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Abstract—Gaussian Process Morphable Models (GPMMs) are
a unifying approach to non-rigid surface and image registration,
where a deformation prior is defined using a Gaussian process. By
a simple exchange of the covariance function we can formulate
a wide variety of different deformation priors, such as spline-
based models, free-form deformations or statistical shape and
deformation models. How well the method works in practical
applications depends crucially on how well a low-rank approxi-
mation of the Gaussian process can be computed. In this article
we propose the use of the pivoted Cholesky decomposition for
this task. This method makes it possible to efficiently compute a
low-rank approximation for very large point sets, such as given
by 3D meshes or 3D image grids, with a rigorously controlled
approximation error. Compared to the current state of the art,
which is based on the Nystrom method, the approximation error
is controllable and can be specified by a user-defined threshold.
Further we propose a computationally more efficient and greedy
alternative to currently used Karhunen-Loéve expansion. This
makes it possible to compute more accurate model approxima-
tions at the same computational costs. Detailed experiments from
the registration of high quality human face scans and medical CT
images containing the forearm with Ulna and Radius demonstrate
the efficiency of the method and the computational advantages
over the Nystrom method.

I. INTRODUCTION

A common approach in medical image analysis and com-
puter vision is analysis by synthesis: An image is analyzed by
synthesizing it using a generative model [1], [2]. The resulting
model-parameters are then used to understand the content of
the target image. Popular examples of analysis by synthesis
in medical image analysis are atlas (or template) matching
approaches [3], [4], [5], or statistical shape and appearance
models [6], [7], [8]. The main idea behind all these methods is
the following: It is assumed that any object I'y to be analyzed
can be written as a deformed version of a reference object
I'r C  for some deformation u*: ) — R3:

I'r ={x+u*(x): x € 'p}.

Usually, a non-rigid registration approach is used to find the
right deformation u*, for a given surface or image representa-
tions of I'r and I'7. The crucial question for practical applica-
tions is how to model the family of possible deformations u.
Popular choices include spline-based deformations [9], basis-
functions derived from differential operators [10], [11], radial
basis functions [12], [13], or basis functions learned from
example datasets using PCA [14], [5], [7]. Recently, Liithi et
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al. proposed to model the deformations as a Gaussian process
GP(u,K) with mean function p: Q — R® and covariance
(or kernel) function K: Q x Q — R3*3 [15], [16], [17].
In this view, all the above mentioned models correspond to
special choices of the covariance function and it becomes
easy to combine characteristics of the individual models [16],
or to incorporate additional prior knowledge by, for example,
enforcing mirror symmetries [18], landmark constraints [19],
or by making models spatially varying [17]. While in general
these Gaussian process priors are infinite dimensional, and thus
difficult to use in practical algorithms, Liithi et al. [15] exploit
that all the models make strong smoothness assumptions, and
hence the corresponding Gaussian process u ~ GP(u, K)
can be well approximated using a truncated Karhunen-Loeve-
expansion [20]:

M
gP(l‘L’ K) ~usp + Zaz\/xzq&zv Qg ~ N(Ov 1)7
i=1
where ()\;, ¢;) are eigenvalue/eigenfunction pairs of the inte-
gral operator associated to the covariance function K. Using
this representation, any deformation u becomes a linear com-
bination of the eigenfunctions ¢; and can be written as

M
u(e, ) = p() + Y aivXig ().

i=1
As in this approach all the modelling assumptions are incor-
porated into the eigenfunctions ¢,, the accurate computation
of these eigenfunctions becomes most crucial. In this work,
we propose a mathematically rigorous and computationally
efficient method for computing this eigen-decomposition based
on the pivoted Cholesky decomposition [21], [22]. The pivoted
Cholesky decomposition is ideally suited for this task as in
surface and image registration, the natural discretization given
by the surface triangulation or the image grid leads to a
huge eigenvalue problem to be solved. The pivoted Cholesky
decomposition avoids to ever span the full covariance matrix,
and thus can work with millions of points for computing the
approximation.

Compared to the Nystrom method, which was originally
proposed for this purpose by Liithi et al. [15], our method
has several advantages. 1) The Nystrom method requires
the choice of a small subset of points on which the eigen-
decomposition is computed [23]. The choice of this point-set
greatly influences the approximation accuracy, but for general
domains it is not clear how to optimally choose these points.
In contrast, our algorithm always selects the optimal points
automatically. 2) As there is no rigorous way to control the



approximation error, the Nystrom method always computes
as many eigenfunctions as the user indicates. In the pivoted
Cholesky decomposition, the basis functions are computed
iteratively, where in every iteration the next basis function
is chosen with respect to a computationally efficient pivoting
strategy, until a given accuracy threshold is reached. This
property makes the approximation error of the analytically
defined model fully controllable. 3) Thanks to the lower
computational complexity, our approach enables to compute
a much larger number of leading eigenfunctions, and thus to
approximate models that are not feasible using the Nystrom
method. This is in particular important in image registration,
where the domain of the deformation is large and consequently
a higher number of basis functions need to be computed to
obtain a good approximation.

The paper is structured as follows: In Section III we describe
how to build prior models over deformation fields using
Gaussian Process Morphable Models, and how these models
can be used for surface and image registration. In Section IV
we describe the pivoted Cholesky decomposition and how
it can be used to solve large-scale eigenvalue problems. A
computationally more efficient greedy basis for the deforma-
tion fields is discussed in Section VII. How this theory can
be applied to compute prior models for surface and image
registration is discussed in Section V and Section VI, where
we also compare the approximation quality of models built
with the new method and the Nystrom method. In the last part
of this paper, we show registration experiments on forearm CT
images and compare the results of the different models to a
state-of-the art registration method.

The core algorithms of the method proposed are imple-
mented in the open-source project Scalismo [24].

II. RELATED WORK

The Gaussian Process Morphable Model (GPMM) frame-
work, on which our work is based on, can be seen as the
unification of different concepts. On the one hand, statistical
shape models (SSM) can be extended with additional flexibil-
ity using kernel functions. On the other hand the models are
used as statistical priors for surface and image registration. In
the context of surface registration most similar is the work by
[25], which specifically concentrates on 3D surface registration
with an iterative closest point optimization method. In the
context of the extension of SSM with additional flexibility,
[26] proposed to extend the sample SSM with a smoothness
prior. However, the method needs to span the full covariance
matrix, which is computationally infeasible on a large set
of points. Also the work by Grenander et al. [1] contains
similarities to our approach, as they propose to use a basis
function representation to span the model space. However,
in all these works, the basis functions have to be known
analytically [10], or the initial model needs to be of finite
rank [27]. In [28] and also in [25] the covariance function is
not approximated, which is only feasible for compact kernels
with small correlation lengths.

In the context of Gaussian processes and the computa-
tion of low-rank approximations to covariance matrices, the

pivoted Cholesky decomposition is an established algorithm,
cf. e.g. [23], [21], [22], [29]. Having the low-rank approxi-
mation at hand, it has been shown in [21] that the eigenpairs
of the covariance matrix can be obtained approximately by
solving an eigenvalue problem which has the dimension of
the rank of the low-rank approximation.

Whereas these works are restricted to the low-rank approx-
imation of matrices, is has been analyzed in [30] how the
continous eigenvalue problem can be efficiently discretized
and solved by the pivoted Cholesky decomposition by the
use of finite elements. In [31] the authors employ the pivoted
Cholesky decomposition to compute a low-rank factorization
of kernel functions in terms of function skeletons. Since one
can add another basis function to the low-rank factorization
without recomputing the others, they call the obtained basis
the “Newton” basis, in analogy to Newton interpolation. This
kernel based approach has been extended in [32] to compute
a Karhunen-Loeve expansion if radial basis functions are used
for the spatial discretization.

III. GAUSSIAN PROCESS MORPHABLE MODELS

A. Modeling Deformation Priors

Gaussian Process Morphable Models (GPMM), which have
been introduced in Liithi et al. [15], provide the strength to
define prior models for registration analytically in advance.
Using a matrix-valued Gaussian process, vector fields are
defined continuously on a domain  C R® independent
of the discretization. The vector fields act as the non-rigid
transformation of the reference object I'r C €2, which could
be any geometric object or grid defined in €.

We define a Gaussian process GP(u, K) with mean func-
tion p: Q@ — R? and covariance function K: Q x Q — R3*%3,
Then, any deformation u sampled from GP(u, K), gives rise
to a new surface by warping the reference surface I'r:

I'={x+u(x): xeI'r}.

Similar to the PCA representation of a statistical shape
model, a Gaussian process GP(u, K) can be represented in
terms of an orthonormal set of basis functions {¢,}32,

u(x, a) ~ H’(X) + Zaz\/XL(f)z(X)a Q; € N(07 1)a (1)
i=1
where ()\;, ¢;) are the eigenpairs of the integral operator

Tick() = /Q K (-, 30)f(x) dp(x) @

with p(x) denoting a measure. The representation (1) is known
as the Karhunen-Loeve expansion of the Gaussian process
[20]. Since the random coefficients «; are uncorrelated, the
variance of u is given by the sum of the variances of
the individual components. Consequently, the eigenvalue \;
corresponds to the variance explained by the i-th component.
This suggests that, if the A; decay sufficiently quickly, we can,
instead of (1), use the low-rank approximation

M
uns (X7 a) ~ M(X) + Z al\/XZ(ﬁL(X) (3)

=1



The resulting model is a finite dimensional, parametric
model with M components, similar to a standard statistical
model. The expected error of this approximation is given by
the tail sum

o0

> )

i=M+1
Estimates for the decay of the \; exist and show that the tail
sum is reasonably small even for small M, provided that the
covariance function K is sufficiently smooth, cf. [33]. Note,
however, that there is no restriction that K needs to be the
sample covariance matrix. Any valid positive semi-definite

covariance function can be used.

B. Image and Surface Registration

The modeled concepts and the parametric model are then
turned into a registration algorithm. We have to define a
reference image or 3D surface I'r and a target data-set
I'r. Also we have to define a distance measure D between
the objects. In the surface registration setting, the distance
function is often defined as the distance between a point
on the reference and its corresponding closest point on the
target surface [15]. Together with the distance measure, we
can formulate the registration problem as

argmin DT g, I'r, u] + nlul &, ®)
ueFfk

where |||k denotes the norm of the kernel functions’s repro-
ducing Hilbert space Fk and 7 is a regularization parameter.
Replacing u by its low-rank approximation uj; from (3), we
can restate the problem in the parametric form

M M
argminD{rR,rT,wZaMm} +n) ai, (6
=1

Q1. XN i=1

which can be optimized with common methods, such as
gradient descent.

IV. SOLVING LARGE SCALE EIGENVALUE PROBLEMS
A. The Nystrom Method

Any given covariance function yields an integral operator
(2), whose corresponding continuous eigenvalue problem is
given by

(Tk @) (X) = A, (x). 7

In order to solve the eigenvalue problem numerically, it has
to be discretized, i.e., it has to be transformed into a finite
dimensional problem

C¢m,N = )‘m,Nﬁbm,N ®

with ¢,, v € RY and C € RV*N. The Nystrom method
performs this step by discretizing the integral operator Tx
from (2) by a sampling approach. It relies on some random
samples X1, ...,xy drawn according to p, to approximate

1 N
LK(~,x)f(x)dp(x)%N;K(~,xi)f(xi), )

cf. [23] and the references therein. Although the estimator
can be inaccurate, it comes with minimal assumptions on the
measure p, which makes it highly attractive for problems with
little information. If the reference domain is for example given
by a set of vertices, appropriate samples can be drawn from
this set.

Evaluating (9) at the sample points and multiplying with
N yields, similar to (8), the finite dimensional eigenvalue
problem

CNystr¢m7N = N/\md)m,N (10)

with the matrix

CNyer = [K(Xiv Xj)] z]'\,[jZI

and the point values
¢m,N ~ [¢7n(x’i)]i7 i = 17 s

Combining (2), (7) and (9), the eigenfunctions can then be
evaluated at any given point by

,N.

N
B (%) = AN D KX %) (D) (11
=1

Probabilistric error bounds for the eigenpairs exist and show
that the accuracy increases with the number of sample points,
cf. [34].

B. Computational Considerations

To make the approximation step from (7) to (8) as accurate
as possible, the Nystrom approximation needs a large number
of samples, i.e. N > 1, and leads thus a N x N, dense
eigenvalue problem. Also the finite element scheme introduced
in Section VI-A and most discretization methods for integral
operators lead to large, dense eigenvalue problems (8) in order
to achieve a high approximation accuracy. Solving a dense,
N x N eigenvalue problem amounts to a complexity of O(N3),
which is computationally infeasible for N > 1.

To overcome this problem, the authors of [15] have re-
marked that only the largest M eigenvalues of (8) and their
eigenvectors have to be computed to obtain an approximation
to (3). They have thus assembled the eigenvalue problem (8)
for a feasible size of N and have computed a predetermined
number M of eigenpairs by using a randomized SVD, cf.
e.g. [35] and the references therein, in complexity O(M N?2).
While this reduces the complexity of the eigenvalue problem,
it is a priori unclear how to choose M in order to have the
tail sum (4) under control. Morover, the overall complexity of
the problem in memory and computation time is still at least
O(N?).

For positive semi-definite matrices, as covariance matrices,
the pivoted Cholesky decomposition is an efficient tool to
reduce the complexity in memory and computation time to
O(NM?), where M is adaptively chosen during the decom-
position to maintain a given approximation accuracy.



C. Dimension Reduction of the Eigenvalue Problem

Although the system matrix of the discrete eigenvalue
problem (8) is dense, it still has a low dimensional structure
in the sense of a low-rank approximation. In fact, the decay
of the eigenvalues of the integral operator (2) has been
well investigated in [33], where it has been proven that the
eigenvalues satisfy the decay estimate

Am < Cm—20/4,

Here, p is some parameter which increases with the smooth-
ness of the kernel. It is therefore evident that there exists a
reasonably sized M such that the tail sum (4) is sufficiently
small. As the eigenvalues of the discrete eigenvalue problem
will have a similar decay, the system matrix C has a corre-
sponding low-rank approximation of rank M < N.

Having a low-rank factorization C ~ L MLR/[ of rank M at
hand, one can drastically reduce the dimension of the eigen-
value problem (8) by substituting the low-rank approximation
into (8), such that the eigenvalue problem becomes

T _
LyLyvin, N = A, NV, N-

Exploiting the fact that Lj/L], has the same eigenvalues as
L],Lys, we obtain an equivalent eigenvalue problem

L3, LyVim N = A NV, N, (12)

which has the reduced dimension M < N and can thus
be solved by standard eigensolvers for dense matrices. The
eigenvectors ¢,,  are then given by

(13)

Thus, given a low-rank approximation C ~ L MLJTV[, the
solution of the dense small eigenvalue problem (12) and the
computation of the eigenvectors by (13) can be accomplished
in complexity O(M?) and in O(N M?), respectively.

However, in order to maintain the complexity O(N M?) for
the solution of the eigenvalue problem (8), we have to find a
low-rank factorization of C without fully even assembling it,
since this would amount to at least N2 operations.

PN Vi, N =Ly Vi N

D. Low-rank Approximation with the Pivoted Cholesky De-
composition

For general matrices, a low-rank approximation can for
example be obtained by fully assembling the matrix and then
applying a (randomized) SVD. However, even the assembly
has already complexity O(N?), which makes the computa-
tion and the storage of a low-rank factorization prohibitively
expensive for large N. Which is why we aim at a low-
rank factorization in the first place. If we invest our a priori
knowledge about C, i.e. that it is a positive semi-definite
matrix, we can obtain a low-rank approximation for any given
rank M by the pivoted Cholesky decomposition without fully
assembling it. Even more, the algorithm does not only give
us a rank M approximation for some given M, we can also
prescribe some tolerance in the trace-norm for positive semi-
definite matrices to which the algorithm automatically finds
a low-rank factorization, such that the approximation error
is below that tolerance. Especially, it automatically detects

a rank M which is required to fullfil that tolerance. The
pivoted Cholesky decomposition, cf. [21], [22], is given in
Algorithm 1.

Algorithm 1 The pivoted Cholesky decomposition

Input: Matrix [C]f\fj:l, error tolerance £ > 0
Output: Low-rank approximation Cj; = Zf\il £;£] with
trace(C — Cypy) < e - trace(C)
Set M =1
Set d = diag(C) and error = ||d||n
Initialize 7 = [1,2,..., N]
while error > ¢ do
Set i = argmax{d.;: j =M,M +1,...,N}
Swap 7 and 7;
Set fM,ﬂ—M = \/dﬂM
for M +1<i< N do
Compute

M-1
eMﬂn, =\ Qrppymy — Zj:l gjsﬂ'k[gjﬂ"z)/éMﬂ”W

Update dm = dﬂ-i — f]\/[.’ﬂ-ijwl’ﬂ-M
end for
Compute error = YN | d,
Set M =M +1
end while

As can be seen from the algorithm, it is purely algebraic,
i.e. it only relies on the access to the specific matrix entries,
which, in order to keep computational efficiency, can be
computed only when required by the algorithm.

Mathematically, the idea of the algorithm is that for sym-
metric semi-positive definite matrices, the maximal element
always lies on the diagonal and the trace is a norm on semi-
positive definite matrices, giving the algorithm a rigorous
error estimate. For this purpose, only the diagonal of the
covariance matrix has to be precomputed, whereas all other
entries only have to be computed if they appear in the low rank
factorization. Especially, the algorithm automatically finds
a rank M to reach a prescribed accuracy € in complexity
O(NM?).

It remains to explain how to obtain a discrete correlation
matrix from a Gaussian process.

V. BUILDING PRIOR MODELS FOR SURFACE
REGISTRATION

A. Spatial Discretization

For surface registration, the surface is usually represented
as a set of vertices. There is thus almost no structure available,
which makes the Nystrom method decribed in Section IV-A
the method of choice. While the usual approach is to sample
the points for the discretization from the vertices defining the
surface, cf. e.g. [15], [23], the pivoted Cholesky decomposi-
tion, under mild smoothness assumptions on the kernel func-
tion, enables us to solve the eigenvalue problem (10) easily for
millions of points. We can thus compute the eigenfunctions
directly on all mesh points and can thus completely avoid
the sampling on the surface and its corresponding uncertain
error. Consequently, the pivoted Cholesky decomposition gives



a completely deterministic solution, even for more advanced
Nystrom schemes as in Appendix A.

The next section demonstrates how the pivoted Cholesky
decomposition improves the accuracy of the Nystrom scheme.

B. Comparison of Generalisations for Surface GPMM

We use a data-set consisting of 39 registered face scans
to represent the ground-truth and as target surfaces for the
registration. The data-set is registered using the method pro-
posed by [36] which includes additional constraints to cope
with artifacts and noise of the raw 3D scans. To establish a
fair comparison between the fitting accuracy of the methods,
we create an experiment where only the generalisation ability
of the models is evaluated. The model for this experiment
is defined with a scalar multi-scale B-spline kernel, which is
introduced by Opfer [37]. Given a univariate third order B-
spline b3 and the function ¢(x) = bs(x1)bs(z2)bs(z3), the
kernel reads

i
kpsp(x,y) = D Y 2274(20x — k) (2y — k).

Jj=Jj kezZd

According to [37], this results in a valid, positive definite
kernel function on multiple scales. In our experiment, we
define the levels from | = —5 to [ = —2 and refer to [15]
for details on matrix valued B-spline kernels.

Taking the Nystrom method proposed by [15] as a reference,
we use the same kernel function to approximate three different
parametric models. For the reference we sample an uniform
subset of 1000 points and approximate 1000 eigenfunctions,
which, due to the expensive interpolation (11) to extend the
eigenfunctions to all mesh points, amounts to the borderline
of feasibility. With the pivoted Cholesky method we create a
model with a similar amount of basis-functions with a toler-
ance of € = 0.05 (1200 basis functions) and a more accurate
model with a tolerance of ¢ = 0.01 (2200 basis functions).
Especially, we are able to sample on all grid points and can
avoid the expensive interpolation of the eigenfunctions. Since
the face data-set is registered and thus in correspondence with
the reference, we can define a direct projection in the model
space as

M
argmin D, [Fm Tr,p+ Z ai\/Xi¢ij| ;
Q1. QM i1

where the distance function D, consists of the squared eu-
clidean distance of every point x with its corresponding point
on the registered target. This is a least squares problem and the
optimal solution for this problem can be computed in closed
form solution, which is shown in [38].

The 39 registered human faces are projected into all three
models and the average point-to-point distance is measured
and illustrated in Figure 1. The Cholesky approximated model
with € = 0.05 performs similar as the Nystrom model. How-
ever, when the accuracy of the Cholesky model is increased
to ¢ = 0.01, we are, due to the lack of the expensive
interpolation, able to approximate more basis functions, which
leads to a much smaller error.

Average Generalization Error [mm]

|
|
- '

B - B

Nystroem - 1000 Eigenfunctions Pivoted Cholesky - 95% Accuracy  Pivoted Cholesky - 99 % Accuracy

Fig. 1. Comparison of the generalization ability of three differently build
models. The error is measured with the distance closest to the target surface
in [mm]. The GPMM approximated with the Nystrdm method on 1000
eigenfunctions is comparable with a model built with the pivoted Cholesky
method with ¢ = 0.05 (1200 basis functions). However, the approximate
model with € = 0.01 accuracy (2200 basis functions) is superior and is able
to generalize better to the ground truth registration data-set.

Fig. 2. The average closest point error to the registered ground-truth data-
set. On the left the error of pivoted Cholesky model with ¢ = 0.01 is
visualized. On the right side we see the average distance error with the model
approximated with Nystrom. The color bar goes from blue (small error) to
red (larger error). Especially in the eye and lip region, the large improvement
of a more accurate model is visible.

In Figure 2, the average error is visualized on the reference
face surface. We can see that the defined Cholesky model with

= 0.01 error has less regions with large errors than the
Nystrom model on the right side.

VI. PRIOR MODELS FOR IMAGE REGISTRATION

A. Spatial Discretization

In contrast to surface registration, where the computational
domain is only given by vertices, the computational domains
in image registration provide more structure to exploit for the
discretization. We can thus employ more advanced methods
to discretize the continuous eigenvalue problem (7) and shall
follow the approach of [30] and show how to use the pivoted
Cholesky decomposition for the computation of the Karhunen-
Loeve expansion with finite elements. In principle, a large
class of finite element spaces can be treated, cf. [30], but for
ease of representation we restrict ourselves to piecewise linear



finite elements on a uniform rectangular grid and the measure
p(x) =1 and refer to Appendix B for the more general case.

Finite element schemes for functions with values in three
dimensions rely on a finite dimensional subspace Vy C
[LQ(Q)]3 with basis {¢;,..., ¢y} to represent the eigen-
functions of the Karhunen-Loeéve expansion. To construct such
a finite dimensional space, we consider a uniform rectangular
grid Qy, on ) where each cell has a size of hy X ho X hs.
To each vertex xi,...,xy we assign a function ¢; with the

property
i =J,

17
pi(x;) = {O, i

where on each cell Q, € Qp, the basis function ¢; is a trilinear
polynomial, i.e.

i,j=1,...,N, 14)

=a1 +ar; +azry +agx1T2 +

X
.
a5T3 + AgX1T3 + A7L2x3 + AgTL1T2L3.

Here, the coefficients are uniquely determined such that (14)
holds. This means especially that the ¢; are only nonzero
in the eight cells with vertex x;. Note especially that all
; are linearly independent, so we can define Vj, C L2(f2)
as the vector space spanned by the basis ¢1,...,¢on. A
finite dimensional subspace of [LQ(Q)]S is then given by
VhZVhXVhXVh.

Having a finite dimensional subspace at hand and employing
a well known mass lumping scheme yields, cf. e.g. [39] and
Appendix B, the eigenvalue problem

CFEM¢m,N = h’g)‘m,N(p'rmN

h? + hZ + h3, system matrix

CFEM = [K(Xi, Xj)] N

i,j=1

(15)

with h =

and approximate eigenfunctions

N
¢m( ) ¢mN Z ¢mN Qaz )
i=1

As the error estimates for the Nystrom approach are not purely
deterministic, they do not allow a direct connection between
the threshold of the pivoted Cholesky decomposition and the
approximation scheme. This is different for finite element
schemes, where [30] gives precise error estimates on how to
change the threshold if the grid size is refined. In our case,
if the threshold is chosen as & ~ h™in(P:2) the solution of
the eigenvalue problem computed with the pivoted Cholesky
decomposition will essentially behave the same as solving the
dense eigenvalue problem (15).

B. Spatially Varying Kernel Models

In is experiment we compare the low-rank approximation
methods on covariance functions, where the correlation length
varies depending on predefined regions in the domain 2. These
type of covariance functions allow for the specification of dif-
ferent kind of smoothness depending on the region. In practice
this is especially useful for modeling different tissue properties

in medical images. Since the Nystrom approximation only
computes the eigenfunctions on a uniformly sampled subset
of points, it might well approximate coarse correlations, but
it is likely to miss small deformation regions if the subset
is not densely sampled. As an experimental setup we define a
coarse kernel function k.(x,y) and also a fine kernel k¢ (x,y),
which are both defined as Gaussian kernels with o = 100 for
k. and o = 15 for k;. Together with a function ¢: 2 — (0, 1),
which activates the fine kernel on a predefined region in (2,
we formulate a spatially varying kernel as

ks(xv Y) = kc(x7 y) +t(X)/€f(X, y)t(Y)' (16)

For this experiment we choose average sized volume as the
image domain €2 and place a 3D reference surface inside this
domain. We approximated a the previously mentioned kernels
on the surface in the volume with € = 0.01. Random samples
of this model act as the ground-truth for our experiment since
the image deformation models should provide exactly the same
flexibility in the region of the surface. Therefore we define ¢
as the region around the segmented ground-truth surface of the
reference image. We built the model with the Nystrom method
by uniformly sampling 1000 points on the domain 2. The
second model is built with the pivoted Cholesky method and
a tolerance of £ = 0.01. To evaluate the flexibility of the two
volume models, we compare how much detail is approximated
in the finest region where k; is active. We compare the
two models by projecting the random samples of the surface
model into the two volume models and calculate the remaining
distance error. Since the Nystrom model sampled a subset of
1000 points its parametric model rank is fixed 1000. In contrast
to the pivoted Cholesky method, the Nystrom method lacks
the ability to automatically select the right number of basis
functions to approximate the given kernel well. The pivoted
Cholesky method automatically selected 3002 basis functions
to approximate the kernel. In Figure 3 the remaining error
of both models is compared. The Nystrom method seems to
approximate only the coarse correlations. On the other hand,
the pivoted Cholesky method approximates these regions with
the tolerance of € = 0.01 error well.

VII. A SIMPLE GREEDY BASIS

The conversion of the infinite dimensional optimization
problem in the reproducing kernel Hilbert space from (5) to a
finite dimensional optimization problem in (6) is historically
motivated by a PCA of the prescribed kernel function, which
leads to the Karhunen-Logve expansion in the continuous case.
This automatically captures the most significant features of
the infinite dimensional problem into the finite dimensional
problem.

However, the Karhunen-Loeve expansion has more struc-
ture than actually needed for the optimization in (6). In the
following, we consider the Karhunen-Lo¢ve expansion com-
puted by the pivoted Cholesky decomposition as described in
Chapter IV-C and assume that the Karhunen-Loeve expansion
is not further truncated for the optimization.
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Fig. 3. In this Figure a comparison between two model approximations is
shown with a spatially-varying kernel. Both models were approximated on the
the same volume and the same kernel function. 50 deformation samples from
a well approximated ground-truth model are projected in Nystrom model and
also in the pivoted Cholesky model. We can see that the pivoted Cholesky
generalizes well to these samples in contrast to the Nystrom model.

Denoting the i-th eigenfunction discretized by N degrees
of freedom obtained by the pivoted Cholesky decomposition
by ¢, y, we have

M
K(x,y) & Y Ning; n(X)d; v (y).
i=1

Abbreviating 3y 3 = diag(A, v, - -
Dy (%) = [¢1,N(X) ~~‘¢M,N(X)],

the Karhunen-Loéve expansion can be written in matrix nota-
tion as

. )\MvN) and

K(x,y) ~ ®nm(x)ZNnm®rm(y)T

By associating (13) with its corresponding functions, we
deduce that

§N,M(X) = LA[(X) [\VILN} e }\V’MyN} .
L —

=®N M

It thus holds
K(x,y)~ LM(X)i)N,MZN,Mi)}V,MLX/I(yL

which effectively means that the approximate eigenfunctions
of the Karhunen-Loeve expansion are orthogonal transfor-
mations of the Newton basis Lj; obtained by the pivoted
Cholesky decomposition. The spanned space of the singular
vectors of the M largest eigenvalues and the M first columns
of the pivoted Cholesky decomposition are thus the same.
Omitting the rescaling of the Newton basis by the singular
values and denoting the function associated with the vector £;
by £; n, one can rewrite the expansion (3) as

M
w (%, @) ~ p(x) + Y il n(x),
i=1

see also [30], and the optimization (6) as

M M
argminD{FR,FT,u + Zai&,]\r] + nZa?.

Q1,00 i—1 i=1

We can thus directly work with the Newton basis given by the
column vectors of the low-rank approximation of the pivoted
Cholesky decomposition, cf. [31], and totally omit the solution
of any eigenvalue problems.

The Newton basis offers some new interesting possibilities,
since one can easily expand the basis if a higher accuracy is
needed. If the basis vectors need to be orthonormal, one can
apply an orthonormalization method like the Gram-Schmidt
algorithm, cf. e.g. [40].

VIII. IMAGE REGISTRATION EXPERIMENTS
A. Experimental Setup

In this registration experiment, we mainly evaluate the fol-
lowing points: 1) We compare the prior models approximated
with the proposed method to the currently used Nystrom
method. 2) The registration results of the proposed models are
compared to a state-of-the-art multi-scale B-spline registration
algorithm, which is implemented in Elastix [41]. 3) We com-
pare the eigenbasis model to the proposed Newton basis model
and show that the resulting registration error is comparable. All
the registrations are done with the same data-set consisting of
27 CT images of the human forearm. The surface Ulna and the
Radius have been manually segmented by experts to provide a
ground-truth measure. The data has been rigidly aligned to an
arbitrary data-set using four landmarks and are provided in a
resolution of 800 x 800 x 500. To establish a fair comparison,
we chose the same kernel function to define the deformation
prior as in [15] that performed best in their experiments. To
evaluate the accuracy of our experiments, we computed the
average squared distance error of the registered result to the
ground-truth segmentations of the provided 27 CT images.

B. Model Approximation Comparison

In this experiment we evaluate how the proposed Cholesky
method performs in comparison to the originally proposed
Nystrom method. In Figure 4, the registration accuracy of
the differently approximated models is visualized. If we
approximate the pivoted Cholesky model with an error of
e = 0.01 and only keep the first 300 eigenfunctions, the
registration results are similar to the Nystrom approximated
model. However, when the Cholesky model is approximated
with more eigenfunctions (2000), an increase in accuracy is
still visible in the results.

C. Newton Basis Experiment

In this experiment we show a registration result comparison
between models spanned by the approximated eigenfunctions
and the Newton basis directly computed from the Cholesky
decomposition. Since the eigenbasis of the first model is
composed by an orthogonal transformation of the Newton
basis, both models span the same subspace. In this experiment
we evaluate if both type of basis functions are suitable for
the optimization algorithm for registration. In Figure 5, the
registration accuracies of both models are presented and lead,
as expected, to comparable results.
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Fig. 4. A comparison between different model approximations using the
registration accuracy of the Ulna registration. Our proposed Cholesky model
with ¢ = 0.01 error is comparable with the Nystrom method with 300
eigenfunctions. For the third model we kept all the approximated eigenbasis,
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Fig. 5. Registration error comparison between a model built with an
eigenbasis and a Newton basis model. The resulting registration accuracy
of both models is similar, which leads to the conclusion that both type of
basis seem well suited the optimization.

D. Registration Method Evaluation

In this last experiment we compare the proposed image
deformation models to a state-of-the-art B-spline registration
algorithm, which is implemented in Elastix [41]. In Figure 6,
our registration approach is compared to the B-spline regis-
tration included in Elastix [41]. When the B-spline method
is optimized on a single B-spline scale, the proposed method
is comparable, but slightly more robust. However, the multi-
scale B-spline optimization also improves the results. This
is because the optimization procedure is specially adapted
to exploit the multi-scale structure of the B-splines to make
it less prone to get stuck in local optima. In GPMMs the
optimization algorithm is generic and is not dedicated to a
specific deformation prior. To become more robust towards
local optima, one would instead strengthen the prior of the
deformations. As Liithi et al. [15] have shown, this can be
done in multiple ways, as for example, making it spatially
varying, symmetric or to include landmarks. In Figure 6 we
show exemplary how adding landmark constraints to restrict
the prior to only deformations that match the landmarks, lead
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Fig. 6. A comparison of the built registration models with a state of the art
B-spline method, which is implemented in Elastix. Our model is comparable
with the single scale approach. However, also with the inclusion of landmark
to guide the optimization procedure the method is also comparable to the
multi-scale version.

to similar registration accuracy, and at the same time much
more robust results.

IX. CONCLUSION

We have presented a novel low-rank approximation method
for the Gaussian Process Morphable Model framework
(GPMM). The framework enables the possibility to build
complex prior deformation models for image and surface reg-
istration. An important part of the framework is to parametrize
the model to make the optimization numerically feasible. We
showed that the proposed approximation method has signifi-
cant advantages over the originally proposed method: 1) The
method enables full control over the approximation error. 2)
The greedy algorithm is able to stop at a predefined accuracy.
3) The memory efficient algorithm enables the approximation
of much larger point-sets, which leads to high-resolution
models. We theoretically and experimentally evaluated the
proposed algorithm in the context of surface registration and
image registration. The proposed algorithm is mathematically
sound and error bounds are provided for image and surface
registration. Also we propose the possibility to omit the SVD
calculation and use the directly calculated Newton basis from
the pivoted Cholesky decomposition. This leads to the removal
of a large calculation bottleneck without the loss of accuracy.
Since these Newton basis are computed greedily it allows for
iterative refinement. Future work would be to use the proposed
basis functions to build a multi-scale registration. Especially
in medical image registration, this method would improve the
robustness of the registration method to avoid local minima.
We showed the accuracy of the models in the context of
human face surface registration evaluated on ground-truth
registrations. Also, we demonstrated the applicability of the
method in the context of medical image registration, where the
human forearm was registered. We showed that the method is
competitive to state of the art registration methods. The core
algorithms proposed in this work are published open source
in the Scalismo framework [24].



APPENDIX
A. Advanced Nystrom Schemes

Nystrom schemes are suitable if the eigenfunctions of the
Karhunen-Logéve expansion are only required in certain pre-
determined points X1,...,xy. For this purpose, the integral
operator (2) is approximated by a quadrature formula

N
/QK(-,X f(x)dp(x) ~ Zle(yét)f(ﬁz)

with quadrature points §; and weights w;. The discrete eigen-
value problem then reads

CNystr¢m,N - )‘m,N¢m,N

with the system matrix

N
CNystr = [WJK(X“ X])} ij=1

and the point values
¢m,N ~ [¢m(xi)]i7

Note that the system matrix Cny is not symmetric in general.
Assuming positive quadrature weights, i.e. w; > 0, defining

MNystr = diag(\/“Tlv sy WN)

and setting ¢, y = MNyméSmy ~ yields a symmetric, gener-
alized eigenvalueproblem

T —
MNystrCMNysu‘ﬁmwN — )\m,NMNyslr(ﬁm,N

with the matrix

i=1,...,N.

C= [K(x“x7)]N

A a7

see also [39]. As it turns out, the finite element scheme yields
an eigenvalue problem with a similar structure.

B. Advanced Finite Element Schemes

Having a finite dimensional subspace at hand yields,
cf. e.g. [39], the generalized eigenvalue problem

Crem®,, v = Am, NMrem®,,, v

with system matrices

(18)

N
CFEM = [(TKSOJ, <PZ)[L%(D)]3} i,j=1’

N
Megm = [((p]'7cpi)[L§(D)]3]i,j=1’

Tk denoting the integral operator from (2), and the approxi-

mate eigenfunctions

N
¢m( ) ¢mN Z ¢mN Qaz )
i=1

It thus remains to explain how to assemble these matrices.
Since the basis functions ¢, are non-zero only on a few

elements, the mass matrix Mggy is sparse. Inserting the

definition of Tk into the definition of Cgry, We obtain

Crent = { /D /D K(x,y)¢; (y)] (x) dp(y) dp<x>]N

ij=1

In order to compute this integral, it is very common in finite
element methods to replace K by its interpolation K} in the
finite element space, i.e. we approximate

N

> K(xi,x5)@; ()] (v)-

ij=1

K(x,y)~

Inserting this approximation into the definition of Cpgy yields
Crem = MemCM[py

with the matrix C defined as for the Nystrom scheme in (17).
The eigenvalue problem (18) thus turns into

Meem CM gy @, v = A, NMEEM®,, - (19)

C. Connection between the two schemes

The two schemes can lead to the very same eigenvalue
problem. In implementations of finite element schemes, there
are almost always quadrature formulas involved. Using piece-
wise linear ansatz functions and replacing the integrals by a
trapezoidal rule yields a diagonal matrix Mggy (this is also
referred to as “mass lumping”). The definition of My then
amounts to quadrature weights to a quadrature formula with
the vertices of the finite element mesh as evaluation points.
The two schemes are thus equivalent in this specific case.

D. Dimension Reduction of the Eigenvalue Problem

Again, having a low-rank factorization C ~ Lj/L], of rank
M at hand, one can reduce the dimension of the eigenvalue
problems (19). For ease of notation, we do not distinguish be-
tween Mpgy and My and consider the eigenvalue problem

MCMT¢m,N = Am,NMq&m,N' (20)

By substituting the low-rank approximation C ~ Lj/L],
and v,, v = M/ ¢, n into (20), the eigenvalue problem
becomes

Ml/QL]\/jL}rW(Ml/Q)TVm,N = )\m.NVm,N-

Exploiting the fact that M'/2L /L], (M'/2)T has the same
eigenvalues as LT, (M'/2)TM'/2L,; = L], ML, we obtain
an equivalent eigenvalue problem

T ~ o ~
LMML]\/IVWLA,N - )\'rmNVm,N~

This modified eigenvalue problem has again dimension M <
N and can thus be solved by standard eigensolvers for dense
matrices.
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