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MULTILEVEL METHODS FOR UNCERTAINTY QUANTIFICATION OF
ELLIPTIC PDES WITH RANDOM ANISOTROPIC DIFFUSION

HELMUT HARBRECHT AND MARC SCHMIDLIN

Abstract. We consider elliptic diffusion problems with a random anisotropic diffusion coeffi-
cient, where, in a notable direction given by a random vector field, the diffusion strength differs
from the diffusion strength perpendicular to this notable direction. The Karhunen-Loève ex-
pansion then yields a parametrisation of the random vector field and, therefore, also of the
solution of the elliptic diffusion problem. We show that, given regularity of the elliptic diffu-
sion problem, the decay of the Karhunen-Loève expansion entirely determines the regularity
of the solution’s dependence on the random parameter, also when considering this higher spa-
tial regularity. This result then implies that multilevel collocation and multilevel quadrature
methods may be used to lessen the computation complexity when approximating quantities of
interest, like the solution’s mean or its second moment, while still yielding the expected rates
of convergence. Numerical examples in three spatial dimensions are provided to validate the
presented theory.

1. Introduction

The numerical approximation of quantities of interest, such as expectation, variance, or more
general output functionals, of the solution of a diffusion problem with a scalar random diffusion
coefficient with multilevel collocation or multilevel quadrature methods has been considered
previously, see e.g. [2, 6, 10, 11, 17, 20, 24, 31] and the references therein; in this isotropic case,
the mixed smoothness required for the use of such multilevel methods has been provided in
[7] for uniformly elliptic diffusion coefficients and in [23] for log-normally distributed diffusion
coefficients. However, in simulations of certain diffusion phenomena in science and engineering,
the diffusion that needs to be modeled may not necessarily be isotropic. One specific application
we have in mind here stems from cardiac electrophysiology, where the electrical activation of the
human heart is considered. It is known that the fibrous structure of the heart plays a major role
when considering the electrical and mechanical properties of the heart. And while the fibres have
a complex and generally well-organised structure, see e.g. [28, 29], the exact fibre orientation may
vary between individuals and also over time in an individual, for example due to the presence of
scaring of the heart.

More generally, we wish to be able to model diffusion in a fibrous media, where fibre direction
and diffusion strength in fibre direction are subject to uncertainty. For this setting, the following
random anisotropic diffusion coefficient was defined in [21]:

A(ω) := aI +
(∥∥V(ω)

∥∥
2
− a
)V(ω)VT(ω)

VT(ω)V(ω)
,

Key words and phrases. uncertainty quantification, anisotropic diffusion, regularity estimates, multilevel
methods.
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where a is a given value and V is a random vector-valued field, over a given spatial domain D
and a given probability space (Ω,F ,P). The fibre direction is hence given by V/‖V‖ with the
diffusion strength in the fibre direction being ‖V‖ and the diffusion strength perpendicular to
the fibre direction is defined by a.

We shall consider the second order diffusion problem with this uncertain diffusion coefficient
A given by

for almost every ω ∈ Ω:

{
−divx

(
A(ω)∇x u(ω)

)
= f in D,

u(ω) = 0 on ∂D,

with the known function f as a source. The result of this article is then as follows. Having spatial
Hs-regularity of the underlying diffusion problem, given by sufficient smoothness of the right
hand f side and the domain D, then the random solution u admits analytic regularity with
respect to the stochastic parameter also in the Hs(D)-norm provided that the random vector-
valued field offers enough spatial regularity. This mixed regularity is the essential ingredient in
order to apply multilevel collocation or multilevel quadrature methods without deteriorating the
rate of convergence, see [17] for instance.

The rest of the article is organised as follows: In Section 2, we provide basic definitions and
notation for the functional analytic framework to be able to state and then also reformulate
the model problem, by using the Karhunen-Loève expansion of the diffusion describing random
vector-valued field V, into its stochastically parametric and spatially weak formulation. Section 3
then deals with the regularity of the solution of the stochastically parametric and spatially weak
formulation of the model problem with respect to the stochastic parameter and some given higher
spatial regularity in the model problem. We then use the fact that the higher spatial regularity can
be kept, when considering the regularity of the solution with respect to the stochastic parameter,
to arrive at convergence rates when considering multilevel quadrature, such as multilevel quasi-
Monte Carlo quadrature, to approximate the solution’s mean and second moment. Numerical
examples are provided in Section 4 as validation; specifically we use multilevel quasi-Monte
Carlo quadrature to approximate the solution’s mean and second moment in a setting with three
spatial dimensions. Lastly, we give our conclusions in Section 5.

2. Problem formulation

2.1. Notation and precursory remarks. For a given Banach space X and a complete measure
space M with measure µ the space Lpµ(M;X ) for 1 ≤ p ≤ ∞ denotes the Bochner space, see
[22], which contains all equivalence classes of strongly measurable functions v : M → X with
finite norm

‖v‖Lpµ(M;X ) :=





[∫

M

∥∥v(x)
∥∥p
X d µ(x)

]1/p
, p <∞,

ess sup
x∈M

∥∥v(x)
∥∥
X , p =∞.

A function v : M → X is strongly measurable if there exists a sequence of countably-valued
measurable functions vn : M→ X , such that for almost every m ∈M we have limn→∞ vn(m) =
v(m). Note that, for finite measures µ, we also have the usual inclusion Lpµ(M;X ) ⊃ Lqµ(M;X )
for 1 ≤ p < q ≤ ∞.

When X is a separable Hilbert space andM is a separable measure space, the Bochner space
L2
µ(M;X ) is also a separable Hilbert space with the inner product

(u, v)L2
µ(M;X ) :=

∫

M

(
u(x), v(x)

)
X d µ(x)

and is isomorphic to the tensor product space L2
µ(M)⊗X , see [25].
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Subsequently, we will always equip Rd with the norm ‖·‖2 induced by the canonical inner
product 〈·, ·〉 and Rd×d with the norm ‖·‖F induced by the Frobenius inner product 〈·, ·〉F . Then,
for v,w ∈ Rd, the Cauchy-Schwartz inequality gives us

|vTw| =
∣∣〈v,w〉

∣∣ ≤ ‖v‖2‖w‖2,
where equality holds only if v = w, and we also have, by straightforward computation, that

‖vwT‖F = ‖v‖2‖w‖2.
We also note that to avoid the use of generic but unspecified constants in certain formulas we

use C . D to mean that C can be bounded by a multiple of D, independently of parameters
which C and D may depend on. Obviously, C & D is defined as D . C and we write C h D if
C . D and C & D. Lastly, note that for the natural numbers N denotes them including 0 and
N∗ excluding 0.

2.2. Model problem. Let (Ω,F ,P) be a separable, complete probability space. Then, we con-
sider the following second order diffusion problem with a random anisotropic diffusion coefficient

(1) for almost every ω ∈ Ω:

{
−divx

(
A(ω)∇x u(ω)

)
= f in D,

u(ω) = 0 on ∂D,

where D ⊂ Rd is a Lipschitz domain with d ≥ 1 and the function f ∈ H−1(D) describes the
known source. The diffusion coefficient is given as the randommatrix fieldA ∈ L∞P

(
Ω;L∞(D;Rd×d)

)
,

which satisfies the uniform ellipticity condition

(2) a ≤ ess inf
x∈D

λmin

(
A(x, ω)

)
≤ ess sup

x∈D
λmax

(
A(x, ω)

)
≤ a P-almost surely

for some constants 0 < a ≤ a <∞ and is almost surely symmetric almost everywhere. Without
loss of generality, we assume a ≤ 1 ≤ a.

We specifically consider diffusion coefficients that are of form

(3) A(x, ω) := aI +
(∥∥V(x, ω)

∥∥
2
− a
)V(x, ω)VT(x, ω)

VT(x, ω)V(x, ω)
,

where a ∈ R is a given positive number and V ∈ L∞P
(
Ω;L∞(D;Rd)

)
is a random vector-valued

field. We note that such a field A accounts for a medium that has homogeneous diffusion strength
a perpendicular toV and has diffusion strength

∥∥V(x, ω)
∥∥
2
in the direction ofV. The randomness

of the specific direction and length of V therefore quantifies uncertainty of this notable direction
and its diffusion strength. To guarantee the uniform ellipticity condition (2), we require that

(4) a ≤ ess inf
x∈D

∥∥V(x, ω)
∥∥ ≤ ess sup

x∈D

∥∥V(x, ω)
∥∥ ≤ a P-almost surely

as well as a ≤ a ≤ a.
It is assumed that the spatial variable x and the stochastic parameter ω of the random field

have been separated by the Karhunen-Loève expansion of V, yielding a parametrised expansion

(5) V(x,y) = E[V](x) +
∞∑

k=1

σkψk(x)yk,

where y = (yk)k∈N∗ ∈ � := [−1, 1]
N∗ is a sequence of uncorrelated random variables, see e.g.

[21]. In the following, we will denote the pushforward of the measure P onto � as Py. Then, we
also view A(x,y) and u(x,y) as being parametrised by y and restate (1) as

(6) for almost every y ∈ �:
{
−divx

(
A(y)∇x u(y)

)
= f in D,

u(y) = 0 on ∂D.
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We now impose some common assumptions, which make the Karhunen-Loève expansion com-
putationally feasible.

Assumption 2.1. (1) The random variables (yk)k∈N∗ are independent and identically dis-
tributed. Moreover, they are uniformly distributed on

[
−1, 1

]
.

(2) The sequence γ = (γk)k∈N, given by

γk :=
∥∥σkψk

∥∥
L∞(D;Rd),

is at least in `1(N), where we have defined ψ0 := E[V] and σ0 := 1.

Lastly, we note that the spatially weak form of (6) is given by

(7)





Find u ∈ L∞Py
(�;H1

0 (D)) such that
(
A(y)∇x u(y),∇x v

)
L2(D;Rd) =

(
f, v
)
L2(D;Rd)

for almost every y ∈ � and all v ∈ H1
0 (D).

This also entails the well known stability estimate.

Lemma 2.2. There is a unique solution u ∈ L∞Py
(�;H1

0 (D)) of (7), which fulfils

∥∥u(y)
∥∥
L∞Py (�;H1(D))

≤ 1

ac2V

(
‖f‖H−1(D)

)
,

where cV is the Poincaré-Friedrichs constant of H1
0 (D).

3. Parametric regularity

3.1. Precursory remarks. Before we start discussing the regularity of the diffusion coefficient
and the solution, we introduce some norms and lemmata, which will then be used in the following
subsections.

For the Sobolev spaces Wκ,p with κ ∈ N and 1 ≤ p ≤ ∞, we introduce the norms given by

‖M‖Wκ,p(D;Rd1×d2 ) :=
∑

|α|≤κ

1

α!

∥∥∂αx M
∥∥
Lp(D;Rd1×d2 )

:=





∑

|α|≤κ

1

α!

(∫

D

∥∥∂αx M(x)
∥∥p
F

dx

)1/p

, p <∞;

∑

|α|≤κ

1

α!
ess sup
x∈D

∥∥∂αx M(x)
∥∥
F
, p =∞,

for M ∈Wκ,p(D;Rd1×d2) with d1, d2 ∈ N∗.
For these norms, we have the following lemmata.

Lemma 3.1. Let κ ∈ N, 1 ≤ p1, p2 ≤ ∞, d1, d2, d3 ∈ N∗, and

M1 ∈Wκ,p1(D;Rd1×d2), M2 ∈Wκ,p2(D;Rd2×d3)

with q = (p−11 + p−12 )−1 ≥ 1. Then, we have

‖M1M2‖Wκ,q(D;Rd1×d3 ) ≤ ‖M1‖Wκ,p1 (D;Rd1×d2 )‖M2‖Wκ,p2 (D;Rd2×d3 ).

Proof. Let α,β ∈ Nd be two multi-indices, then we have

1

(α+ β)!

(
α+ β

β

)
=

1

(α+ β)!

(α+ β)!

α!β!
=

1

α!β!
.
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We now can calculate

‖M1M2‖Wκ,q(D;Rd1×d3 ) =
∑

|α|≤κ

1

α!

∥∥∂αx [M1M2]
∥∥
Lq(D;Rd1×d3 )

=
∑

|α|≤κ

1

α!

∥∥∥∥∥
∑

β≤α

(
α

β

)
∂βx M1 ∂

α−β
x M2

∥∥∥∥∥
Lq(D;Rd1×d3 )

≤
∑

|α|≤κ

∑

β≤α

1

α!

(
α

β

)∥∥∂βx M1 ∂
α−β
x M2

∥∥
Lq(D;Rd1×d3 )

≤
∑

|α|≤κ

∑

β≤α

1

α!

(
α

β

)∥∥∂βx M1

∥∥
Lp1 (D;Rd1×d2 )

∥∥∂α−βx M2

∥∥
Lp2 (D;Rd2×d3 ).

By a change of variables, i.e. replacing α with α+ β, and remarking that
{

(α− β,β) : |α| ≤ κ, β ≤ α
}

=
{

(α,β) : |α|+ |β| ≤ κ
}
,

we find the identity
∑

|α|≤κ

∑

β≤α

1

α!

(
α

β

)∥∥∂βx M1

∥∥
Lp1 (D;Rd1×d2 )

∥∥∂α−βx M2

∥∥
Lp2 (D;Rd2×d3 )

=
∑

|α|+|β|≤κ

1

(α+ β)!

(
α+ β

β

)∥∥∂βx M1

∥∥
Lp1 (D;Rd1×d2 )

∥∥∂αx M2

∥∥
Lp2 (D;Rd2×d3 )

=
∑

|α|+|β|≤κ

1

α!β!

∥∥∂βx M1

∥∥
Lp1 (D;Rd1×d2 )

∥∥∂αx M2

∥∥
Lp2 (D;Rd2×d3 ).

Consequently, we arrive at the desired estimate:

‖M1M2‖Wκ,q(D;Rd1×d3 ) ≤
∑

|α|,|β|≤κ

1

α!β!

∥∥∂βx M1

∥∥
Lp1 (D;Rd1×d2 )

∥∥∂αx M2

∥∥
Lp2 (D;Rd2×d3 )

≤
∑

|β|≤κ

1

β!

∥∥∂βx M1

∥∥
Lp1 (D;Rd1×d2 )

∑

|α|≤κ

1

α!

∥∥∂αx M2

∥∥
Lp2 (D;Rd2×d3 )

= ‖M1‖Wκ,p1 (D;Rd1×d2 )‖M2‖Wκ,p2 (D;Rd2×d3 ). �

Lemma 3.2. Let κ ∈ N, 1 ≤ p ≤ ∞, and

v = [vi]
d
i=1 ∈Wκ,p(D;Rd).

Then, we have
‖divx v‖Wκ−1,p(D) ≤ κd‖v‖Wκ,p(D;Rd).

Proof. We calculate

‖divx v‖Wκ−1,p(D) =

∥∥∥∥
d∑

i=1

∂xi vi

∥∥∥∥
Wκ−1,p(D)

≤
∑

|α|≤κ−1

1

α!

d∑

i=1

‖∂αx ∂xi vi‖Lp(D)

≤ κ
∑

|α|≤κ

1

α!

d∑

i=1

‖∂αx vi‖Lp(D) ≤ κd‖v‖Wκ,p(D;Rd). �

Lemma 3.3. Let κ ∈ N, 1 ≤ p ≤ ∞, and

u ∈Wκ,p(D).
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Then, we have
‖∇x u‖Wκ−1,p(D;Rd) ≤ κd‖u‖Wκ,p(D).

Proof. We calculate

‖∇x u‖Wκ−1,p(D;Rd) =
∑

|α|≤κ−1

1

α!

∥∥∂αx ∇x u
∥∥
Lp(D;Rd) =

∑

|α|≤κ−1

1

α!

∥∥∥∥∥∥∥



∂αx ∂x1

u
...

∂αx ∂xd u




∥∥∥∥∥∥∥
Lp(D;Rd)

≤
∑

|α|≤κ−1

1

α!

d∑

i=1

‖∂αx ∂xi u‖Lp(D) ≤ κd‖u‖Wκ,p(D). �

As we will need the Faà di Bruno formula, see [8], we just restate it here for reference:

Remark 3.4. Given v : R → R and M : D → R (both sufficiently differentiable for the formula
to make sense), then

∂αx [v ◦M ](x) =

|α|∑

r=1

[Dr
x v]
(
M(x)

) ∑

P (α,r)

α!

|α|∏

j=1

(
∂βjx M(x)

)kj

kj !(βj !)kj
,

where P (α, r) is a subset of integer partitions of a multi-index α into r non-vanishing multi-
indices, given by

P (α, r) :=

{(
(k1,β1), . . . , (kn,βn)

)
∈
(
N× NM

)n
:
n∑

j=1

kjβj = α,
n∑

j=1

kj = r,

and there exists 1 ≤ s ≤ n : kj = 0 and βj = 0 for all 1 ≤ j ≤ n− s,

kj > 0 for all n− s+ 1 ≤ j ≤ n and 0 ≺ βn−s+1 ≺ · · ·βn
}
.

The relation β ≺ β′ for multi-indices β,β′ ∈ NM means that either |β| < |β′| or, when |β| = |β′|,
there exists 0 ≤ k < m such that β1 = β′1, . . . , βk = β′k and βk+1 < β′k+1.

We also know from [8] that:

Remark 3.5. For α ∈ Nd with n = |α| and r ∈ N, we have

∑

P (α,r)

α!

n∏

j=1

1

kj !(βj !)kj
= Sn,r,

where Sn,r denotes the Stirling numbers of the second kind, see [1].

Lemma 3.6. Let κ ∈ N and M ∈Wκ,∞(D;R) with 0 < m ≤ 1 ≤ m <∞ such that

m ≤ ess inf
x∈D

‖M(x)‖F ≤ ess sup
x∈D

‖M(x)‖F ≤ m,

as well as v(x) = x−1 and w(x) =
√
x. Then, we have

‖v ◦M‖Wκ,∞(D;R) ≤ cκ,d
1

mκ+1
max

{
1, ‖M‖κWκ,∞(D;R)

}

and

‖w ◦M‖Wκ,∞(D;R) ≤ cκ,d
√
m

mκ
max

{
1, ‖M‖κWκ,∞(D;R)

}
,
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with

cκ,d = 1 +
∑

|α|≤κ

|α|∑

r=1

r!S|α|,r.

Proof. We first remark that the r-th derivative of v is given by

Dr
x v(x) = (−1)rr!x−1−r = (−1)rr!v(x)r+1.

Next, we employ the Faà di Bruno formula to compute

‖v ◦M‖Wκ,∞(D) =
∑

|α|≤κ

1

α!

∥∥∂αx [v ◦M ]
∥∥
L∞(D)

=
∥∥v ◦M

∥∥
L∞(D)

+
∑

1≤|α|≤κ

1

α!

∥∥∥∥∥

|α|∑

r=1

[Dr
x v] ◦M

∑

P (α,r)

α!

|α|∏

j=1

(
∂βjx M

)kj

kj !(βj !)kj

∥∥∥∥∥
L∞(D)

≤
∥∥v ◦M

∥∥
L∞(D)

+
∑

1≤|α|≤κ

1

α!

|α|∑

r=1

∥∥∥[Dr
x v] ◦M

∥∥∥
L∞(D)

∑

P (α,r)

α!

|α|∏

j=1

1

kj !

∥∥∥∥
∂βjx M

βj !

∥∥∥∥
kj

L∞(D)

≤
∥∥v ◦M

∥∥
L∞(D)

+
∑

1≤|α|≤κ

|α|∑

r=1

∥∥∥[Dr
x v] ◦M

∥∥∥
L∞(D)

∥∥M
∥∥r
Wκ,∞(D;R)

∑

P (α,r)

|α|∏

j=1

1

kj !

≤
(
∥∥v ◦M

∥∥
L∞(D)

+
∑

1≤|α|≤κ

|α|∑

r=1

∥∥∥[Dr
x v] ◦M

∥∥∥
L∞(D)

S|α|,r

)
max

{
1, ‖M‖κWκ,∞(D;R)

}
.

Thus, we continue by calculating

∥∥v ◦M
∥∥
L∞(D)

+
∑

1≤|α|≤κ

|α|∑

r=1

∥∥∥[Dr
x v] ◦M

∥∥∥
L∞(D)

S|α|,r

=
∥∥v ◦M

∥∥
L∞(D)

+
∑

1≤|α|≤κ

|α|∑

r=1

∥∥∥(−1)rr!v
(
M(x)

)r+1
∥∥∥
L∞(D)

S|α|,r

≤
∥∥v ◦M

∥∥
L∞(D)

+
∑

1≤|α|≤κ

|α|∑

r=1

∥∥v ◦M
∥∥r+1

L∞(D)
r!S|α|,r

≤ 1

m
+

∑

1≤|α|≤κ

|α|∑

r=1

1

mr+1
r!S|α|,r

≤
(

1 +
∑

|α|≤κ

|α|∑

r=1

r!S|α|,r

)
1

mκ+1
.

The calculation for w instead of v is mainly analogous: The r-th derivative of w is given by

Dr
x w(x) = crx

1
2−r = crw(x)v(x)r,

where cr :=
∏r−1
i=0

(
1
2 − i

)
. As |cr| ≤ r!, we can use

∥∥w ◦M
∥∥
L∞(D)

+
∑

1≤|α|≤κ

|α|∑

r=1

∥∥∥[Dr
x w] ◦M

∥∥∥
L∞(D)

S|α|,r
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=
∥∥w ◦M

∥∥
L∞(D)

+
∑

1≤|α|≤κ

|α|∑

r=1

∥∥∥crw(M(x))v(M(x)r
∥∥∥
L∞(D)

S|α|,r

≤
∥∥w ◦M

∥∥
L∞(D)

+
∑

1≤|α|≤κ

|α|∑

r=1

∥∥w ◦M
∥∥
L∞(D)

∥∥v ◦M
∥∥r
L∞(D)

r!S|α|,r

≤
√
m+

∑

1≤|α|≤κ

|α|∑

r=1

√
m

mr
r!S|α|,r

≤
(

1 +
∑

1≤|α|≤κ

|α|∑

r=1

r!S|α|,r

)√
m

mκ
. �

3.2. Parametric regularity of the diffusion coefficient. For the following, we introduce the
shorthand notations

~M~κ,d1×d2 := ‖M‖L∞Py (�;Wκ,∞(D;Rd1×d2 )),

for M ∈ L∞Py

(
�;Wκ,∞(D;Rd1×d2)

)
with κ ∈ N and d1, d2 ∈ N∗; as well as

~·~κ := ~·~κ,1×1,
~·~κ,d1 := ~·~κ,d1×1.

We now provide regularity estimates for the different terms that make up the diffusion coeffi-
cient, based on the following assumption on the decay of the expansion of V.

Assumption 3.7. We assume that the ψk are elements of Wκ,∞(D;Rd) for a κ ∈ N and that
the sequence γκ = (γκ,k)k∈N, given by

γκ,k :=
∥∥σkψk

∥∥
Wκ,∞(D;Rd),

is at least in `1(N). Furthermore, we define

cγκ = max
{
‖γκ‖`1(N), 1

}
.

We furthermore assume that the vector field V is given by a finite rank Karhunen-Loève
expansion, i.e.

V(x,y) = E[V](x) +
M∑

k=1

σkψk(x)yk,

where � := [−1, 1]
M . We note that the regularity estimates however will not depend on the rank

M . If necessary, a finite rank can be attained by appropriate truncation.

Lemma 3.8. Let B be defined as

B(x,y) := V(x,y)VT(x,y).

Then, we have for all α ∈ NM that
��∂αy B

��
κ,d×d ≤ 2c2γκγ

α
κ .

Proof. More verbosely, B is given by

B(x,y) =

(
ψ0(x) +

M∑

k=1

σkψk(x)yk

)(
ψ0(x) +

M∑

k=1

σkψk(x)yk

)T

,
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from which we can derive the first order derivatives, yielding

(8)

∂yi B(x,y) = σiψi(x)

(
ψ0(x) +

M∑

k=1

σkψk(x)yk

)T

+

(
ψ0(x) +

M∑

k=1

σkψk(x)yk

)
σiψ

T
i (x),

and from those also the second order derivatives. They are given by

(9) ∂yj ∂yi B(x,y) = σiψi(x)σjψ
T
j (x) + σjψj(x)σiψ

T
i (x).

Since the second order derivatives with respect to y are constant, all higher order derivatives
with respect to y vanish.

We obviously have
~B~κ,d×d ≤ c2γκ .

From (8) we can now derive the bound

��∂yi B
��
κ,d×d ≤ 2

��σiψi
��
κ,d

����ψ0 +
M∑

k=1

σkψkyk

����
κ,d

≤ 2γκ,icγκ

and (9) leads us to
��∂yj ∂yi B

��
κ,d×d ≤ 2

��σiψi
��
κ,d

��σjψj
��
κ,d
≤ 2γκ,iγκ,j .

Therefore, we have

��∂αy B
��
κ,d×d ≤





c2γκγ
α
κ , if |α| = 0,

2cγκγ
α
κ , if |α| = 1,

2γα
κ , if |α| = 2,

0, if |α| > 2,

and are finished since cγκ ≥ 1. �

Lemma 3.9. Let us define

C(x,y) := VT(x,y)V(x,y),

D(x,y) :=
(
C(x,y)

)−1
,

E(x,y) :=
√
C(x,y).

Then, we know for all α ∈ NM that

~∂αy D~κ ≤ |α|!cκ,d
c2κγκ
a2κ+2

(
cκ,d

2c2κ+2
γκ

a2κ+2 log 2

)|α|
γα
κ

and

~∂αy E~κ ≤ |α|!cκ,d
ac2κγκ
a2κ

(
cκ,d

2c2κ+2
γκ

a2κ+2 log 2

)|α|
γα
κ .

Proof. C can be expressed as

C(x,y) =

(
ψ0(x) +

M∑

k=1

σkψk(x)yk

)T(
ψ0(x) +

M∑

k=1

σkψk(x)yk

)
,
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which, by derivation, gives the following expressions for the first order derivatives:

(10)

∂yi C(x,y) = σiψ
T
i (x)

(
ψ0(x) +

M∑

k=1

σkψk(x)yk

)

+

(
ψ0(x) +

M∑

k=1

σkψk(x)yk

)T

σiψi(x).

Computing the second order derivatives then yields

(11) ∂yj ∂yi C(x,y) = σiψ
T
i (x)σjψj(x) + σjψ

T
j (x)σiψi(x)

and all higher order derivatives with respect to y are zero, since the second order derivatives
with respect to y are constant.

We know that
~C~κ ≤ ~V~2

κ,d ≤ c2γκ .
Using (10) yields the bound

��∂yi C
��
κ
≤ 2

��σiψi
��
κ,d

����ψ0 +
M∑

k=1

σkψkyk

����
κ,d

≤ 2γκ,icγκ

and from (11) we can derive the bound
��∂yj ∂yi C

��
κ
≤ 2

��σiψi
��
κ,d

��σjψj
��
κ,d
≤ 2γκ,iγκ,j .

Thus, we conclude that ��∂αy C
��
κ
≤ 2c2γκγ

α
κ .

We also use (4) to arrive at

a2 ≤ ess inf
y∈�

ess inf
x∈D

‖V (x,y)‖2F = ess inf
y∈�

ess inf
x∈D

‖C(x,y)‖F

as well as
ess sup
y∈�

ess sup
x∈D

‖C(x,y)‖F = ess sup
y∈�

ess sup
x∈D

‖V (x,y)‖2F ≤ a2.

Now, in view of Lemma 3.6, we arrive at

~D~κ ≤ cκ,d
c2κγκ
a2κ+2

and

~E~κ ≤ cκ,d
ac2κγκ
a2κ

,

as ~C~κ ≤ c2γκ with cγκ ≥ a ≥ 1.
Because D = v ◦C with v(x) = x−1 and E = w ◦C with w(x) =

√
x are composite functions,

we employ the Faà di Bruno formula, see Remark 3.4, to compute their derivatives. We remark
that the r-th derivative of v is given by

Dr
x v(x) = (−1)rr!x−1−r = (−1)rr!v(x)r+1

and the r-th derivative of w is given by

Dr
x w(x) = crx

1
2−r = crw(x)v(x)r,
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where cr :=
∏r−1
i=0

(
1
2 − i

)
. For n = |α|, we thus arrive at

(12) ∂αy D(x,y) =

n∑

r=1

(−1)rr!D(x,y)r+1
∑

P (α,r)

α!

n∏

j=1

(
∂βjy C(x,y)

)kj

kj !(βj !)kj

and

(13) ∂αy E(x,y) =
n∑

r=1

crE(x,y)D(x,y)r
∑

P (α,r)

α!
n∏

j=1

(
∂βjy C(x,y)

)kj

kj !(βj !)kj
.

Taking the norm of (12) and (13) leads us to

��∂αy D
��
κ
≤

n∑

r=1

r!~D~r+1
κ

∑

P (α,r)

α!

n∏

j=1

��∂βjy C
��kj
κ

kj !(βj !)kj

≤
n∑

r=1

r!

(
cκ,d

c2κγκ
a2κ+2

)r+1 ∑

P (α,r)

α!
n∏

j=1

(
2c2γκγ

βj
κ

)kj

kj !(βj !)kj

= γα
κ

n∑

r=1

r!

(
cκ,d

c2κγκ
a2κ+2

)r+1(
2c2γκ

)r ∑

P (α,r)

α!

n∏

j=1

1

kj !(βj !)kj

and

��∂αy E
��
κ
≤

n∑

r=1

|cr|~E~κ~D~rκ
∑

P (α,r)

α!
n∏

j=1

��∂βjy C
��kj
κ

kj !(βj !)kj

≤
n∑

r=1

|cr|cκ,d
ac2κγκ
a2κ

(
cκ,d

c2κγκ
a2κ+2

)r ∑

P (α,r)

α!
n∏

j=1

(
2c2γκγ

βj
κ

)kj

kj !(βj !)kj

= γα
κ

n∑

r=1

|cr|cκ,d
ac2κγκ
a2κ

(
cκ,d

c2κγκ
a2κ+2

)r(
2c2γκ

)r ∑

P (α,r)

α!
n∏

j=1

1

kj !(βj !)kj
.

Observing |cr| ≤ r! and Remark 3.5, we can obtain

��∂αy D
��
κ
≤ γα

κ cκ,d
c2κγκ
a2κ+2

n∑

r=1

r!

(
cκ,d

2c2κ+2
γκ

a2κ+2

)r
Sn,r

≤ cκ,d
c2κγκ
a2κ+2

(
cκ,d

2c2κ+2
γκ

a2κ+2

)|α|
γα
κ

n∑

r=1

r!Sn,r

and
��∂αy E

��
κ
≤ γα

κ cκ,d
ac2κγκ
a2κ

n∑

r=1

r!

(
cκ,d

2c2κ+2
γκ

a2κ+2

)r
Sn,r

≤ cκ,d
ac2κγκ
a2κ

(
cκ,d

2c2κ+2
γκ

a2κ+2

)|α|
γα
κ

n∑

r=1

r!Sn,r.

Because
∑n
r=1 r!Sn,r equals the n-th ordered Bell number, we can bound it, see [3], by

n∑

r=1

r!Sn,r ≤
n!

(log 2)n
.
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This implies the assertion. �

Lemma 3.10. We define F by

F(x,y) :=
V(x,y)VT(x,y)

VT(x,y)V(x,y)
.

Then, we have for all α ∈ NM that

��∂αy F
��
κ,d×d ≤ |α|!cκ,d

6c2κ+2
γκ

a2κ+2

(
cκ,d

2c2κ+2
γκ

a2κ+2 log 2

)|α|
γα
κ .

Proof. We can equivalently state F as F(x,y) = D(x,y)B(x,y). Then, by applying the Leibniz
rule, we arrive at

∂αy F(x,y) =
∑

β≤α

(
α

β

)(
∂βy D(x,y)

)(
∂α−βy B(x,y)

)
.

Taking the norm and using the bounds from Lemma 3.8 and Lemma 3.9 leads us to
��∂αy F

��
κ,d×d ≤

∑

β≤α

(
α

β

)��∂βy D
��
κ

��∂α−βy B
��
κ,d×d

≤
∑

β≤α

(
α

β

)
|β|!cκ,d

c2κγκ
a2κ+2

(
cκ,d

2c2κ+2
γκ

a2κ+2 log 2

)|β|
γβ
κ 2c2γκγ

α−β
κ

≤ cκ,d
2c2κ+2

γκ

a2κ+2

(
cκ,d

2c2κ+2
γκ

a2κ+2 log 2

)|α|
γα
κ

∑

β≤α

(
α

β

)
|β|!.

Lastly, the combinatorial identity

(14)
∑

β≤α
|β|=j

(
α

β

)
=

(|α|
j

)

yields the bound

∑

β≤α

(
α

β

)
|β|! =

|α|∑

j=0

j!
∑

β≤α
|β|=j

(
α

β

)
=

|α|∑

j=0

j!

(|α|
j

)
= |α|!

|α|∑

k=0

1

k!
≤ 3|α|!. �

Theorem 3.11. The derivatives of the diffusion matrix A, defined in (3), satisfy

��∂αy A
��
κ,d×d ≤ (|α|+ 1)!c2κ,d

a12c4κ+2
γκ

a4κ+2

(
cκ,d

2c2κ+2
γκ

a2κ+2 log 2

)|α|
γα
κ

for all α ∈ NM with |α| ≥ 1.

Proof. We can state A as

A(x,y) = aI + E(x,y)F(x,y)− aF(x,y),

which, with the Leibniz rule, yields

∂αy A(x,y) =
∑

β≤α

(
α

β

)(
∂βy E(x,y)

)(
∂α−βy F(x,y)

)
− a ∂αy F(x,y).
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Then, by taking the norm and inserting the bounds from Lemma 3.9 and Lemma 3.10, we arrive
at

��∂αy A
��
κ,d×d ≤

∑

β≤α

(
α

β

)��∂βy E
��
κ

��∂α−βy F
��
κ,d×d + a

��∂αy F
��
κ,d×d

≤
∑

β≤α

(
α

β

)
|β|!cκ,d

ac2κγκ
a2κ

(
cκ,d

2c2κ+2
γκ

a2κ+2 log 2

)|β|
γβ
κ

|α− β|!cκ,d
6c2κ+2

γκ

a2κ+2

(
cκ,d

2c2κ+2
γκ

a2κ+2 log 2

)|α−β|
γα−β
κ

+ a|α|!cκ,d
6c2κ+2

γκ

a2κ+2

(
cκ,d

2c2κ+2
γκ

a2κ+2 log 2

)|α|
γα
κ

≤ c2κ,d
a6c4κ+2

γκ

a4κ+2

(
cκ,d

2c2κ+2
γκ

a2κ+2 log 2

)|α|
γα
κ

∑

β≤α

(
α

β

)
|β|!|α− β|!

+ cκ,d
a6c2κ+2

γκ

a2κ+2

(
cκ,d

2c2κ+2
γκ

a2κ+2 log 2

)|α|
γα
κ |α|!.

Finally, the combinatorial identity (14) yields, see e.g. [19],
∑

β≤α

(
α

β

)
|β|!|α− β|! = (|α|+ 1)!. �

We now define the modified sequence µκ = (µκ,k)k∈N as

µκ,k := cκ,d
4c2κ+2

γκ

a2κ+2 log 2
γκ,k

and also

cκ,A := c2κ,d
a12c4κ+2

γκ

a4κ+2
;

thus, we have ��∂αy A
��
κ,d×d ≤ |α|!cκ,Aµ

α
κ .

Note that the additional factor of 2 in µk removes the factor |α|+1 from the factorial expression,
since we know that 2|α| ≥ |α|+ 1.

3.3. Parametric regularity of the solution. For this subsection, we require an elliptic regu-
larity result, which we state as an assumption:

Assumption 3.12. For almost any y, the problem of solving
(
A(y)∇x u,∇x v

)
L2(D;Rd)

= (h, v)L2(D)

for any h ∈ Hκ−1(D) has a unique solution u ∈ H1
0 (D), which also lies in Hκ+1(D), with

‖u‖Hκ+1(D) ≤ Cκ,er‖h‖Hκ−1(D),

where Cκ,er only depends on D and A.

Remark 3.13. Note that for κ = 0 this reduces to the stability estimate. We will therefore
only consider κ ≥ 1; the case for κ = 0 may be found in [21]. Such an elliptic regularity esti-
mate for example is known for κ ≥ 1, when the domain’s boundary is of class Cκ,1 and A ∈
L∞Py

(
�;Cκ−1,1(D;Rd×d)

)
, see [13, Theorem 2.5.1.1]. The elliptic regularity estimate is also known
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to hold for κ = 1, when the domain is convex and bounded and A ∈ L∞Py

(
�;C0,1(D;Rd×d)

)
, see

[13, Theorem 3.2.1.2].

The assumption directly implies the following result.

Lemma 3.14. There is a unique solution u ∈ L∞Py

(
�;H1

0 (D)
)
of (7), which fulfils u(y) ∈

Hk+1(D) for almost every y ∈ �, with
∥∥u(y)

∥∥
Hk+1(D)

≤ Cκ,er‖f‖Hκ−1(D).

However, by also leveraging the higher spatial regularity in the Karhunen-Loève expansion of
the random vector-valued field, we can show that the solution u admits analytic regularity with
respect to the stochastic parameter y also in the Hκ+1(D)-norm. This mixed regularity is then
the essential ingredient when applying multilevel methods.

Theorem 3.15. For almost every y ∈ �, the derivatives of the solution u(y) of (7) satisfy

∥∥∂αy u(y)
∥∥
Hk+1(D)

≤ |α|!µα
κ

(
max

{
2, 2Cκ,erκ

2d2cκ,A, Cκ,er‖f‖Hκ−1(D)

})|α|+1

.

Proof. By differentiation of the variational formulation (7) with respect to y we arrive, for arbi-
trary v ∈ H1

0 (D), at (
∂αy
(
A(y)∇x u(y)

)
,∇x v

)
L2(D;Rd)

= 0.

Applying the Leibniz rule on the left-hand side yields
(∑

β≤α

(
α

β

)
∂α−βy A(y) ∂βy ∇x u(y),∇x v

)

L2(D;Rd)
= 0.

Then, by rearranging and using the linearity of the gradient, we find
(
A(y)∇x ∂

α
y u(y),∇x v

)
L2(D;Rd)

= −
(∑

β<α

(
α

β

)
∂α−βy A(y)∇x ∂

β
y u(y),∇x v

)

L2(D;Rd)
.

Using Green’s identity, we can then write
(
A(y)∇x ∂

α
y u(y),∇x v

)
L2(D;Rd)

=

(∑

β<α

(
α

β

)
divx

(
∂α−βy A(y)∇x ∂

β
y u(y)

)
, v

)

L2(D;R)
.

Thus, we arrive at

‖∂αy u(y)‖Hκ+1(D) ≤ Cκ,er
∑

β<α

(
α

β

)∥∥∥divx

(
∂α−βy A(y)∇x ∂

β
y u(y)

)∥∥∥
Hκ−1(D)

≤ Cκ,er
∑

β<α

(
α

β

)
κd
∥∥∥∂α−βy A(y)∇x ∂

β
y u(y)

∥∥∥
Hκ(D;Rd)

≤ Cκ,er
∑

β<α

(
α

β

)
κd

��∂α−βy A
��
κ,d×d

∥∥∇x ∂
β
y u(y)

∥∥
Hκ(D;Rd)

≤ Cκ,erκ2d2cκ,A
∑

β<α

(
α

β

)
|α− β|!µα−β

κ

∥∥∂βy u(y)
∥∥
Hκ+1(D;R),

from which we derive
∥∥∂αy u(y)

∥∥
Hκ+1(D)

≤ c

2

∑

β<α

(
α

β

)
|α− β|!µα−β

κ

∥∥∂βy u(y)
∥∥
Hκ+1(D)

,
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where
c := max

{
2, 2Cκ,erκ

2d2cκ,A, Cκ,er‖f‖Hκ−1(D)

}
.

We note that, by definition of c, we have c ≥ 2 and furthermore, because of Lemma 3.14, we
also have that

∥∥u(y)
∥∥
H1(D)

≤ c, which means that the assertion is true for |α| = 0. Thus, we
can use an induction over |α| to prove the hypothesis

∥∥∂αy u(y)
∥∥
Hκ+1(D)

≤ |α|!µα
κ c
|α|+1

for |α| > 0.
Let the assertions hold for all α, which satisfy |α| ≤ n− 1 for some n ≥ 1. Then, we know for

all α with |α| = n that
∥∥∂αy u(y)

∥∥
Hκ+1(D)

≤ c

2

∑

β<α

(
α

β

)
|α− β|!µα−β

κ

∥∥∂βy u(y)
∥∥
Hκ+1(D)

≤ c

2
µα
κ

∑

β<α

(
α

β

)
|α− β|!|β|!c|β|+1

=
c

2
µα
κ

n−1∑

j=0

∑

β<α
|β|=j

(
α

β

)
|α− β|!|β|!c|β|+1.

Making use of the combinatorial identity (14) yields

∥∥∂αy u(y)
∥∥
Hκ+1(D)

≤ c

2
µα
κ

n−1∑

j=0

(|α|
j

)
(|α| − j)!j!cj+1 =

c

2
|α|!µα

κ c
n−1∑

j=0

cj

≤ c

2(c− 1)
|α|!µα

κ c
|α|+1.

Now, since c ≥ 2, we have c ≤ 2(c− 1) and hence also
∥∥∂αy u(y)

∥∥
Hκ+1(D)

≤ |α|!µα
κ c
|α|+1.

This completes the proof. �

3.4. Numerical quadrature in the parameter. Coming from the solution u ∈ L∞Py
(�;H1

0 (D))

of (7), we now wish to know the moments of u. In this section, we will therefore consider the
approximation of the mean of u. We also require that κ ≥ 1.

The mean of u is given by the Bochner integral

E[u](x) =

∫

�
u(x,y) dy.

Therefore, we may proceed to approximate it by considering a generic quadrature method QN ;
that is

(15) E[u](x) ≈ QN [u](x) :=

N∑

i=1

ω
(N)
i u

(
x, ξ

(N)
i

)
,

where {(
ω
(N)
i , ξ

(N)
i

)}N
i=1
⊂ R× [0, 1]M

are the weight and evaluation point pairs. We assume that the quadrature chosen fulfils

(16)
∥∥E[u]−QN [u]

∥∥
H1(D)

≤ CN−r

for some constants C > 0 and r > 0.
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We will employ the quasi-Monte Carlo quadrature based on the Halton sequence, i.e. ω(N)
i =

1/N and ξ(N)
i = 2χi − 1, where χi denotes the i-th M -dimensional Halton point, cf. [15]. Then,

we know that, given that there exists an ε > 0 such that γκ,k ≤ ck−3−ε holds for some c > 0, for
every δ > 0 there exists a constant C = C(δ) > 0 such that (16) holds for r = 1− δ, see e.g. [19]
which is a consequence of [32]. Clearly, other, possibly more sophisticated, quadrature methods
may also be considered, for example, other quasi-Monte Carlo quadratures, such as those based on
the Sobol sequence or other low-discrepancy sequences as well as their higher-order adaptations,
and anisotropic sparse grid quadratures, see e.g. [9, 14, 27, 30].

To approximate the mean of u as in (15), we require the values u(x,y) for y = ξi. These
values can be approximated by ul(x,y), where ul is the Galerkin approximation of the spatially
weak formulation on a finite dimensional subspace Vl of H1

0 (D); that is, ul is the solution of




Find ul ∈ L∞Py
(�;Vl) such that

(
A(y)∇x ul(y),∇x v

)
L2(D;Rd) =

(
f, v
)
L2(D;Rd)

for almost every y ∈ � and all v ∈ Vl.
We assume that a sequence of Vl can be chosen for l ∈ N such that there is a constant K with

(17)
∥∥u− ul

∥∥
L∞Py (�;H1(D))

≤ K2−κl.

For example, we can consider Vl to be the spaces of continuous finite elements of order κ coming
from a sequence of quasi-uniform meshes Tl using isoparametric elements, where the mesh size
behaves like 2−l. Then, it is known from finite element theory that we have (17) with K ∼
‖u‖L∞Py (�;Hκ+1(D)), see e.g. [4, 5].

The combination of the error estimates (16) and (17) then leads to
∥∥E[u]−QN [ul]

∥∥
H1(D)

≤
∥∥E[u]−QN [u]

∥∥
H1(D)

+
∥∥QN [u]−QN [ul]

∥∥
H1(D)

≤
∥∥E[u]−QN [u]

∥∥
H1(D)

+
∥∥QN [u− ul]

∥∥
H1(D)

≤ CN−r +K2−κl.

Thus, choosing Nl :=
⌈
2κl/r

⌉
finally yields
∥∥E[u]−QNl [ul]

∥∥
H1(D)

≤ (C +K)2−κl.

In contrast, the mixed regularity, shown before in Theorem 3.15, allows us to consider a multilevel
adaptation, which may be given as

E[u] ≈ QML
l [u0, . . . , ul] :=

l∑

k=0

∆Qk[ul−k]

where
∆Q0 := QN0

and ∆Qk := QNk −QNk−1
.

Indeed, this is the sparse grid combination technique as introduced in [12], see also [11, 17]. It
thus follows that ∥∥E[u]−QML

l [u0, . . . , ul]
∥∥
H1(D)

. l2−κl.
For complexity considerations, we shall consider a quadrature that is nested, i.e. we may set

ξi = ξ
(N)
i as it does not depend on N . Then, we note that QML

l [u0, . . . , ul] may explicitly be
stated as

QML
l [u0, . . . , ul](x) =

N0∑

i=1

ω
(N0)
i ul(x, ξi)
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+
l∑

k=1

(
Nk−1∑

i=1

(
ω
(Nk)
i − ω(Nk−1)

i

)
ul−k(x, ξi) +

Nk∑

i=Nk−1+1

ω
(Nk)
i ul−k(x, ξi)

)
.

Computing QNl [ul] requires thus the values ul,i(x) := u(x, ξi), which can be derived by solving
{
Find ul,i ∈ Vl such that
(
A(ξi)∇x ul,i,∇x v

)
L2(D;Rd) =

(
f, v
)
L2(D;Rd) for all v ∈ Vl.

Generally, when considering a sequence of finite element spaces Vl as described above, the number
of degrees of freedom behaves like O

(
2ld
)
and computing one ul,i using state of the art methods

will have a complexity that is O
(
2ld
)
. As this has to be done Nl times for the calculation of

QNl [ul], a complexity scaling is obtained that is O
(
2l(κ/r+d)

)
. Therefore, for the computation of

the multilevel quadrature QML
l [u0, . . . , ul], we arrive at an over-all complexity of

l∑

k=0

Nk∑

i=1

O
(
2(l−k)d

)
=

l∑

k=0

O
(
2kκ/r2(l−k)d

)
=





O
(
2lκ/r

)
for d < κ/r,

O
(
l2lmax{κ/r,d}) for d = κ/r,

O
(
2ld
)

for d > κ/r.

We mention that also non-nested quadrature formulae can be used but lead to a somewhat larger
constant in the complexity estimate, see [11] for the details.

Remark 3.16. If we redefine the Nl as Nl :=
⌈
l(1+ε)/r2κl/r

⌉
for an ε > 0, then we have

∥∥E[u]−QNl [u]
∥∥
H1(D)

≤ C
(
l(1+ε)/r2κl/r

)−r
= Cl−(1+ε)2−κl

and, as proposed in [2], we arrive at
∥∥E[u]−QML

l [u0, . . . , ul]
∥∥
H1(D)

. 2−κl.

So, the logarithmic factor, which shows up in the convergence rate, can be removed by increasing
the quadrature accuracy slightly faster. Note that this modification increases the hidden constant
with a dependance on ε.

Remark 3.17. In the particular situation of a standard quasi-Monte Carlo method, we can
consider δ′ such that δ > δ′ > 0. Then, the quadrature error satisfies the estimate

∥∥E[u]−QNl [u]
∥∥
H1(D)

≤ Cδ′Nδ′−1
l = Cδ′2

−κl2−κl(δ−δ
′)/(1−δ).

With a similar argument as in [2], it follows that
∥∥E[u]−QML

l [u0, . . . , ul]
∥∥
H1(D)

. 2−κl.

That is, the logarithmic factor, which shows up in the convergence rate, is removed at the cost
of replacing the constant Cδ with Cδ′ and adds a constant with a dependance on δ′ yielding an
increased hidden constant.

While we have exclusively considered the case of the mean of the solution u here, we do note
that analogous statements may also be shown for example for the higher-order moments, see [17]
for instance.
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4. Numerical Results

We will now consider two examples of the model problem (1) with a diffusion coefficient of
form (3) using the unit cube D := (0, 1)3 as the domain of computations. Therefore, in view of
H2-regularity of the spatial problem under consideration, we are only considering the situation
with κ = 1. In both examples, we set the global strength a to a := 0.12 and choose the right
hand side f ≡ 1. For convenience, we define

sj(x,x
′) := 16 · xj(1− xj) · x′j(1− x′j).

Example 1. In this first example, we choose the description of V to be defined by

E[V](x) :=
[
1 0 0

]T

and

Cov[V](x,x′) :=
1

100
exp

(
−
∥∥x− x′

∥∥2
2

50

)


1 0 0
0 9s2(x,x′) 0
0 0 9s3(x,x′)


 .

We note that for j ∈ {2, 3} the covariance in the normal direction on the parts of the boundary
with xj ∈ {0, 1} is suppressed.

Example 2. For this second example we choose the description of V to be defined by

E[V](x) :=




cos
(
(x3 − 0.5)π3

)

sin
(
(x3 − 0.5)π3

)

0




and

Cov[V](x,x′) :=
9

100
exp

(
−
∥∥x− x′

∥∥2
2

50

)

s1(x,x′) 0 0

0 s2(x,x′) 0
0 0 s3(x,x′)


 .

Here, the covariance in the normal direction on all of the boundary is suppressed.

The numerical implementation is performed with aid of the problem-solving environment
DOLFIN [26], which is a part of the FEniCS Project [26]. The Karhunen-Loève expansion of
the vector field V is computed by the pivoted Cholesky decomposition, see [16, 18] for the
details. For the finite element discretisation, we employ the sequence of nested triangulations
Tl, yielded by successive uniform refinement, i.e. cutting each tetrahedron into 8 tetrahedra.
The base triangulation T0 consists of 6 · 23 = 48 tetrahedra. Then, we use interpolation with
continuous element-wise linear functions and the truncated pivoted Cholesky decomposition for
the Karhunen-Loève expansion approximation and continuous element-wise linear functions in
space. The truncation criterion for the pivoted Cholesky decomposition is that the relative trace
error is smaller than 10−4 · 4−l.

Since the exact solutions of the examples are unknown, the errors will have to be estimated.
Therefore, in this section, we will estimate the errors for the levels 0 to 5 by substituting the
exact solution with the approximate solution computed on the level 6 triangulation T6 using the
quasi-Monte Carlo quadrature based on Halton points with 104 samples.

For every level, we also define the number of samples used by the quasi-Monte Carlo method
based on Halton points (QMC); we choose

Nl :=
⌈
2l/(1−δ) · 10

⌉

with δ := 0.2; see Table 1 for the resulting values of Nl. This then also implies the amount of
samples used on the different levels when using the multilevel quasi-Monte Carlo method based



ML METHODS FOR UQ OF ELLIPTIC PDES WITH RANDOM ANISOTROPIC DIFFUSION 19

l 0 1 2 3 4 5

Nl 10 24 57 135 320 762

M1 17 26 30 36 44 52
M2 14 26 30 36 43 52

Table 1. The number of samples for the first six levels and the respective
parameter dimensions.

on Halton points (MLQMC). Based on these choices, we expect to see an asymptotic rate of
convergence of 2−l in the H1-norm for the mean and in the W 1,1-norm for the variance.

Figures 1 and 2 show the estimated errors of the solution’s first moment on the left hand side
and of the solution’s second moment on the right hand side, each versus the discretisation level
for the QMC and MLQMC quadrature for the two different examples. As expected, the QMC
quadrature methods achieves the predicted rate of convergence in both examples, and this rate
of convergence also carries over to its multilevel adaptation (MLQMC).
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Figure 1. Example 1. H1-error in the 1st moment (left) and W 1,1-error in the
2nd moment (right).
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Figure 2. Example 2. H1-error in the 1st moment (left) and W 1,1-error in the
2nd moment (right).
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5. Conclusion

In this article, we have considered the second order diffusion problem

for almost every ω ∈ Ω:

{
−divx

(
A(ω)∇x u(ω)

)
= f in D,

u(ω) = 0 on ∂D,

with the uncertain diffusion coefficent given by

A(ω) := aI +
(∥∥V(ω)

∥∥
2
− a
)V(ω)VT(ω)

VT(ω)V(ω)
.

This models anisotropic diffusion, where the diffusion strength in the direction given by V/‖V‖
is ‖V‖ and perpendicular to it is a, which can be used to model both diffusion in media that
consist of thin fibres or thin sheets.

After having restated the problem in a parametric form by considering the Karhunen-Loève
expansion of the random vector field V, we have shown that, given regularity of the elliptic
diffusion problem, the decay of the Karhunen-Loève expansion of V entirely determines the
regularity of the solution’s dependence on the random parameter, also when considering this
higher regularity in the spatial domain.

We then leverage this result to reduce the complexity of the approximation of the solution’s
mean, by using the multilevel quasi-Monte Carlo method instead of the quasi-Monte Carlo
method, while still retaining the same error rate. Indeed, while the QMC method yields a scheme,
where the uncertainty added increases the complexity, this is not the case, when considering two
or more spatial dimensions and the MLQMC method. That is, given elliptic regularity and up
to a constant in the complexity, adding uncertainty comes for free. The numerical experiments
corroborate these theoretical findings.

While we considered the use of QMC and its multilevel adaptation, one can clearly also
consider other quadrature methods, such as the anisotropic sparse grid quadrature, and then
reduce the complexity by passing to their multilevel adaptations. Likewise, multilevel collocation
is also applicable.
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