provided we avoid pairs (k, h) on certain lines;

and in any number of variables. Even in just one variable we may solve for example

ez = z + 1/z with k = 100 by

z = 6.4455777222788171301981629856188 . . .+ 629.87909431073065124541492081115 . . . i,

or ez = z +
p
z by

z = 6.4738339431980523438931012205386 . . .+ 629.85179848455646387241390175467 . . . i.

Of course the last example is a little suspect with the determination of the square root, so

should be written ez = Z with

(Z � z)2 = z. (5.4)
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In general we make everything precise using algebraic varieties, and then we have the

following result.

Proposition 2. Let X be an a�ne complex irreducible algebraic variety of dimension n �
1. Suppose f

1

, . . . , f
n

, F
1

, . . . , F
n

are rational functions on X with f
1

, . . . , f
n

algebraically

independent and F
1

, . . . , F
n

non-zero. Then there is a point on X at which the functions

are defined with values satisfying

ef1 = F
1

, . . . , efn = F
n

.

The last example above has X with n = 1 defined by (5.4) and f
1

= z, F
1

= Z.

As is well-known, things like Proposition 2 automatically strengthen themselves to

give a set of points on X that is Zariski-dense. For if G is any non-zero rational function

on X then we simply add the equation eg = G on the variety C⇥X with an extra variable

g. This ensures that the corresponding value of G is also non-zero.

As might be supposed from the above discussion, our proof actually gives a more

structured Zariski-dense set of points. Namely, that the point can be chosen so that

(f
1

, . . . , f
n

) is “relatively near” any one of “su�ciently many” points of (2⇡iZ)n.

Results like Proposition 2 have been mentioned in connexion with Zilber’s “Strong

Exponential Closure Axiom” for “pseudoexponential fields”. Over C this becomes a

conjecture, and it is formulated for irreducible algebraic varieties V in C

n ⇥ (C⇤)n. A

non-strong form, mentioned in Corollary 4.5 (page 83) of [Z2] in connexion with C

exp

,

states that if V is “normal” (or ex-normal) and “free” then V has a point of the shape

v = (z
1

, . . . , z
n

, ez1 , . . . , ezn). Our Proposition 2 provides a proof with the sole condition

that the projection of V to C

n is dominant. This implies that V is normal (but not that

V is free).

The strong form states that for any field k finitely generated over Q there is such a v

which is a generic point of V over k. This is open even for n = 1, but in that case Marker

deduced it from the notorious Schanuel Conjecture when V is defined over the algebraic

closure of Q, and more recently Mantova removed the condition on the field of definition.

See Theorem 1.6 (page 793) of [Mar] and Theorem 1.2 (page 310) of [Man]. See also [DFT]

and [G].

See also [Z1] section 5 for what is known in R

n ⇥ (R⇤)n.

12



The following result sums up the iterative procedure needed to prove Proposition 2.

Here p = (p
1

, . . . , p
n

) are coordinates, and norms of vectors and matrices are (euclidean)

L2.

Lemma 1. Let p

0

be in C

n and let � = (�
1

, . . . ,�
n

) be an analytic map from some

neighbourhood of p
0

to C

n whose Jacobian matrix J(p) is non-singular at p
0

. Define q

0

in C

n by

q

0

J(p
0

) = ��(p
0

), (5.5)

and let U be the set of p with

|p� p

0

|  2|q
0

|. (5.6)

Suppose � is analytic on U satisfying

nX

k=1

|H(�
k

)|2  M2

for the Hessian matrices and that

2M |q
0

||J(p
0

)�1| < 1 (5.7)

for some M > 0. Then there is p in U with �(p) = 0.

Proof. See Theorem 25.1 (page 187) of the second edition [O1] of Ostrowski’s book. It

is stated for R

n, but the proof works also for C

n (this is made even clearer in the third

edition [O2] page 274). He uses Newton’s Method, paying close attention to constants and

for more general L? norms. We take his � = ⇢ = 2.

Lemma 2. For z = (z
1

, . . . , z
n

) let ↵ 6= 0 in the algebraic closure C(z) be an algebraic

function. Then there are q in Z, e in N and a subset � of Zn, Zariski-dense in C

n, with the

following property. For each � in � there is ✏ > 0 and � > 0 and functions c
p

(w) (p � q)

analytic on the disc |w � �| < ✏ with c
q

(�) 6= 0 such that on this disc the Puiseux series
P

p�q

c
p

(w)t�p/e converges absolutely for |t| > 1/� to a branch of ↵(tw).

Proof. In words, the Puiseux expansion along a complex line z = tw depends analytically

on the line, at least near almost all lines. This surely must be known, but we give a proof

sketch.

By Puiseux’s Theorem overK = C(w) there is a formal branch ↵(tw) =
P

p�q

c
p

(w)t�p/e

over K. But it is well-known that the c
p

(w) lie in a finite extension K of C(w); for ex-

ample this follows from a proof given by Cassels [C]. He is actually proving Eisenstein’s

13



Theorem over Q; but the proof applies much more generally, and shows in our situation

that if O is the integral closure of R = C[w] in K, then there are non-zero A,B in R

such that ABp�qc
p

lies in O. In the typical case q � 0 and e = 1 one only has to as-

sume f in K[[T ]] and g
0

, . . . , g
J

in C(w)[T ] in his Theorem 5.1 (page 28). In the proof

h, h
1

, . . . , h
J

end up in K[T ] for K = C(w, f
0

, . . . , f
m+1

). The subsequent induction shows

that f
m+k+1

(k = 1, 2, . . .) also lie in K; but we can even suppose h, h
1

, . . . , h
J

in O[T ],

and now the induction shows that lkf
m+k+1

(k = 1, 2, . . .) are in O with l = h
1

(0) 6= 0 in

O. The claim about A,B follows quickly, as well as the extension to arbitrary q and e.

It is well-known that O = R!
1

+ · · · + R!
d

is finitely generated. So all we have to

do is represent the c
p

via A,B,!
1

, . . . ,!
d

as analytic functions near su�ciently many �.

It su�ces to take A(�) 6= 0 and B(�) 6= 0, and then it really is well-known that we can

make !
1

, . . . ,!
d

analytic near almost all �. The absolute convergence is routine, and this

completes the proof.

Here is a very simple example with n = 2 and ↵ =
p
z
1

+ z
2

(no chance of any

Puiseux-type expansion near (z
1

, z
2

) = (1,1) in this case), with

↵(w
1

t, w
2

t) =
p

(w
1

+ w
2

)t = c
1

t1/2

with

c
1

= c
1

(w
1

, w
2

) =
p
�
1

+ �
2

1X

k=0

✓
1/2

k

◆✓
(w

1

� �
1

) + (w
2

� �
2

)

�
1

+ �
2

◆
k

provided �
1

+ �
2

6= 0.

We can now prove Proposition 2. But as a warm-up we solve (5.2) with (5.3). Taking

new variables

p = z � 2⇡ik � log(2⇡ih), q = w � 2⇡ih� log(2⇡ik)

we get the equations �(p, q) =  (p, q) = 0 with

� = ep � 2⇡ih+ log(2⇡ik) + q

2⇡ih
,  = eq � 2⇡ik + log(2⇡ih) + p

2⇡ik
(5.8)

to which we apply Lemma 1. The Jacobian at (0, 0) is
✓

1 � 1

2⇡ik� 1

2⇡ih

1

◆
, (5.9)

near the identity matrix if k and h are large, and

�(0, 0) = � log(2⇡ik)

2⇡ih
,  (0, 0) = � log(2⇡ih)

2⇡ik
(5.10)
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are small if further k and h are about the same size. We could take k = �m and h = �m

with fixed non-zero integers � and �, for example, and then the set U has radius of order

at most (log |m|)/|m| for large integers m. The Hessians

H(�) =

✓
ep 0
0 0

◆
, H( ) =

✓
0 0
0 eq

◆
(5.11)

are harmless. Thus for each large integer m we get a solution of (5.2) with errors in (5.3)

of order at most (log |m|)/|m|, in harmony with the first three terms of (5.1) for a single

variable.

Now to the general proof. Removing a Zariski-closed subset X
0

6= X from X , we can

assume that X is in some C

N with coordinate functions x
1

, . . . , x
N

and x
1

= f
1

, . . . , x
n

=

f
n

. With f = (f
1

, . . . , f
n

) each of x
1

, . . . , x
N

is algebraic over C(f) on X so there are

algebraic functions ⇠
j

in C(z) with

x
j

= ⇠
j

(f) (j = 1, . . . , N)

on X . By Lemma 2 for each j there is a subset �
j

of Zn, Zariski-dense in Z

n, and branches

of ⇠
j

on large complex multiples of each w near any � in �
j

. Taking the intersection we

can assume all �
j

= �. Thus

f
k

(⇠
1

(z), . . . , ⇠
N

(z)) = z
k

(k = 1, . . . , n) (5.12)

on such multiples. We define ↵
k

= F
k

(⇠
1

, . . . , ⇠
N

) in C(z), so that

F
k

= ↵
k

(f) (k = 1, . . . , n)

on X ; and ↵
k

6= 0 because F
k

6= 0.

By shrinking � further, we can use Lemma 2 again to get q
k

in Z, e
k

in N with the

following property. For each � in � there is ✏
k

> 0 and �
k

> 0 and functions c
pk

(w) (p � q
k

)

analytic on the disc |w��| < ✏
k

with c
qkk(�) 6= 0 such that on this disc the Puiseux series

P
p�qk

c
pk

(w)t�p/ek converges absolutely for |t| > 1/�
k

to a branch of ↵
k

(tw). We can

clearly suppose all ✏
k

= ✏ and all �
k

= �.

Pick � in �. Let m be in Z with |t| > 1/� for t = 2⇡im; we will eventually make m

even larger. Then

↵
k

(2⇡im�) =
X

p�qk

c
pk

(�)t�p/ek = c
qkk(�)t

�qk/ek(1 +O(|m|�1/ek)) 6= 0 (k = 1, . . . , n)

(5.13)
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if |m| is su�ciently large. Fix some principal value �
k

of log↵
k

(2⇡im�), so that

|�
k

| = O(log |m|) (k = 1, . . . , n)

and put � = (�
1

, . . . ,�
n

). We would like to apply Lemma 1 to the functions

�
k

(p) = epk � ↵
k

(2⇡im� + �+ p)

↵
k

(2⇡im�)
(k = 1, . . . , n) (5.14)

as in (5.8), but we should check branch compatibility of the numerator. In fact

2⇡im� + �+ p = 2⇡imw

with

w = � +
�

2⇡im
+

p

2⇡im
= � +O

✓
log |m|
|m|

◆
(5.15)

for say |p|  1, so again we are alright if |m| is su�ciently large.

Thus in Lemma 1 we are taking p

0

= 0. We now have to calculate the Jacobian.

We note that the numerator in (5.14) is
P

p�qk
c
pk

(w)t�p/ek with w given by (5.15). The

derivative with respect to p
r

is

1

2⇡im

X

p�qk

@c
pk

@p
r

(w)t�p/ek .

It is easy to see that this is O(|m|�1�qk/ek); for example the c
pk

grow like at most Cp near

� and so by Cauchy a similar bound holds for their derivatives. And by (5.13) we see that

the denominator in (5.14) is asymptotic to a non-zero multiple of m�qk/ek . It follows that

J(p
0

) is the identity matrix with error O(|m|�1), as in (5.9).

A similar argument with Cauchy on the c
pq

(w) � c
pq

(�) at p = p

0

, also using the

asymptotics for the same denominator together with (5.15), shows that �(p
0

) = O(log |m|/|m|)
as in (5.10).

It follows from (5.5) that q

0

= O(log |m|/|m|) in Lemma 1, so again U has radius

O(log |m|/|m|).
And similar arguments to get at the @

2
cpk

@pr@ps
show that the second derivatives of the

quotients in (5.14) are small. However taking into account the epk gives the estimate

M = O(1) in Lemma 1 as in (5.11), which su�ces for us.

Now the condition (5.7) is satisfied for |m| su�ciently large. This means there is p

with �(p) = 0 near p
0

= 0; in fact we have (5.6).
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Finally put z = 2⇡im� + �+ p and x = (⇠
1

(z), . . . , ⇠
N

(z)) in X . Since �
k

is in Z we

see by (5.12) and the definition of �
k

that

efk(x) = e2⇡im�k+�k+pk = ↵
k

(2⇡im�)epk .

By the vanishing of (5.14) and the definition of ↵
k

this is

↵
k

(2⇡im� + �+ p) = F
k

(x).

The proof of Proposition 2 is thereby complete.

6. Proof of Theorem 2. We have to show that �(z) = P
0

(z) + P
1

(z)ez can have 2L

repeated zeroes, not quite the expected N = LM + L + M = 2L + 1. In fact if P
0

, P
1

do not both vanish, then it cannot have 2L + 1 repeated zeroes, because these would be

zeroes of

(P
1

+ P 0
1

)�� P
1

�0 = P
0

P
1

+ P
0

P 0
1

� P 0
0

P
1

= Q (6.1)

of degree at most 2L, forcing Q = 0 and so by the easy part of Proposition 1 P
0

= 0 or

P
1

= 0, both of which are clearly impossible.

We return to the discussion in section 1, now with M = 1 so

� = P (z, ez) = P
0

(z) + P
1

(z)ez, �0 = P#(z, ez) = P 0
0

(z) + (P
1

(z) + P 0
1

(z))ez.

There Q was the resultant of

P = P
0

+ P
1

Y, P# = P 0
0

+ (P
1

+ P 0
1

)Y

with respect to Y , none other than our Q just above. The strategy is as follows. We have to

find a
1

, . . . , a
2L

and P
0

, P
1

with �(a
k

) = �0(a
k

) = 0 (k = 1, . . . , 2L). These imply Q(a
k

) =

0 (k = 1, . . . , 2L). In fact we obtain this consequence first, by starting with a
1

, . . . , a
2L

and using the hard part of Proposition 1 to find P
0

, P
1

with Q = (X � a
1

) · · · (X � a
2L

).

The coe�cients of P
0

, P
1

are (complicated) algebraic functions of a
1

, . . . , a
2L

. So now the

exponential-algebraic equations �(a
k

) = 0 (k = 1, . . . , 2L) can be solved for a
1

, . . . , a
2L

by

our Proposition 2. By Zariski-denseness we can secure P
1

(a
k

) 6= 0 (k = 1, . . . , 2L) and by

(6.1) we conclude �0(a
k

) = 0 (k = 1, . . . , 2L) as well.

To make this more precise we write  for the map from C

L ⇥ C

L to C

2L obtained

from Proposition 1 by restricting to monic P
0

, P
1

, Q (of degrees L,L, 2L respectively).
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This stays surjective. We also define a map � from C

2L to C

2L that “takes zeroes to

coe�cients”; that is

�(z
1

, . . . , z
2L

) = (X � z
1

) · · · (X � z
2L

).

We define a variety in C

L ⇥C

L ⇥C

2L by

(P
0

, P
1

) = �(Z) (6.2)

for Z = (z
1

, . . . , z
2L

). For example with L = 1, P
0

= p+X,P
1

= q +X,Z = (a, b) we get

pq + p� q = ab, p+ q = �a� b;

easily seen to be irreducible.

Presumably it is irreducible in general, but this may not be straightforward to prove.

For if we replace (P
0

, P
1

) = P
0

P
1

+ P
0

P 0
1

� P 0
0

P
1

just by P
0

P
1

, we get

P
0

P
1

= (X � z
1

) · · · (X � z
2L

),

where there are exactly
�
2L

L

�
components according to the choices of zeroes of say P

0

(in

the above p = �a, q = �b and p = �b, q = �a).

Fortunately it turns out that we can work on any component X of (6.2). On X already

each (P
0

, P
1

) determines at most finitely many Z, so its dimension n  2L. On the other

hand the ideal of equations (6.2) in 4L variables has 2L generators, so n � 4L� 2L = 2L

(see for example Theorem 30 of [ZS] page 240). Thus n = 2L; and the coe�cients of P
0

, P
1

are algebraically independent on X . It follows from Proposition 1 that also z
1

, . . . , z
2L

are

algebraically independent on X ; that is why we described it so in section 4.

Next we show that the functions P
1

(z
k

) (k = 1, . . . , 2L) do not vanish on X . This is

essentially due to the symmetry in �. In fact otherwise by the Nullstellensatz some P
1

(z
k

)e

would lie in the ideal of the equations (6.2). But then interchanging z
k

, z
j

would show that

also P
1

(z
j

)e does. Thus all the P
1

(z
j

) = 0 (j = 1, . . . , 2L) on X . However a polynomial of

degree L � 1 cannot have 2L di↵erent zeroes.

Similarly for the P
0

(z
k

) (k = 1, . . . , 2L). And also the resultant R of P
0

, P
1

does not

vanish on X .

We now apply the Zariski-dense version of Proposition 2 to solve the system

P
1

(z
k

) 6= 0, ezk = �P
0

(z
k

)

P
1

(z
k

)
(k = 1, . . . , 2L)
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(of course the other variables z
j

are hidden in P
0

, P
1

), say with Z = (a
1

, . . . , a
2L

). We

may even make sure that R 6= 0 and that a
1

, . . . , a
2L

are distinct.

Thus the resulting function �(z) = P
0

(z) + P
1

(z)ez has zeroes at a
1

, . . . , a
2L

. So of

course does Q = (P
0

, P
1

). It follows from (6.1) and P
1

(z
k

) 6= 0 that �0 also has zeroes

there; so these zeroes of � are repeated. As R 6= 0, the polynomials P
0

, P
1

have no common

factor. Thus P
0

(X) + P
1

(X)Y is irreducible. This proves Theorem 2.

A bit extra can be squeezed out by relaxing the monic conditions. For example, when

L = 1, a function

�(z) = p
00

+ p
10

z + p
01

ez + p
11

zez (6.3)

can have two repeated zeroes. But we can even specify one of them. Thus if a 6= 0 satisfies

1� (2 + a2)ea + e2a = 0

(it exists by Proposition 2 and we can take it as �4.501457 . . .+ 8.424784 . . . i) then

�(0) = �0(0) = �(a) = �0(a) = 0

when

p
00

= �a+ aea, p
10

= 1� ea + aea, p
01

= a� aea, p
11

= �1� a+ ea.

As we saw, no � 6= 0 in (6.3) can have three repeated zeroes.

It would be nice to generalize Theorem 2 to general M . But just for L = 1,M = 2

the analogue of Q in Proposition 1 has thirteen terms. It has degree at most 4. So in this

case is there P , squarefree or even irreducible, such that P (z, ez) has four repeated zeroes?

It might be interesting also to study the elliptic or abelian analogues.
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