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Abstract. We consider a semi-Lagrangian approach for the computation of the value function
of a Hamilton-Jacobi-Bellman equation. This problem arises when one solves optimal feedback

control problems for evaluationary partial differential equations. A time discretization with

Runge-Kutta methods leads in general to a complexity of the optimization problem for the
control which is exponential in the number of stages of the time scheme. Motivated by this, we

introduce a time discretization based on Runge-Kutta composition methods, which achieves
higher order approximation with respect to time, but where the overall optimization costs

increase only linearly with respect to the number of stages of the employed Runge-Kutta

method. In numerical tests we can empirically confirm an approximately linear complexity
with respect to the number of stages. The presented algorithm is in particular of interest for

those optimal control problems which do involve a costly minimization over the control set.

1. Introduction

In this work we consider the numerical solution of deterministic optimal control problems,
with a focus on the discretization in time. In particular, we are interested in the numerical
approximation of the value function stemming from the Dynamic Programming Principle, which
connects to the characterization of the solution in terms of the Hamilton-Jacobi-Bellman (HJB)
equation, which describes the closed-loop (or feedback) optimal control of evolutionary partial
differential equations (PDEs).

We consider for example finite time horizon problems, for some T <∞, such as

v(x)
def
= inf

α∈A
Jx(α) = inf

α∈A

∫ T

0

g(yx(s, α), α(s)) e−λs ds,(1)

with a function g as the running cost and λ > 0 the so-called discount factor. Here, Jx(α) is the
cost functional and v the value function, which one can interpret as the optimal cost for a system
trajectory starting from position x. The goal of an optimal control problem is to determine a
control policy α? which minimizes the cost functional (1).

The underlying to be controlled dynamical system is given by

(2)

{
ẏ(s) = f(s, y(s), α(s))

y(t0) = x0,

with x0, y(s) ∈ Rd, and

α : [t0, T ]→ A ⊆ Rm, T ∈ R ∪ {+∞}, t0 < T.
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Given the set of admissible controls

α ∈ A def
= {α : [t0, T ]→ A, measurable}

we will consider the solution of the ODE (2) for a fixed α. In the following we call the set of all
possible values of trajectories of (2) the state space. Note that the existence of the solution of
the initial value problem (2) for a measurable α can be derived from the Carathéodory theorem,
in particular we assume f is continuous and Lipschitz continuous with respect to y.

Now, to derive a numerical scheme for the solution of (1), one has to take several discretization
steps to obtain an approximation of the value function. First is the spatial discretization, where
one has to consider the complete domain in which the state dynamics are observed. Typically,
this means that the computational effort rises exponentially with the dimension of the state
space. One way to address this issue is a spatial discretization based on (adaptive) sparse grids
as e.g. in [BGGK13, GK17].

In addition to the spatial discretization we have to introduce a discretization in time. Note
here, that an important property of (1) is Bellman’s Dynamic Programming Principle (DPP),
which states that assuming the solution to equation (2) exists and is unique, then for all x ∈ Rd
and τ > 0 it holds

v(x) = inf
α∈A

{∫ τ

0

g(yx(s, α), α(s)) e−λs ds+ e−λτ v(yx(τ, α))

}
.(3)

Based on employing the DPP piecewise, one can construct semi-Lagrangian schemes for the op-
timal control problem, as presented in the next section. To achieve that numerically, one has to
consider the discretization of the state dynamics (2), which relates also to the numerical quadra-
ture for the integral in (3). In this work, we are analysing higher order time discretizations for the
state dynamics, in particular Runge-Kutta methods, and corresponding numerical quadrature
approaches.

The determination of the optimal control α for a certain time interval now is the last ingredient
of the numerical algorithm. The needed optimization here interacts with the time discretization.
For simplicity, we consider the computation of the optimal control for a certain time by compar-
ison over a discrete sample of the control set. If we now apply a Runge-Kutta method for the
numerical integration, a representation of the control has to be provided for each stage. For the
simple discretization of the control set with an arbitrary sampling this will lead to exponential
complexity with respect to the number of sampling points when using standard Runge-Kutta
schemes [FF94].

In this work, we introduce an approach which allows to overcome this drawback, i.e. we can
achieve approximately linear complexity with respect to the costs of one minimization prob-
lem, e.g. the number of sampling points, even when using a Runge-Kutta scheme with sev-
eral stages. For the approximation of the value function we use a semi-Lagrangian method
[BGGK13, FF14, GK17]. The presented approach is based on an idea similar to Bellman’s Dy-
namic Programming Principle, but applied to the numerical integration and quadrature parts
within the semi-Lagrangian method. For this purpose we consider a special class of schemes
based on Runge-Kutta composition methods for the time discretization.

Note that in the following we assume an autonomous dynamic in equation (2), i.e. for a
non-autonomous system (2) we then consider the independent variable s as part of an extended
state vector.

Furthermore, in the numerical examples we also consider an infinite horizon problem, i.e. we
have the modified cost functional

Jx(α) =

∫ ∞
0

g(yx(s, α), α(s)) e−λs ds.(4)
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The finiteness of the integral (4) is guaranteed for a bounded g. In the following we will addi-
tionally assume that g is Lipschitz continuous.

The structure of the article is as follows. In Section 2 we describe the approximation of
solutions to first order PDEs with semi-Lagrangian schemes. Section 3 provides an overview for
the interpolation techniques with sparse grids, that will be used later for numerical tests. In
Section 4 we discuss time discretization approaches for the semi-Lagrangian schemes. Section 5
describes the results of numerical tests.

2. Semi-Lagrangian scheme for the Hamilton-Jacobi-Bellman equation

The underlying idea of semi-Lagrangian schemes was first proposed for the advection equation
in [CIR52]. A detailed derivation and survey can be found in [FF14]. This section gives a brief
introduction to the topic.

2.1. Semi-Lagrangian schemes for optimal control problems. The idea of a semi-Lagrangian
scheme is the discretization of the integral representation of the value function (3). The basic
building blocks are the approximation of the ODE (2) for yx

1, the approximation of the inte-
gral for the running costs1, and the spatial reconstruction of the value function at time τ . An
additional numerical approximation has to be provided for the optimization over the control set
A.

In the first step we replace a trajectory of yx(s, α) by a numerical solution of the ODE with
an s-stage Runge-Kutta approach and consider a semi-discrete function, which is defined on the
time grid {t0, . . . , tN}. We will in the following use superscripts to denote the time point of the
discrete approximation, i.e. for the system dynamics we write

yνx = yx(ν, α(ν)), ν ∈ [t0, T ].

Furthermore we use yn+1
x for y

tn+1
x = yx(tn+1, α(tn+1)) and set τn

def
= tn+1− tn for n = 1, . . . , N .

Thus, an approximate solution of equation (2) is given by

(5)

{
yn+1
x = yn + τiΦ̃(yn, an, τi)

def
= Φ(yn, an, τi)

y0
x = x

,

where Φ̃ is the increment function and Φ the one-step map for some Runge-Kutta method. For
a scheme with s stages one has s time points starting from tn, then an denotes a set of control
tuples an =

{
an0 , . . . , a

n
s−1

}
⊂ As. Note that the controls are a part of the numerical solution,

i.e. we compute an element αn of the control set A|[tn,tn+1] (see Section 4) which is piecewise

constant and defined by an.
The other step of the numerical scheme relating to time is the approximation of the integral

in equation (3), for which one can use a quadrature formula with q nodes. Consider an index set
J = {0, . . . , q − 1}. The approximation G∆(x, τ) is given by

G∆(x, τ, an)
def
= τ

∑
i∈J

ωig(yνix , a
n
i ) e−λνi ≈

∫ t+τ

t

g(yx(s, α), α(s)) e−λs ds,(6)

where νi and ωi are the nodes and weights of a quadrature formula, respectively, and

0 ≤ νi ≤ 1, ωi ≥ 0,
∑
i∈J

ωi = 1.

1In the following we will refer to the numerical solution of a ODE as numerical integration, while we will refer
to the numerical approximation of an integral as numerical quadrature.
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Additionally, one needs a numerical approximation of the value function v(x). For this purpose
we consider a, for now unspecified, finite spatial grid composed of some points {x1, . . . , xM} ⊂
Ω ⊂ Rd and discrete function values Vi = v(xi). Furthermore, I[V ](yx(tn+1, α)) denotes a
suitable interpolation of v(yx(tn+1, α)) on Ω. Thus the spatial approximation is given by

I[V ](x, α)
def
= I[V ](yx(tn+1, α)) ≈ v(yx(tn+1, α)).

Together, the semi-Lagrangian scheme can be written as

(7)

v
n
j = min

an

{
G∆(xj , τn, a

n) + I[V n+1](xj , α
n)
}

vNj = u(xj)
.

In equation (7) vnj denotes the approximation of the value function for the time tn at the spatial
coordinate xj . The function u(x) represents the terminating condition for the end time T = tN .

Note that we use a comparison approach for the minimization in A|[tn,tn+1]. This means we

consider a sampling A∆ of the control domain A with R points and compare approximations of
the value function at time point tn for each element of the set

(A∆)
s def

=

{{
an0 , . . . , a

n
s−1

}
: ank ∈ A∆, k = 0, . . . , s− 1

}
.

Furthermore, here and in the following we use the abbreviated notation

min
an

def
= min

an∈(A∆)s
.

Observe that in some situations, assuming the value function is differentiable, the minimiza-
tion can be achieved by using the gradient of the value function. Generally, any minimisation
procedure which uses only evaluations of the objective function, and not its derivatives, could
be performed without changing the main steps of the scheme. In all cases, there is a fixed (or
suitably bounded) cost dc per individual minimization.

2.2. Examples of semi-Lagrangian schemes. Semi-Lagrangian schemes for the Hamilton-
Jacobi-Bellman equation with different orders in time are presented in [FF94]. The simplest case
is the combination of the Euler method for the ODE and rectangular rule for the quadrature.
We get with J = {0}, ν0 = 0 and ω0 = 1

vnj = min
an0

[
τng(xj , a

n
0 ) + I[V n+1](xj + τf(tn, xj , a

n
0 ))
]
.(8)

Note that in this section we use I[V ](xj + τ Φ̃(tn, xj , a
n)) instead of I[V ](xj , α

n) to emphasize
the numerical integration scheme.

A more sophisticated approach is to use the Heun formula for the solution of the ODE and the
trapezoid rule for the quadrature. In this case we have J = {0, 1}, ω0 = ω1 = 1/2 and ν0 = 0,
ν1 = 1. The complete scheme is of the form

vnj = min
an0 ,a

n
1

[
τn

2
g(xj , a

n
0 ) +

τn

2
g(xj + τ Φ̃(tn, xj , a

n
0 , a

n
1 , τ), an1 )

+ I[V n+1](xj + τ Φ̃(tn, xj , a
n
0 , a

n
1 , τ))

]
,(9)

with

Φ̃(tn, xj , a
n
0 , a

n
1 , τ) =

1

2
f(tn, xj , a

n
0 ) +

1

2
f(tn, xj + τf(tn, xj , a

n
0 ), an1 ).
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Another example is the fourth order Runge-Kutta scheme RK4. The parameters are J =
{0, 1, 2, 3}, ω0 = ω2 = 1/6, ω1 = ω3 = 1/3, ν0 = 0, ν1 = ν2 = 1/2, ν3 = 1. The resulting scheme
is

yν0
x = x yν1

x = x+ τ
k0

2

yν2
x = x+ τ

k1

2
yν3
x = x+ τk2

with

k0 = f(tn + ν0τ, x, a
n
0 ) k1 = f(tn + ν1τ, x+ τ

k0

2
, an1 )

k2 = f(tn + ν2τ, x+ τ
k1

2
, an2 ) k3 = f(tn + ν3τ, x+ τk2, a

n
3 )

Φ̃(tn, x, a0, a1, a2, a3, τ) =
1

6
(k0 + 2k1 + 2k2 + k3)

and

vnj = min
an0 ,a

n
1 ,a

n
2 ,a

n
3

[
τn

6

(
g(yν0

xj
, an0 ) + 2g(yν1

xj
, an1 ) + 2g(yν2

xj
, an2 ) + g(yν3

xj
, an3 )

)
+ I[V n+1](xj + τ Φ̃(tn, x, a

n
0 , a

n
1 , a

n
2 , a

n
3 , τ)

]
.(10)

The approach corresponds to the Butcher tableau

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

(11)

As we can see in equations (9) and (10), the main drawback of the higher order schemes is
the increasing complexity of the minimization problem. In fact, for a simple discretization of the
control space with dc samples and minimization through comparison we get O(d2

c) evaluations
of the trajectory for the equation (9). The complexity for the RK4 discretization is O(d4

c) equa-
tion (10). In general for an one-step method with s stages the complexity for the minimization
is O(dsc).

3. Sparse grids

The derivation of semi-Lagrangian schemes in the previous section requires spatial approxi-
mation of the solution at the time points tn in each step. In particular, for the discretization of
Bellman’s DPP equation (3) an interpolation of the value function must be used to obtain the
remaining running costs for a given trajectory.

In general every spatial approximation can be applied to the equation (7), e.g. Lagrangian,
ENO, WENO or FE interpolation, see [FF14]. We use sparse grids for the spatial approximation
of the value function in more than one dimension. A detailed presentation and introduction to
this discretization approach can be found in [BG04, Gar13, Pfl10]. This section recalls the main
ideas, where the representation follows [BGGK13, GK17].
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For simplicity we consider a space domain Ω = [0, 1]
d
, d ∈ N. For a multi-index

l = (l1, . . . , ld) ∈ Nd

consider a mesh Ωl and a set of mesh parameters

hl = (hl1 , . . . , hld) = (2−l1 , . . . , 2−ld)

which represents the spatial resolution in every dimension for a given l. Now, the points of the
mesh Ωl can be denoted by

xl,j = (xl1,j1 , . . . , xld,jd), xlt,jt = jt · hlt , t = 1, . . . , d.

l is also referred to as level and defines the resolution of the discretization, j defines the position
of the point xl,j .

In the following we consider two different sets of basis functions defined on the mesh Ωl. The
first one is constructed with linear hat functions

ϕ(x) = max(1− |x|, 0).

For a level l and an index j we define

ϕl,j(x)
def
= ϕ(2lx− j),(12)

and d-dimensional piecewise d-linear hat functions

ϕl,j(x)
def
=

d∏
t=1

ϕlt,jt(xt),(13)

where x = (x1, x2, . . . , xd) ∈ Ω.
The space of all d-dimensional piecewise d-linear basis functions is

Vl
def
= span

{
ϕl,j | jt = 0, . . . , 2lt , t = 1, . . . , d

}
.

For Vl, we define hierarchical difference spaces Wl and write Vl as their discrete sum

Wl
def
= Vl\

d⊕
t=1

Vl−et , Vl =
⊕
k≤l

Wk,(14)

with et the t-th unit vector.

For n = (n, . . . , n) ∈ Nd, every f ∈ Vn can be represented as

f(x) =
∑
‖l‖∞≤n

∑
j∈Bl

αl,jϕl,j(x)(15)

where

Bl
def
=

{
j ∈ Nd

∣∣∣∣ jt = 0, . . . , 2lt − 1, jt odd, t = 1, . . . , d, if lt > 1
jt = 0, 1, 2, t = 1, . . . , d, if lt = 1

}
.

The idea of a sparse grid is to take out those basis function ϕl,j which only have a small

contribution to the representation of the interpolated function f [BG04, Gar13]. To measure
this, we introduce the so-called Sobolev-space with dominating mixed derivative H2

mix norm and
the corresponding semi-norm:

‖f‖2H2
mix(Ω) =

∑
0≤k≤2

∣∣∣∣∣ ∂|k|1f

∂xk1
1 · · · ∂x

kd
d

∣∣∣∣∣
2

2

and |f |H2
mix(Ω) =

∣∣∣∣∣ ∂2df

∂x2
1 · · · ∂x2

d

∣∣∣∣∣
2

.
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ϕ1,0 ϕ1,2ϕ1,1

ϕ2,1 ϕ2,3

ϕ3,1 ϕ3,3 ϕ3,5 ϕ3,7

(a) normal basis

ϕ̃1,1

ϕ̃2,1 ϕ̃2,3

ϕ̃3,1 ϕ3,3 ϕ3,5 ϕ̃3,7

(b) fold-out basis

ϕ2,3

x2,3 1

ϕ̃2,3

x2,3 1

ϕ̃2,3

x2,3 1

(c) last basis before the boundary is folded up and extrapolated linearly

Figure 1. Normal and fold out basis functions.

The function space

H2
mix(Ω) =

{
f ∈ H | ‖f‖H2

mix(Ω) ≤ C for C > 0
}

has the property, that for f ∈ H2
mix(Ω) it holds

‖fl‖2 ≤ C(d) · 2−2‖l‖1 |f |H2
mix(Ω),(16)

with constant C(d) > 0, which depends on the dimension d, and

fl
def
=
∑
j∈Bl

αl,jϕl,j(x) ∈Wl.

The estimation (16) motivates the replacement of ‖l‖∞ ≤ n in equation (15) by

‖l‖1 ≤ n+ d− 1.(17)

The resulting sparse grid space

V sn
def
=
⊕

‖k‖1≤n+d−1

Wk(18)

has the dimension dimV sn = O(2n · nd−1) in comparison to dimVn = O(2nd) for regular full
grids. This fact leads to a significant reduction of the computational complexity. Note also, that
the error estimate for a function f ∈ H2

mix(Ω) is

‖f − fsn‖2 = O(h2
n · log(h−1

n )d−1)

compared to a full grid, which has for f ∈ H2, the classical Sobolev space,

‖f − fn‖2 = O(h2
n).

For increasing level and dimension, the rule in equation (17) leads to a high number of points
on the boundary of the domain in comparison to the inner area [Pfl10]. Here, an alternative is
to use the so-called fold out ansatz function [Pfl10]. In this case, a sparse grid consists only of
inner nodes and the reconstruction is extrapolated to and over the boundary, cf. Figure 1(c).
An example of a sparse grid with fold out basis functions is given in Figure 2.
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−1 1

−1

1

Figure 2. Sparse grid for level 6 on the domain [−1, 1]2 with fold out ansatz functions.

The second considered basis on Ωl is constructed with B-splines. We provide a brief introduc-
tion to B-splines on sparse grids, following [Pfl10, VP16]. The definition of a cardinal B-spline,
i.e. a B-spline with constant separation between nodes, is

b0(x)
def
= χ[0,1)(x), bp(x)

def
=

∫ 1

0

bp−1(x− y) dy.

For level l ∈ N and an index j ∈ Il
def
=
{

1, 3, 5, . . . , 2l − 1
}

we consider hierarchical B-splines
ϕpl,i : [0, 1]→ R of the form

ϕpl,j(x)
def
= bp

(
x

hl
+
p+ 1

2
− j
)

with hl = 2−l. For p = 1 the ϕpl,j(x) is a piecewise linear basis function as in (12). The support

of ϕpl,j(x) is given by

supp(ϕpl,i(x)) = [0, 1] ∩ [hl (j − (p+ 1)/2) , hl (j + (p+ 1)/2)]

and is larger than in the case of hat functions. This property leads in general to a larger
computational effort for the sparse grids based on B-splines. However, this drawback is equalized
by a higher approximation order of the B-splines with respect to the mesh size.

The d-dimensional hierarchical B-splines can be constructed analog to (13) with a tensor
product approach. Similarly, the corresponding hierarchical B-spline subspaces are defined and
(14) holds in this case as well. Therefore, one can use (18) to define a sparse grid space using
the hierarchical B-spline spaces. See [VP16] for details, where additionally a B-spline basis with
a modified behavior on the boundary is defined, which corresponds to the linear approach with
fold out ansatz functions.
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4. Semi-Lagrangian schemes with higher order time discretization

In this section we introduce a semi-Lagrangian scheme with higher order time discretization,
which has only linear scaling with respect to the numerical costs for the optimization over the
control set, a significant improvement in comparison to the approach outlined in Section 2.2. The
main idea is to separate the optimization problem for each stage of the Runge-Kutta scheme.
This approach is analog to the Dynamic Programming Principle (3).

An important aspect in the representation of the value function in equation (3) is the sep-
aration of the optimization problem in two parts. For a given initial state x we consider the
contribution of the running costs up to the time τ and the remaining cost-to-go as the value
function evaluated at yx(τ, α(τ)), i.e. v(yx(τ, α(τ))).

The separation of the optimization problem is possible due to a rather general assumption on
control, see Section 1 and [FF14]. Since we require the control to be a measurable function of
time, it is possible to compose two different controls at some arbitrary time point t?. E.g. we
can consider α1, α2 : [0, 2t?]→ R and define α3 [0, 2t?]→ R to

α3(t) =

{
α1(t), 0 ≤ t < t?,
α2(t), t? ≤ t ≤ 2t?.

(19)

The property (19) has very strong consequences for the complexity of the minimization over
the control set A. Let us consider a finite time optimal control problem for a given initial state
x

min
α∈A

Jx(α)(20)

with a cost functional 2

Jx(α) =

∫ T

0

g(y(s), α(s)) ds(21)

and the corresponding value function as in (1). We define a restriction of (21) on some time
interval [ti, tj ] with 0 ≤ ti < tj ≤ T

Jx|[ti,tj ] (α)
def
=

∫ tj

ti

g(y(s), α(s)) ds.(22)

The corresponding optimal control problem for Jx|[ti,tj ] is

min
α∈A

Jx|[ti,tj ] (α)(23)

and we define (23) to be a subproblem of (20).
The set of minimizing control functions Ax|[ti,tj ] corresponding to Jx|[ti,tj ] is

Ax|[ti,tj ]
def
= arg max

α∈A
Jx|[ti,tj ] (α)

=
{
α? ∈ A | ∀α ∈ A : Jx|[ti,tj ] (α?) ≤ Jx|[ti,tj ] (α)

}
.

Obviously, Ax|[0,T ] is the set of solutions to the original optimal control problem (20) on [0, T ]

and, due to the property (19), we have

Ax|[0,T ] ⊂ Ax|[ti,tj ](24)

2To simplify the presentation we omit the term e−λs in this section.
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for all 0 ≤ ti ≤ tj < T . Furthermore for the time intervals of the form [ti, T ] with ti < T we can
conclude

Ax|[0,T ] ⊂ Ax|[t1,T ] ⊂ Ax|[t2,T ] ⊂ . . . ⊂ Ax|[tN−1,T ](25)

for an increasing sequence 0 = t0 < t1 < t2 < . . . < tN−1 < tN = T .
From the expression (25) we can derive two important properties in terms of the algorithmic

complexity. The first one is called optimal substructure. A problem is said to have an optimal
substructure if the optimal solution to the problem is contained within optimal solutions to its
subproblems. In the case of the optimal control problem (20) we consider as subproblems the
finding of the set of minimizing control functions on each of the time intervals [ti, T ]. From (25)
we obtain

α? ∈ Ax|[ti,T ] ⇒ α? ∈ Ax|[tj ,T ]

for all 0 ≤ ti < tj < T , which shows, that the minimization of the control over A exhibits the
optimal substructure.

The second property is the overlapping of subproblems, which means, that we can reuse the
subproblems multiple times for the solution of the original problem. E.g. a set Ax|[tj ,T ] can be

used for the computation of all sets Ax|[ti,T ] with 0 ≤ ti < tj < T . For this purpose we can

restrict the minimization of the cost functional Jx|[ti,T ] to the set Ax|[tj ,T ] to obtain Ax|[ti,T ],

i.e.

min
α∈A

Jx|[ti,T ] (α) = min
α∈Ax|[tj ,T ]

Jx|[ti,T ] (α).

Both properties — optimal substructure and overlapping subproblems — allow for an efficient
minimization of the control. Due to the optimal substructure we can divide the original problem
into less complex subproblems, i.e. we consider minimization over a smaller set of controls for
each time interval [ti, T ]. The overlapping property, on the other hand, guarantees, that we have
to solve each subproblem exactly once. Problems of this kind can be computed efficiently by the
Dynamic Programming approach, see [CLRS09].

4.1. Composition methods. If we denote the semi-Lagrangian scheme (7) for the computation
of the value function from Section 2 with a step size of τ by Sτ and use the Dynamic Programming
property, it is possible to rewrite equation (7) as

v0(x) = Sτ1(Sτ2(. . . (SτN (x)) . . .)) = Sτ1 ◦ Sτ2 ◦ . . . ◦ SτN (x),(26)

where {t0, t1, . . . , tN} is a partition of [0, T ] with 0 = t0 < t1 < t2 < . . . < tN = T and
τi = ti+1 − ti for i = 1, . . . , N are the corresponding step sizes. For the sake of simplicity we
assume the terminating condition u(x) ≡ 0 in (26). In this expression each term of the form

Sτi ◦ Sτi+1 ◦ . . . ◦ SτN(27)

can be considered a solution of the subproblem (23) on the time interval [ti, T ], whereby we
associate the restricted value function

v|[ti,T ] (x)
def
= min

α∈A
Jx|[ti,T ] (α)(28)

with the set of minimizers Ax|[ti,T ].

We obtain expression (26) because, on the one hand, we can restrict the set of optimal controls
after each time step τi without loosing the optimal solution for the complete time interval [0, T ],
which is an expression of the optimal substructure of (25). On the other hand, we reuse the
solution of the subproblems due to the overlapping in (25). Therefore we can express the semi-
Lagrangian scheme for τi as a function of the semi-Lagrangian scheme for the time step τj with
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i < j. Altogether we can write the value function for t = 0 as a composition of semi-Lagrangian
schemes applied to each time interval τi.

The reduction of complexity due to the Dynamic Programming Principle is a clear advantage.
The idea we present in this section is to mimic the Dynamic Programming property within a
single step of a semi-Lagrangian scheme (7). As described in Section 2, in general the time
discretization leads to an exponential complexity of the minimization problem. To overcome this
drawback, we now consider Runge-Kutta methods with a structure similar to (26) and explain
in the following how these methods can be used to construct a semi-Lagrangian scheme of higher
order in time with linear scaling with respect to the numerical costs of the control minimization
problem. The construction is based on the following theorem from [HLW06]

Theorem 4.1. Let Φτ be a one-step method of order p (i.e. the local error for Φτ is of order
O(τp+1)) with step size τ and

Ψτ = Φγsτ ◦ . . . ◦ Φγ2τ ◦ Φγ1τ

If γ1, . . . , γs fulfil

γ1 + . . .+ γs = 1

γp+1
1 + . . .+ γp+1

s = 0(29)

then the composition method Ψτ is at least of order p+ 1.

With Theorem 4.1, the construction of higher order Runge-Kutta methods can be achieved by
solving (29). However, the system (29) has only solutions for even p. Therefore in this work we
consider methods derived from Theorem 4.1 by using the Implicit Midpoint Rule (with p = 2) as
Φτ . These methods are called Diagonally Implicit Symplectic Runge-Kutta (DISRK) methods.
Different schemes of this kind are given in [HLW06] and references therein. We recall that the
Implicit Midpoint Rule has the following Butcher’s tableau

1
2

1
2

1
.(30)

The simplest DISRK scheme, which is obtained through composition, has order 4 and is of the
form

γ1 = γ3 =
1

2− 21/(p+1)
, γ2 = −

2

2− 21/(p+1)
(31)

with corresponding Butcher’s tableau

1

2
a

1

2
a

1

2
a

1

2
− a

1−
1

2
a a 1− 2a

1

2
a

a 1− 2a a

(32)

where a =
1

2− 21/(p+1)

(p=2)
= 1.35120719195966, see [FQ10].

In the following, we refer to this method as DISRK3. Note that it is not necessary to calculate
the Butcher’s tableau of the composition DISRK explicitly. The construction of the scheme
allows to apply the implicit midpoint methods Φγiτ with time steps γiτ given by equation (29)
in a loop. Thus, the method in tableau (32) is equivalent to

ΦDISRK3
τ = ΦMγ3τ ◦ ΦMγ2τ ◦ ΦMγ1τ
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with γi from (31) and ΦMτ denotes the Implicit Midpoint Rule with step size τ .
As we are not restricted in the number of the composition steps, other solutions for an order

4 method are possible. E.g. we can set

γ1 = γ2 = γ4 = γ5 =
1

4− 41/(p+1)
, γ3 = − 41/(p+1)

4− 41/(p+1)
(33)

The associated method will be denoted by DISRK5.
Other examples for solutions to equation (29) are

(34)

γ1 = γ7 = 0.78451361047755726381949763

γ2 = γ6 = 0.23557321335935813368479318

γ3 = γ5 = −1.17767998417887100694641568

γ4 = 1.31518632068391121888424973,

and

(35)

γ1 = γ9 = 0.39216144400731413927925056

γ2 = γ8 = 0.33259913678925943859974864

γ3 = γ7 = −0.70624617255763935980996482

γ4 = γ6 = 0.08221359629355080023149045

γ5 = 0.79854399093482996339895035.

The methods are both of order 6. However, the method (35) is constructed by increasing the
minimal number of stages and minimizing maxi |γi|. This derivation yields smaller error coeffi-
cients, see [HLW06] and results of numerical experiments in Section 5. In the following, we refer
to DISRK7 for (34) and DISRK9 for (35).

The following method is of order 8 and will be denoted by DISRK17.

(36)

γ1 = γ17 = 0.13020248308889008087881763

γ2 = γ16 = 0.56116298177510838456196441

γ3 = γ15 = −0.38947496264484728640807860

γ4 = γ14 = 0.15884190655515560089621075

γ5 = γ13 = −0.39590389413323757733623154

γ6 = γ12 = 0.18453964097831570709183254

γ7 = γ11 = 0.25837438768632204729397911

γ8 = γ10 = 0.29501172360931029887096624

γ9 = −0.60550853383003451169892108.

Other methods with different properties are presented in [HLW06]. Essentially, the con-
struction of a method with a composition according to Theorem 4.1 provides a solution to the
non-linear Runge-Kutta order equations. However, multiple solutions can exist for the non-linear
equation system.

4.2. Semi-Lagrangian schemes with Implicit Midpoint Rule. To overcome the, in the
number of stages, exponential complexity for the optimization of the control for semi-Lagrangian
schemes based on standard Runge-Kutta methods, we are seeking to utilize the Dynamic Pro-
gramming Principle to obtain a representation of a semi-Lagrangian scheme which is analog to
(26). An important ingredient to achieve such a representation is the time discretization with
DISRK methods.

In particular, we now derive a semi-Lagrangian scheme based on the Implicit Midpoint Rule.
Subsequently, we will use this scheme analog to the Implicit Midpoint Rule in the derivation
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of the DISRK methods as an elementary building block and apply Theorem 4.1 to construct
schemes of higher order in time.

Note that Theorem 4.1 can directly be used with the Implicit Midpoint Rule. However, the
time discretization in a semi-Lagrangian scheme consists of two parts — numerical integration
and quadrature. Furthermore, the goal of the semi-Lagrangian scheme is to approximate the
value function (1), not the state of the controlled system (2). This means, that to use Theo-
rem 4.1, we have to analyse the discretization error for the value function in (7) with respect to
time. For that we will consider the approximation of the running costs∫ τ

0

g(yx(s), α(s)) ds

as well as of the costs-to-go v(yx(τ)). In the following we present an approach to compute both
quantities with a global approximation order of p = 2.

To ease the presentation we will combine the numerical integration and quadrature, i.e. let
us consider the state vector Yx(t) ∈ Rd+1 in the form

Yx(t) =

(
Yx,1(t)
Yx,2(t)

)
def
=

(
yx(t)
ηx(t)

)
=

(
yx(t)∫ τ

0
g(yx(t)) dt

)
,

with the corresponding differential equation

Ẏx(t) = F (t, Y )
def
=

(
f(yx(t), α(t))
g(yx(t))

)
.(37)

The Implicit Midpoint Rule with step size τ now yields, denoting Yx
def
= Yx(0),

Yx(τ) ≈ Y τx = Yx + τK,(38)

with implicitly defined K ∈ Rd+1

K = F ((τ/2), Yx + (τ/2)K) .

From equation (37) we can derive for ky ∈ Rd and kη ∈ R

K =

(
ky
kη

)
=

(
f(yx(0) + (τ/2)ky, α((τ/2)))

g(yx(τ/2), α(τ/2))

)
.

The last equality is due to g being independent of η. Thus we get

ky = f(yx(0) + (τ/2)ky, α(τ/2)) =
yτx − yx(0)

τ
=
yτx − x
τ

,

kη = g(yx(τ/2), α(τ/2)),

where ky is the solution of the first stage equation for the Implicit Midpoint Rule applied to the
state dynamic (2) and yτx is the approximation to the solution yx(τ) by the Implicit Midpoint
Rule.

As our goal is to estimate the error of the approximation of the value function within one
semi-Lagrangian step with respect to time and apply Theorem 4.1, we also have to consider the
discretization error for the running costs.

It is clear, that by the approach (38) we can compute the state of the controlled system, i.e.
Yx,1, with error order p = 2. However, for the computation of the running costs Yx,2 we need
an evaluation of g(yx(τ/2), α(τ/2)) and thus an approximation of yx(τ/2). We use ky from the
calculation of Yx,1 for a linear approximation of yx(τ/2):

yx(τ/2) ≈ x+ (τ/2)ky =
x+ yτx

2
.(39)



14 JOCHEN GARCKE AND ILJA KALMYKOV

Note that this can also be interpreted as the Implicit Euler Rule applied to approximate the
value of yx at τ/2, i.e. the implicitly defined stages

ky = f(yx(0) + (τ/2)ky, α(τ/2))

have the same value for the Implicit Midpoint Rule with step size τ and the Implicit Euler Rule
with step size τ/2.

As stated in Section 2 we consider a piecewise constant control α ∈ A. From the viewpoint of
time discretization, we consider an exact evaluation of the control function α(s) at the time point
s = τ/2. By this interpretation, we will not obtain any additional error with respect to α(s)
due to the time discretization with the Implicit Midpoint Rule (38). However, we will achieve in
general only a suboptimal solution in the minimization problem over the control set A.

The approach (39) for the calculation of yx(τ/2) leads to a linear approximation for g(yx(τ/2),
α(τ/2)) if we assume ∂g(x, y)/∂x to be bounded by some constant Cg on the computational
domain Ω, respectively g(x, y) to be Lipschitz continuous with respect to the first argument as
stated in Section 1. To estimate the error we can develop g(x + (τ/2)ky, α(τ/2)) into a Taylor
series around yx(τ/2) and use, with ξ ∈ [yx(τ/2), x + (τ/2)ky], the mean-value form of the
remainder:

g(yx(τ/2), α(τ/2))− g(x+ (τ/2)ky, α(τ/2))

= g(yx(τ/2), α(τ/2))− g(yx(τ/2), α(τ/2))

− ∂g(ξ, α(τ/2))/∂x︸ ︷︷ ︸
≤Cg

(x+ (τ/2)ky − yx(τ/2))︸ ︷︷ ︸
O(τ2)

(40)

The O(τ2) estimate is due to the linear approximation (39). If we plug g(x + (τ/2)ky, α(τ/2))
into equation (38) instead of kη, we get a local error of O(τ3) in the approximation of ηx(τ) due
to the multiplication of K with τ .

To simplify the presentation of the algorithm for a semi-Lagrangian scheme based on the
DISRK methods in the following, we denote the approach for the calculation of Yx(τ) with the

linear approximation (39) as Φ
M

τ and the approximated state Yx(τ) as Y
τ

x, i.e. Y
τ

x
def
= Yx + τ

(
f(x+ (τ/2)ky, α(τ/2))
g(x+ (τ/2)ky, α(τ/2))

)
= Φ

M

τ (Yx, α, τ),

ky = f(x+ τ/2ky, α(τ/2))
(41)

and

Y
τ

x =

(
Y
τ

x,1

Y
τ

x,2

)
.

So far we have an approximation of the state dynamics and of the running costs of order O(τ2).
As outlined in the beginning of this section, our goal is to apply Theorem 4.1 to the computation
of the value function. Besides the calculation of the running costs, the semi-Lagrangian scheme
(7) consists of the approximation for the costs-to-go v(yx(τ)). To estimate the local discretization
error for the evaluation of v(yx(τ)) with respect to time we can provide an argument similar to
equation (40). Here we neglect the impact of the control discretization and assume the optimal
control α? to be known. Assuming that v′(x) is bounded on Ω we can estimate

v(yx(τ))− v(x+ τky) = v(yx(τ))− v(yx(τ))

− v′(ξ)︸︷︷︸
≤Cv

(x+ τky − yx(τ))︸ ︷︷ ︸
O(τ3)

.(42)

Please note that the approximation of the state in the Taylor expansion is of order O(τ3), which
is due to the Implicit Midpoint Rule with a local error of O(τ3). Note that in the estimation
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(40) we use the linear approximation from equation (39) and thus have O(τ2). In other words,
comparing (40) with equation (42), in the former one uses a ky from a scheme with time step τ ,
and not τ/2.

Altogether, we have an approximation of the value function v(x) by a higher order semi-
Lagrangian scheme with a local time discretization error of O(τ3). This means that we can
apply Theorem 4.1 with p = 2 to construct higher order composition schemes. Note that here
we neglect the impact of the spatial reconstruction operator I for the approximation of the
costs-to-go v(yx(τ/2)).

4.3. Optimization of the control. In this section we are going to derive a semi-Lagrangian
method with higher order in time. Our main motivation is to preserve the Dynamic Programming
property, which can be achieved by considering schemes in the composition form as described
in the representation (26). Then, by the Dynamic Programming property we are allowed to
separate the optimization of the control for each time interval and thus decrease the complexity
of the minimization problem.

Based on Theorem 4.1, this can be accomplished by using special compositions with time
steps γiτ , as described for the Runge-Kutta methods in Section 4.1. To be more precise, let us
consider a DISRK method of the form

Ψτ = Φγsτ ◦ . . . ◦ Φγ2τ ◦ Φγ1τ .(43)

With this, we want to derive the following representation of a semi-Lagrangian scheme

Sτ = Sγsτ ◦ . . . ◦ Sγ2τ ◦ Sγ1τ .(44)

For positive γi we can use directly equation (7) to provide an algorithm for Sγiτ . However,
we have to consider negative γi more carefully, i.e. it must be clarified how one attains a semi-
Lagrangian scheme S τ̃ with τ̃ < 0.

As already outlined at the beginning of Section 4.1, there is a connection between semi-
Lagrangian schemes for the approximation of the value function and the subproblems of the form
(23) for the time intervals [ti, T ]. A more detailed consideration shows, that Sτi(x), whereby
τi = ti+1 − ti and the notation is as in Section 4.1, solves the subproblem (23)

min
α∈A

Jx|[ti,ti+1] (α),

i.e. we have

v(x)|[ti,ti+1] ≈ S
τi(x),

with v(x)|[ti,ti+1] from (28). Please note, that in expression (26) the step Sτi solves

min
α∈A|[ti+1,T ]

Jx|[ti,ti+1] (α).

In this case, the restriction of A to the set A|[ti+1,T ] achieves that we consider optimal control

over the time interval [ti, T ] and not only on [ti, ti+1] as for Sτi(x).
From the association of Sτi with the problem (23) one could argue, that S τ̃ with τ̃ < 0 solves

(23) for some time points ηi > ηj and τ̃ = ηj − ηi, where we now use the notation ηi, ηj to
increase the readability. Indeed, let us consider the subproblem (23) for [ηi, ηj ]

min
α∈A

Jx|[ηi,ηj ] (α)(45)
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and the associated set of minimizers A|[ηi,ηj ]. By definition of A|[ηi,ηj ] we have for an element

α? ∈ A|[ηi,ηj ]

∀α ∈ A : Jx|[ηi,ηj ] (α?) ≤ Jx|[ηi,ηj ] (α)⇔

∀α ∈ A :

∫ ηj

ηi

g(y(s), α?(s)) ds ≤
∫ ηj

ηi

g(y(s), α(s)) ds⇔

∀α ∈ A : −
∫ ηi

ηj

g(y(s), α?(s)) ds ≤ −
∫ ηi

ηj

g(y(s), α(s)) dr(46)

where we exchange the integration boundaries for the last term in (46). Now we obtain

∀α ∈ A :

∫ ηi

ηj

g(y(s), α?(s)) ds ≥
∫ ηi

ηj

g(y(s), α(s)) ds.

This means, we can characterize α? as a maximizing element for the cost functional

Jx|[ηj ,ηi] (α) =

∫ ηi

ηj

g(y(s), α(s)) ds

over the set of controls A, where we have ηj < ηi for Jx|[ηj ,ηi]. Therefore we can identify the set

of minimizers A|[ηi,ηj ] with the solution of the problem

max
α∈A

Jx|[ηj ,ηi] (α).

From this derivation it is clear, that

A|[ηi,ηj ] ∩ A|[ηj ,ηi] = ∅

for control sets A with

∃α, β ∈ A : Jx|[ηi,ηj ] (α) 6= Jx|[ηi,ηj ] (β)

i.e. for controls which are distinguishable with respect to Jx|[ηi,ηj ]. In particular we obtain

A|[ηi,ηj ] ∩ A|[0,T ] = ∅(47)

from (24), which shows, that (45) is not a subproblem of (20). Thus, by considering S τ̃ to be an
approximation of the solution to (45), we cannot derive a representation of the form (26). To be
precise, by adding a step S τ̃ with τ̃ < 0 to a composition

Sτi ◦ Sτi+1 ◦ . . . ◦ SτN

with τk > 0 for k = i, . . . , N we will obtain

S τ̃ ◦ Sτi ◦ Sτi+1 ◦ . . . ◦ SτN(48)

which solves the problem

max
α∈A|[ti,T ]

Jx|[ηj ,ηi] .(49)

The set of solutions to (49), denoted by A|τ̃ , has for controls distinguishable with respect to
Jx|[ηi,ηj ] an empty intersection with the set A|[ηj ,T ], which is approximated by

S−τ̃ ◦ Sτi ◦ Sτi+1 ◦ . . . ◦ SτN .
Due to the property (25) we get

A|τ̃ ∩ A|[0,T ] = ∅.

Altogether, by considering compositions of the form (48) we will not obtain the solution to the
problem (20).
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From the above considerations it is clear, that S τ̃ must be derived as an approximation to
some subproblem of (20). Furthermore, if we preserve the optimal substructure and overlapping
of subproblems, we can achieve the composition form (26) by the rationale as in the beginning
of the Section 4.1, which is based on the Dynamic Programming property.

Let us examine the derivations in (46). By exchanging the integration boundaries we can
replace the min operator in (45) by the max. This surely can be performed vice versa. Thus we
can consider S τ̃ as solving the problem

max
α∈A

Jx|[ηi,ηj ] (α)(50)

for some time points ηi > ηj and obtain by (46) an equivalent characterization of A|[ηi,ηj ] as the

solution of

min
α∈A

Jx|[ηj ,ηi] (α).(51)

It is clear, that (51) is a subproblem to (20) (see the definition in (23)), which preserves the
Dynamic Programming property. Altogether, by associating S τ̃ with the problem (50) we can
achieve the composition representation (26). Please note that due to the form

S τ̃ ◦ Sτi ◦ Sτi+1 ◦ . . . ◦ SτN

we must consider S τ̃ given the set A|[ti,T ]. This means we have to solve the problem (50) and not

the problem (51), wherefore we would need the set of minimizers A|[ηi,T ]. We use the following

theorem from [BCD97], which provides a characterization of the value function for the reverse
time direction, to derive an algorithm for (50). Note here, that we can assume autonomous
dynamics.

Proposition 4.1 (Backward Dynamic Programming Principle). Under the assumptions on f
and g from Section 1, for all τ > 0 small enough and x̃ so that there exists a z ∈ Rd and an
optimal α? ∈ A with x̃ = yz(τ, α

?), it holds

v(x̃) = max
α∈A−

(
v(yx̃(−τ, α)) eλτ −

∫ τ

0

g(yx̃(−s, α), α(−s)) eλs ds

)
(52)

where A− = {α : [−T, t0]→ A, measurable}.

To clarify the connection between (50) and (52) we remark, that with the notation from (52)
we have ηj = 0 and thus τ̃ = −ηi = −τ . By applying the substitution r = ηi − s to (50) we
obtain

Jx|[ηi,ηj ] =

∫ ηj

ηi

g(yx(r), α(r)) dr =

∫ 0

ηi

g(yx(r), α(r)) dr

= −
∫ ηi

0

g(yx(ηi − s), α(ηi − s)) ds.

Furthermore we have yx(ηi − s) = yx̃(−s) due to x being denoted by z in the Theorem 4.1.
Finally we can identify the evaluation of the value function v(yx(−τ, α)) with the restriction of
the control set A to A|[ti,T ].

Based on (52) we can provide the following scheme for the computation of S τ̃ , i.e. for negative
time steps, analog to (7)

(53) vγiτj = max
An

{
G∆(xj , γiτ,A

n) + I[V γi−1τ ](xj , A
n)
}
.

In equation (53) V γi−1τ denotes the approximation of the value function from sγi−1τ .

For the computation of quadrature G∆(xj , γiτ,A
n) and of yγiτxj

we choose the scheme Φ
M

τ

derived in Section 4.2. Thus, by the Theorem 4.1, we achieve higher convergence order with
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respect to the time step size, if we neglect the effects of the control discretization and the error of
the spatial reconstruction I[V γi−1τ ]. In the next Section 4.4 we provide the complete algorithm
for semi-Lagrangian schemes based on Runge-Kutta composition methods.

4.4. Algorithm for high order semi-Lagrangian schemes with DISRK methods. Al-
gorithm 1 illustrates the idea of a semi-Lagrangian scheme with a DISRK method. X ⊂ Rd
denotes the set of grid points from the spatial discretization, i.e. for X = {x1, . . . , xM} we have

YX =
(
Yx1

, Yx2
, . . . , YxM

)
With < and > in the lines 12 and 15 respectively we denote element wise comparison of

the value function at the spatial grid X. This means, that the minimization/maximization is
independent for each grid point.

Algorithm 1: Semi-Lagrangian scheme for the Hamilton-jacobi-Bellman equation with
DISRK time discretization and optimization by comparison

Data: α1, . . . , αdc - sampling of the control space
γ1, . . . , γs - composition coefficients, T - end time, τ - time step
vT - value function at T
I - interpolation operator

Result: Approximation of the value function for t = 0
1 t = T

2 Vold = vT
3 while t > 0.0 do
4 for j = 1, . . . , s do
5 for i = 1, . . . , dc do
6 α = αi

7 Y
τ

X = Φ
M

γjτ (YX , α(t), τ) . Approximation of the state dynamic and

running costs as in (41)

8

9 V = Y
τ

X,2 + I [Vold] (Y
τ

X,1) . Approximation of the value function as in

(7)

10

11 if γi ≥ 0 then
12 if Vold > V then
13 Vold = V

14 else
15 if Vold < V then
16 Vold = V

17 t = t− τ
18 return Vold

The important part of the Algorithm 1 is the inner for-loop in the line 4, where the compo-
sition is calculated for given γ1, . . . , γs. One can easily verify that the complexity of the control
optimization is O(s · dc), where dc denotes the number of discretization points of the control
space and s is the number of stages of the DISRK scheme. Note, that the value function V
is updated for each step γiτ . This means, after each iteration of the for-loop in the line 4 we
obtain a temporary value function vγiτ as described in Section 4.3. The resulting value function
after time τ is constructed via a sequence of vγiτ .
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Algorithm 1 in this form is for finite time problems. For infinite time horizon control problems,
e. g.with the cost functional (4), we have to adapt the stopping criteria of the while-loop of
Algorithm 1 slightly. This can be achieved by comparing the computed value functions for two
steps of the while-loop in the line 3. We then stop the iterations if the change in the value
functions is less then some required tolerance TOL:

1

|Xref |

 ∑
x∈Xref

(I[V k](x)− I[V k−1](x))2

 1
2

≤ TOL(54)

where Xref ⊂ Rd denotes a set of spatial test points. Another approach is to use the maximum
in the change of the value function

max
x∈Xref

{
I[V k](x)− I[V k−1](x)

}
≤ TOL.(55)

5. Numerical tests

In this section we present numerical results for semi-Lagrangian schemes based on DISRK
methods. We are mainly interested in the convergence rates for the error of the numerical
approximation compared to a reference solution and in the computational complexity.

For the error estimation we consider analog to [GK17] the difference of the exact solution vref
to the approximation vnum on a spatial test grid Xref and approximate the L2(Ω) respectively
the L∞(Ω) norm of the error with

ev2
def
=
‖vref − vnum‖2
|Xref |

≈ ‖vref − vnum‖L2(Ω),

ev∞
def
= ‖vref − vnum‖∞ ≈ ‖vref − vnum‖L∞(Ω).(56)

In addition we provide convergence rates for the error estimates as

ρi(e) = logb

(
ei−1

ei

)
,(57)

where b is the refinement factor for the time discretization. In (57) e is one of the error estimates
from (56) and i represents the i-th considered time discretization.

As a measure of the computational complexity we give the number of evaluations nf of the
state dynamics f(y(s), α(s)) from (2) as a function of control space discretization. Furthermore
we consider the rate of increase for nf

ηj(n
f ) = log2

(
nfj

nfj−1

)
,

with nfj as the number of evaluation of f(y(s), α(s)) for the discretization of the control space

with 2j points, i.e. control level j.

5.1. One dimensional system with non-linear dynamics. As a first example we consider
a numerical experiment, which is well suited to test the performance of a scheme for smooth
solutions [FF94]. The state dynamics are given by

(58)

{
ẏ(s) = f(y(s), s, α(s)) = −y(s) e−y(s) α(s)2

y(t0) = 0,

and the expression for the running costs is

g(yx(s, α), α(s)) = −y(s)α(s)2 − ey(s) sin
πα(s)

2
.
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Figure 3. Estimation ev2 of the L2(Ω) error. We consider all error estimates
for the calculation of the DISRK5 regression line, the first 8 estimates for the
regression line of DISRK9 and the first 7 for DISRK17.

The exact value function for the infinite time horizon problem is [FF94]:

vref (x) = e−yx(s) .(59)

We approximate the value function in Ω = [0, 1] and the control is from A = [0, 1].
The numerical tests with Algorithm 1 in the value iteration form are performed using Matlab.

For the spatial interpolation we use cubic splines on an equidistant grid XΩ with grid size of
∆Ω = 10−3 for the DISRK5 scheme and ∆Ω = 10−4 for the DISRK9 and DISRK17 schemes.
The discretization of the control set is ∆A = 10−3 for the DISRK5 scheme, ∆A = 10−4 for the
DISRK9 and ∆A = 10−5 for the DISRK17.

To evaluate the error estimate we consider Xref = XΩ. We decrease time discretization by
b = 100.1, i.e. τi = 10−0.1 · τi−1. We set the tolerance TOL for the while-loop in (55) to 10−14

and end time T = 100.0 as an additional criterion for the termination. This means, we stop the
computation once the current time reaches T = 100.0 if the tolerance TOL in (55) has not been
achieved.

Figure 3 presents the error estimates e2
v as a function of the time resolution. We can observe,

that the convergence rate of the DISRK5 method correlates very well with the theoretical rate of
4. The DISRK9 method does not achieve the expected convergence rate of 6 exactly, shows how-
ever results which are very close to the theoretical value for the first 7 measurements. Similarly
for DISRK17 we observe a convergence rate of about 8 for the first five steps. The stagnation of
the error for the remaining part of the plot, in particular visible for DISRK17, presumably can be
explained by the effects of the other discretization aspects, i.e. the impact of the discretization
of the control and the state space, respectively. In Table 1 we present more detailed values for
the error estimates and convergence rates for each time discretization.
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DISRK5 DISRK9 DISRK17

τ ev2 ρi(e) ev2 ρi(e) ev2 ρi(e)

1.000 1.61−3 – 4.17−5 – 2.41−6 –

7.94−1 6.61−4 3.86 1.14−5 5.62 4.55−7 7.24

6.31−1 2.69−4 3.91 3.04−6 5.75 7.91−8 7.6
5.01−1 1.09−4 3.94 7.90−7 5.85 1.23−8 8.08

3.98−1 4.37−5 3.96 2.03−7 5.89 1.60−9 8.85

3.16−1 1.75−5 3.97 5.23−8 5.9 1.71−10 9.71
2.51−1 7.18−6 3.87 1.40−8 5.74 2.59−11 8.19

2.00−1 3.06−6 3.71 4.10−9 5.32 1.69−11 1.87

1.58−1 1.12−6 4.36 2.16−9 2.78 1.55−11 0.35
1.26−1 3.62−7 4.91 1.46−9 1.69 1.42−11 0.38

1.00−1 1.44−7 4 1.42−9 0.15 1.33−11 0.3

Table 1. Estimations ev2 of the L2(Ω) errors and the corresponding conver-
gence rates ρi(e) at time steps τ for different DISRK methods. The theoretical
convergence rate for DISRK5 is 4, for DISRK9 it is 6, and for DISRK17 it is 8.
Subscripts denote exponents in base 10, i.e. 1.0−n = 1.0 · 10−n.

control DISRK5 DISRK9 DISRK17 RK4

level nf ηj(n
f ) nf ηj(n

f ) nf ηj(n
f ) nf ηj(n

f )

1 25 – 41 – 75 – 64 –

2 55 1.14 95 1.21 177 1.24 1,024 4
3 116 1.08 209 1.14 384 1.12 16,384 4

4 242 1.06 429 1.04 796 1.05 262,144 4

5 487 1.01 871 1.02 1,614 1.02 4,194,304 4
6 978 1.01 1,756 1.01 3,248 1.01 67,108,864 4

7 1,961 1 3,523 1 6,521 1.01 – –

8 3,931 1 7,060 1 13,063 1 – –
9 7,872 1 14,135 1 26,142 1 – –

10 15,741 1 28,277 1 52,314 1 – –

Table 2. Number of function evaluations nf for the dynamics of the controlled
system (2) for one time step as well as corresponding increase rates ηj(n

f ) for
different control levels, i.e. 2j comparison points.

As a measure of computational effort we provide the number of evaluations of the state
dynamics nf as a function of the discretization of the control space in Table 2, where we consider
2j points in the compare approach for the optimization. For these tests we choose a discretization
of the state space with ∆Ω = 10−2. Additional quantity is the increase rate ηj(n

f ). We observe
a near linear dependency of nf on the cardinality of the discrete control set A, i.e. ηj(n

f ) ≈ 1.0.
To illustrate the advantage of semi-Lagrangian schemes based on DISRK methods, we compare

the number of function calls to the Runge-Kutta 4 method (with Butcher tableau equation (11)).
For the Runge-Kutta 4 method we can observe (2j)4 evaluations of the state trajectory, where
j denotes the control level. The corresponding number of functions calls nf is (2j)4 · 4, i.e. the
state dynamics is evaluated 4 times for each control a ∈ A due to 4 stages of the method. Please
note, that DISRK are implicit methods. This means, that the number of function calls nf also
depends on the effort for the solution of the implicit equation for the stage k of the Implicit
Midpoint Rule (see Section 4). We use the fsolve Matlab function with the default trust-region
algorithm and parameters TolX = 10−15 and TolFun = 10−15 to find k.
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5.2. Harmonic oscillator. As a second example we consider the control of a harmonic oscillator
as in [GK17]. The state dynamics are defined by

ẏ = Ay +Bu, A =

[
0 1
−1 0

]
, B =

[
0
1

]
with y ∈ R2. The cost function is of the form

Jx(u(t)) =
1

2
yTxQyx +

α

2
uTRu, Q =

[
1 0
0 0

]
, R =

[
1
]

with α = 0.1.
For the computational domain we choose Ω = [0, 1]2 and for the control domain A =

[−3.5, 3.5]. The discretization of the control space is obtained by an equidistant sampling, where
in the following we denote the number of sampling points for the control domain with |A∆| (com-
pare Section 2). We choose A∆ with 103 sampling points for the computation with the Implicit
Midpoint Rule. Due to higher precision of the semi-Lagrangian schemes based on DISRK we
consider different numbers of sampling points for these methods. To estimate the convergence
rate with respect to the time step τ we need to neglect the impact of control and state space
discretizations. In the following, the numerical experiments are computed with sampling sizes
from 5.0 · 104 to 5.0 · 106. For the discretization of the value function we consider sparse grids
with linear and 3rd order B-Splines, both with the fold out ansatz. We use the SG++ library
(see [Pfl10, VP16]) in the numerical implementation. The equation for the stage k of the Implicit
Mipoint Rule is solved with the standard Newton algorithm, whereby we require the residuum
of the implicit equation or the norm of the increment for k from the Newton step to be smaller
than 10−12 as a terminating condition.

For this test case we can obtain a reference solution from the continuous time Riccati differ-
ential equation (see e.g. [FF14]){

ATP (t) + P (t)A− P (t)BR−1BTP (t) +Q = −Ṗ (t)
P (T ) = 0

(60)

We choose T = 0.1 and solve (60) with a step size of 10−7. We obtain the following reference
solution for the value function

vref (x) =
1

2
xTPx(61)

with

P =

(
9.966236712679333 · 10−2 4.982996318566705 · 10−3

4.982996318566705 · 10−3 3.326412035418859 · 10−4

)
,

where x denotes a vector from the state space. The computation of the error estimates from
(56) is performed on a domain Ωref = [0.25, 0.75]2, where we consider an equidistant grid Xref

of step size 0.5/200.0 in both spatial directions.
First we consider the semi-Lagrangian scheme based on the Implicit Midpoint Rule for the

time discretization. The results are presented in the Figure 4. The goal of these computations
is to evaluate the performance of a semi-Lagrangian scheme without composition as well as
to estimate meaningful parameter ranges for the discretization of the control and state spaces.
However, as mentioned at the beginning of the section, the parameters have to be adapted for
DISRK methods of higher order in time.

Furthermore we will consider sparse grids base on fold out B-splines for the discretization of the
state space in the following experiments, as the achieved precision compared to the computation
time is better then for the fold out linear basis. Although the computation with B-splines is
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Figure 4. Estimation ev2 of the L2(Ω) error for the Implicit Midpoint Rule with
T = 0.1. On the left with a linear fold out SG basis, on the right with fold out
order 3 B-splines. The numbers in the legend denote different SG levels.
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Figure 5. Estimation ev2 of the L2(Ω) error for the DISRK5 and DISRK7 meth-
ods with T = 0.1. The numbers in the legend denote different SG levels for the
fold out order 3 B-spline basis. |A∆| is the number of sampling points for
the control domain A. The regression is calculated with the first 8 points for
DISRK5 with level 8 SG discretization, |A∆| = 105, and with the first 7 points
for DISRK7 with level 9 SG discretization.

more complex compared to a linear basis for the same spatial grid (see Section 3), we can choose
a smaller level of the sparse grids in case of the B-splines.
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DISRK5, B-splines level 8, DISRK7, B-splines level 9,

|A∆| = 1.05 |A∆| = 5.06

τ ev2 ρi(e) ev∞ ρi(e) ev2 ρi(e) ev∞ ρi(e)

1.00−1 9.87−9 – 1.91−8 – 1.42−9 – 2.69−9 –

7.94−2 3.14−9 4.98 6.05−9 4.98 2.83−10 6.99 5.64−10 6.77
6.33−2 1.06−9 4.7 2.04−9 4.71 5.80−11 6.89 1.22−10 6.65

5.00−2 6.22−10 2.32 1.20−9 2.32 2.23−11 4.15 5.55−11 3.42

3.98−2 2.04−10 4.84 3.93−10 4.84 4.78−12 6.68 2.33−11 3.78
3.16−2 9.59−11 3.28 1.86−10 3.26 1.62−12 4.71 9.20−12 4.03

2.51−2 4.07−11 3.72 8.90−11 3.2 5.99−13 4.31 4.27−12 3.34

2.00−2 1.76−11 3.65 4.63−11 2.84 4.85−13 0.91 6.75−12 −1.99
1.58−2 8.15−12 3.33 2.88−11 2.06 – – – –

1.26−2 4.57−12 2.51 2.47−11 0.66 – – – –

1.00−2 3.30−12 1.42 2.25−11 0.41 – – – –

Table 3. Estimations ev2 of the L2(Ω) and ev∞ of the L∞(Ω) errors and the cor-
responding convergence rates ρi(e) at time steps τ for different DISRK methods.
The theoretical convergence rate for the DISRK5 is 4, for DISRK7 - 6. Subscripts
denote exponents in base 10, i.e. 1.0−n = 1.0 · 10−n.

Next we consider semi-Lagrangian schemes based on the DISRK5 and DISRK7 methods. The
results are presented in the Figure 5, while detailed numbers can be found in Table 3. We
consider results for the DISRK5 scheme for a spatial discretization with sparse grid based on
level 8 fold out B-splines and |A∆| = 5.0 · 104 respectively |A∆| = 1.0 · 105. Different control
domain discretizations are provided to illustrate the effect of the discretization of the control
space. The computations with the DISRK7 scheme are performed with the discretization of the
control space with |A∆| = 5.0 · 106 and fold out B-splines grids of level 8 and 9.

For both schemes — DISRK5 and DISRK7 — we can observe convergence rates higher then
for a semi-Lagrangian scheme based on the Implicit Mipoint Rule, where we have p ≈ 2.15 as in
Figure 4. A more precise interpretation of results is difficult due to the overlap of impacts from
different discretization parameters.

6. Conclusion and outlook

In this work we present semi-Lagrangian schemes with higher order time discretization for
optimal control problems. The numerical method is in particular of interest with regard to the
cost complexity of the optimization over the control space. The approach allows for a separation
of the control optimization with respect to the individual stages of the Runge-Kutta scheme, by
exploiting properties in correspondence with the Dynamic Programming Principle. Therefore
the optimization costs increase linearly with the number of stages, but not exponentially as is
the case for standard higher order Runge-Kutta time discretization approaches.

In the numerical tests we observe nearly liner complexity O(s · dc) of the constructed semi-
Lagrangian schemes with respect to the costs dc of one optimization and the number of stages
of the Runge-Kutta method s. In comparison, in the general case an exponential complexity of
O(dsc) holds for semi-Lagrangian schemes based on Runge-Kutta methods.

Besides the time discretization, semi-Lagrangian schemes are affected by the optimization
of the control space as well as by the reconstructions methods used for the state space. The
numerical tests in this work were performed with piecewise linear and B-spline based spatial dis-
cretization methods, where for two dimensions sparse grids were considered. For the optimization
in the control space we used a simple discretization with an equidistant step size, on which we
evaluated the function values and selected the optimum. It is clear from the numerical tests,
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that such a simple optimization in the control has a significant impact on the overall runtime
of the semi-Lagrangian scheme, in particular in view of the high accuracy which was needed to
be on-par with the time and spatial discretization. In future work, a more efficient optimization
procedure would need to be integrated into the numerical scheme.
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