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Abstract

In this paper we extend to arbitrary complex coefficients certain finiteness re-

sults on Unlikely intersections linked to torsion in abelian surface schemes over a

curve, which have been recently proved for the case of algebraic coefficients; in this

way we complete the solution of Zilber-Pink conjecture for abelian surface schemes

over a curve. As experience has shown also in previous cases, the extension from

algebraic to complex coefficients often requires entirely new arguments, whereas

simple specialization arguments fail.

The outcome gives as a byproduct new finiteness results when the base of the

scheme has arbitrary dimension; another consequence is a proof of an expectation

of Mazur concerning the structure of the locus in the base when a given section is

torsion. Finally, we show the link with an old work of Griffiths and Harris on a

higher dimensional extension of a theorem of Poncelet.

Introduction

A special case of a conjecture of Pink, in the context of unlikely intersections, states the

following:

Let A → C be an abelian-surface-scheme over a complex curve C and let σ : C → A be

a section whose image is not contained in a proper group subscheme. Then there are only

finitely many points x ∈ C such that σ(x) is torsion on the fiber Ax.

When the field of definition of the scheme is Q̄, this conjecture has been confirmed in

a series of papers [13], [14], [16], dealing respectively with the case where A is isogenous

to a square, or a product of elliptic curves, or is simple (meaning that the generic fibre

is geometrically simple). The methods heavily used the arithmetic of Q̄ and the problem

arose to obtain the same results over C. One natural approach was by specialization.
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However this turned out to be much more complicated then it was hoped and expected.

This difficulty is due to the non-compactness of the base, so that all algebraic specializa-

tions in principle might turn out to be bad (see the example in section where we sketch

our strategy). 1

Indeed, the result over C has been achieved at the moment only for the split cases,

where it occupies a substantial part of the papers [13], [14].

A first task of this paper is to settle the remaining important case of a simple A defined

over an arbitrary field of characteristic zero, by means of a different method. Together

with the cited results, this completes the proof of the above statement, i.e. the conjecture

of Pink in the case of relative dimension 2 over a curve.

This method will yield simultaneously also the solution of the variant of the above

conjecture where now A → S is an abelian-surface-scheme over an arbitrary complex

variety S, and we wish to describe the algebraic hypersurfaces on S where σ restricts to

a torsion section.

We shall settle completely this issue. In Appendix B we shall briefly treat by a quicker

method the case where A is the product of the Legendre schemes Eλ, Eµ over the (λ, µ)-

plane. In particular this will indicate a simplified proof of the transition from Q̄ to C
carried out in the papers [13], [14].

In Appendix C we shall apply our result to settle an issue raised by B. Mazur (which

we describe at the end of the introduction).

For several reasons, we have decided to focus explicitly in this paper on the case of

relative dimension 2: this is both for the sake of simplicity and also since the complete

proof of Pink conjecture concerns this case. However, we stress that this limitation is

by no means essential (and actually the algebraic case has already been carried out for

arbitray relative dimension in a paper to be soon submitted).

We now give some statements to put on precise grounds all of this.

Let S be a complex irreducible quasi-projective algebraic variety, let π : A → S be a

scheme in abelian surfaces and let σ : S → A be a section, so π ◦ σ = idS.

As usual, we denote by As, for s ∈ S, the fibre π−1(s). We may assume that the

variety S is smooth and we may complete it to a smooth projective one S̄ such that S̄ \S
is a union of hypersurfaces; up to removing if necessary further hypersurfaces, we suppose

that S is affine and we recall that As is always an abelian variety.

We say that an irreducible hypersurface X ⊂ S is torsion for σ if the restriction of the

section σ to X is torsion. This amounts to the existence of an integer n > 0 such that

1In principle, as pointed out by the referee, the strategy in the case of a compact base (without bad

reduction) becomes much simpler, but still some problems remain, e.g. the preservation of simplicty

under restriction to curves.
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nσ(x) = 0 in the fiber Ax for all x ∈ X.

Our first theorem is

Theorem 0.1. Let A → S be a scheme in abelian surfaces, over a complex irreducible

quasi-projective variety S. Let σ : S → A be a section. Then there exist only finitely

many torsion hypersurfaces in S, unless σ(S) is contained in a proper subgroup scheme.

Theorem 0.1 follows from [13], [14] when the abelian scheme A → S is not simple.

Hence in the sequel of this work (apart from Appendix B) we shall deal with a simple

abelian scheme. In this case, σ(S) cannot be contained in a proper subgroup scheme,

unless it is torsion.

We shall also assume that the scheme A → S is not iso-constant: otherwise one may

first assume that As is constantly equal to the abelian variety A. Let us consider the

section σ : S → A and its image B = σ(S) ⊂ A. Now, B cannot contain any torsion

curve because A is simple. Then each torsion hypersurface X would be sent by σ to a

point. Then X would lie in the proper algebraic subvariety of S where the fibers of σ

have dimension higher than the generic one. This gives finiteness.

As anticipated, this result completes the solution of Pink’s conjecture for abelian

schemes of relative dimension two over a curve (which was provided in [16] only over

number fields). Namely, chosing a curve for the base S , we obtain:

Theorem 0.2. Let A → C be an abelian-surface-scheme over a complex curve C and

let σ : C → A be a section whose image is not contained in a proper group subscheme.

Then there are only finitely many points x ∈ C such that σ(x) is torsion on the fiber Ax.

It will appear that also Theorem 0.1 follows easily from Theorem 0.2.

Mazur’s issue. The problem that we are going to describe was raised by B. Mazur

after a talk of one of us. Take a non-torsion section over the whole moduli space of

jacobians of curves (canonically polarized) of genus two, which has dimension three. We

expect:

(i) Finiteness of torsion surfaces if the section is not torsion. This follows from Theorem

0.1 since the generic jacobian is simple.

(ii) Infinitely many torsion curves. This and more will be proved in Appendix C;

it could also be proved, in greater generality, by other methods (general results in this

direction will be published in a separate paper with Y. André).

(iii) Mazur’s question: do the infinitely many curves mentioned in (ii) all lie in finitely

many hypersurfaces? In Appendix C we shall prove that, as expected by Mazur, the

answer is negative: in fact, the torsion curves are dense in the base.
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The talk which prompted this question dealt actually with a specific section related to

Pell’s equation (see [16]). The question (iii) was especially relevant, because an affirmative

answer to it would trivialize many of the finiteness theorems proved in [16].

Very recently, we came across Griffiths and Harris’ paper [7], which considers an

analogue of a geometrical procedure introduced by Poncelet on pairs of conic.

We recall Poncelet’s construction: given two conics C,C ′ on the plane, in general

position, one starts with one point P1 ∈ C and a line l1 containing P1 and tangent to C ′.

This pair produces another pair (P2, l1) by replacing P1 with the second intersection point

of l1 with C, and still another pair (P2, l2) by replacing l1 with the second tangent line

to C ′ passing through P2. Hence we have defined a map (P1, l1) 7→ (P2, l2); this map can

be viewed as an automorphism of the curve X formed by the pairs (P, l) where P ∈ C,

l is a line tangent to C ′ and P ∈ l. Such a curve turns out to be of genus one, and the

automorphism so defined is given by a translation on its jacobian.

It follows that, as proved by Poncelet, the fact that the procedure ends or not only

depends on the pair of conics, not on the initial point. We can then consider the set of

pairs of conics, possibly up to projective automorphisms (then a two-dimensional space),

for which the ‘game’ ends in n steps. This corresponds to a torsion sub-variety for an

elliptic scheme.

In [7] Griffiths and Harris consider the higher dimensional case, where a sequence of

tangent planes to a pair of quadrics is constructed by a similar procedure. Varying the

quadrics yields a section of a doubly elliptic scheme over a higher dimensional base.

The assertions in [7] (in particular, the last assertion at p. 159) correspond, for the

special section which arises, to some of our assertions. Their methods do not refer at

all to the notion of Betti map recalled below and havily used by us, and use only basic

classical geometry in an elegant fashion.

It seems to us that the present paper (especially the Appendix devoted to Mazur’s

issue) completes the proof of their assertions.

Our method shall involve a study of the so-called Betti coordinates of an abelian

logarithm of a section (a terminology seemingly introduced by D. Bertrand). They are

(locally) the coordinates of the abelian logarithm with respect to a locally analytic basis

of periods. This seems an interesting matter in its own, which recently attracted some

interest from differenty authors and opens several questions that we shall discuss in future.

In a recent work by C. Voisin [23], the author implicitely used the Betti map in order to

prove the density of torsion points in certain abelian schemes, arising from Lagrangian

fibrations.

Indeed, the ‘Betti map’ is very useful for understanding also the distribution of ‘gen-
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eral’ torsion varieties associated to a given section. Note that the torsion varieties are the

irreducible components of the fibers of rational values of the Betti map.

By means of the results of this paper we shall prove in particular that there are only

finitely many torsion hypersurfaces provided the relative dimension is two and the natural

assumptions are provided.

Acknowledgments. We express our warmest thanks to an extremely careful referee who

detected several inaccuracies, and helped us very much in improving our presentation.

The referee also indicated tentative thoughts for later works, for instance suggesting the

investigation of the relation between the ranks of the Betti and Kodaira-Spencer maps

associated to an abelian scheme with a section. Indeed, a joint work in progress with

Y. André explores the role of the Kodaira-Spencer map in this setting. Further warm

thanks go to D. Bertrand for his interest and comments which helped our presentation.

We are also grateful to C. Voisin for sending us her recent preprint [23] and for a helpful

correspondence with the third author.

1 Preliminaries on Betti coordinates

1.1 Periods

We may suppose that S is complex affine and smooth and denote by d its dimension; we

let S be its closure in some ambient projective space. We can find a finite covering Uα by

open sets for the complex topology, where Uα, U
′
α are simply connected open subsets of S

and S respectively, so that the topological closure Uα ∩ S of Uα in S is contained in U ′α.

We may also suppose that each Uα is bioholomorphic to an open connected subset of Cd.

Above each point s ∈ S we have a tangent space to As at the origin; we thus obtain a

holomorphic vector bundle over S; refining the coverings Uα (resp. U ′α) we may suppose

that this bundle is trivial over every U ′α ∩ S, i.e. isomorphic to U ′α × C2.

We have exponential maps Eα : U ′α×C2 → π−1(U ′α) which are surjective group homo-

morphisms on each fiber of π.

For each s ∈ U ′α, the kernel of Eα restricted to the fiber over s is a lattice Λα,s of

rank 4. Since U ′α is simply connected, we can find holomorphic functions Fα,i : Uα → C2,

i = 1, . . . , 4, such that Fα,i(s), i = 1, . . . , 4, is a basis for Λα,s for each s ∈ U ′α. In

particular, the values of these functions at each point s ∈ Uα are linearly independent

over R.

On the intersections Uα ∩ Uβ, we have holomorphic transition functions Gα,β : Uα ∩
Uβ → GL2(C) such that Eβ(s, v) = Eα(s,Gα,β(s) · v), for v ∈ C2. In this notation, the

vector Fα,i(s) ∈ C2 corresponds to a tangent vector at the origin of As which is expressed
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by the vector Gα,β(s) ·Fα,i(s) in the complex plane C2 associated to β. This last vector is

a linear combination with integral coefficients of the basis Fβ,1(s), . . . , Fβ,4(s). We derive

the transformation rule

Gα,β(s)Fα,i(s) =
4∑

j=1

ci,j(α, β)Fβ,j(s),

where the matrix (ci,j)i,j ∈ GL4(Z) is locally constant and expresses the monodromy of

these functions. 2

Example. An example in which the base S is the curve P1 \ {0, 1,∞} is provided by

the Legendre scheme L: for a λ ∈ P1 \ {0, 1,∞} the fiber Lλ is defined by the equation

in P2:

ZY 2 = X(X − Z)(X − λZ).

Thus L is embedded in (P1 \ {0, 1,∞}) × P2. For instance, for λ in the region |λ| <
1 & |1 − λ| < 1, a suitable basis of periods is given by πF (λ), πiF (1 − λ), where F (λ) =∑∞

m=0
(m!)2

24m(m!)4
λm, is a well-known hypergeometric function. Analytic continuation of these

functions on a covering of P1 \ {0, 1,∞} is possible and yields the transformation rules

considered above.

Abelian logarithms. Given a regular section σ : S → A we can define its abelian

logarithm with respect to the above covering: since each U ′α is simply connected, we can

lift the map σ : U ′α → A to a holomorphic map (id×Lα) : U ′α → U ′α×C2. So on each U ′α
we obtain a holomorphic function Lα such that

Eα(s, Lα(s)) = σ(s).

This Lα is unique up to the addition of a linear combination with integral coefficients,

constant in U ′α, of the functions Fα,1, . . . , Fα,4.

As above, on the intersections Uα ∩ Uβ we have holomorphic transitions functions

Gα,β : Uα ∩ Uβ → GL2(C) such that Eβ(s, v) = Eα(s,Gα,β(s) · v). Using this transition

(with v = Lα), we obtain corresponding transition functions for the logarithms, up to the

already mentioned translation by lattice elements.

Betti coordinates. Following a terminology introduced seemingly by D. Bertrand, we

now define Betti coordinates of an abelian logarithm of a section. Given an algebraic

section σ as above and keeping the above data for the covering, trivialization, period

2On the contrary the transition functions Gα,β do not involve monodromy of periods but merely the

structure of the vector bundle; actually, if the vector bundle is trivial over S, we we could choose these

transition functions to be the identity.
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basis and abelian logarithm, we express this last one in terms of the period basis:

Lα(s) =
4∑

i=1

bα,i(s)Fα,i(s)

where the coefficients bα,i are real valued functions of s ∈ Uα. (In this notation, we shall

often omit the reference to U ′α when this causes no confusion.) We also define the Betti

map

b(s) = bα(s) = (bα,1(s), . . . , bα,4(s)).

These coordinate functions are easily seen to be real-analytic. Of course, on changing

the open set Uα to Uβ, these Betti coordinates obey transformation rules corresponding

to the ones mentioned above.

1.2 About the differential of the Betti map.

In the logic of our proof a central issue will be the differential of the Betti map.

Actually, by considering in details the rank of this differential, the proof could be made

more self-contained at the cost of increasing its length. (See remarked in 2.14 and section

2.6.)

In any case we collect in this section some relevant facts about the rank of this differ-

ential.

This rank is defined as the rank of the jacobian matrix of these Betti coordinates, at

a certain point of S, with respect to any choice of local real-coordinates xj, yj, where we

can assume for instance that zj = xj + iyj on Uα are holomorphic coordinates on Uα and

xj, yj are the corresponding real and imaginary parts.

We observe that this rank is well defined, i.e. it is independent of the open set Uα and

of the choice of both the periods and the abelian logarithms (which are determined up to

integer translation). We call generic rank the maximal rank of this differential on S. The

set where the rank decreases is a (proper) closed real-analytic subvariety; hence the set

where the rank is the generic one is open and dense (since S is connected).

Let s0 be a point where rank(db)s0 = r is maximal. Then by a version of the implicit

function theorem, the fiber b−1(b(s)) is, in a neighborhood of s0, a real analytic variety

of dimension 2d− r.

We observe an easy but relevant fact. Before stating this, recall that the tangent space

at a point on a complex variety is understood to be a complex vector space. Viewing the

variety as a real manifold, we can see the same tangent space as a real vector space, having

a complex structure induced by an operator J with J2 = −I; then the complex subspaces

are those real vector subspaces invariant by J .
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We have:

Proposition 1.1. The kernel of this jacobian matrix at any given point of S is a

complex vector space. Also, the fibers of the Betti map s 7→ (b1(s), . . . , b4(s)) are complex

subvarieties.

Proof. For this argument we work locally on some Uα, identifying it with an open

subset of Cd, by means of the mentioned biholomorphism.

We have locally the equation L(s) =
∑4

i=1 bi(s)Fi(s), where we have omitted the

reference to α, and where what matters for us is that L(s), Fi(s) are holomorphic functions

Uα → C2, with Fi(s) linearly independent over R for each s ∈ Uα and where bi are real-

valued differentiable functions. Then, taking the complex conjugates we obtain also the

relations L(s) =
∑4

i=1 bi(s)Fi(s). In view of the fact that the fi(s) are linearly independent

over R (for each s), the 4× 4 matrix obtained from the Fi(s) and Fi(s) is invertible, and

this uniquely determines the bi(s) (and one may express them by Cramer’s rule).

Let s0 ∈ S and let v0 ∈ Cd be a vector in the kernel of the jacobian map at s0; here we

view v0 as a vector in R2d with respect to the previously defined real and imaginary parts.

By definition, the functions R 3 t→ bi(s0 + tv0) have vanishing derivative at t = 0, hence

the function G(s) := L(s)−∑4
i=1 bi(s0)Fi(s) is O(t2) on the real line s = s0 + tv0, for real

t tending to 0. However the function G is holomorphic, hence the same estimate must

hold on the complex line s = s0 + tv0, t complex near the origin. Hence for a complex

multiple v1 of v0, we have, using the definition of L(s), that

4∑

i=1

(bi(s)− bi(s0))Fi(s) = O(t2)

for s = s0 + tv1 and again for real t→ 0. On the other hand, since the determinant of the

mentioned 4× 4 matrix is non-zero for every s, its absolute value is bounded from below

in a neighborhood of s0. Inverting that matrix we then obtained a bounded matrix in

such a neighborhood. This yields (bi(s) − bi(s0)) = O(t2) on that line, i.e. v1 lies in the

kernel, proving the first part of the proposition.

The second part essentially follows from the above, but we can prove it directly, in

a similar way: given (c1, . . . , c4) ∈ R4 the corresponding level subvariety for the map

(b1, . . . , b4) is also defined by the holomorphic equation L(s) =
∑4

i=1 ciFi(s).

Note that this also proves the first part at points where the Jacobian rank is constant

in a neighborhood. Indeed, in this case the relevant point must be smooth and the tangent

space to the fiber is exactly the kernel of the jacobian matrix.

Proposition 1.2. For every k ∈ N, the set of s ∈ S such that the dimension at s

of b−1(b(s)) is ≥ k is a closed set. In particular all the fibers of the Betti map have real

dimension ≥ 2d− r, where r is the generic rank.

8



Before the proof we remark that this is not entirely automatic since we are dealing

with real analytic maps. (For instance consider the real analytic map (x, y) 7→ x2 + y2

near the origin.)

Proof. Consider in Uα×C4 the complex variety X defined by L(s) =
∑4

i=1 wiFi(s),

where we omit the reference to α. We have a projection map ϕ : X → C4. By the

Theorem of Cartan-Remmert, see e.g. p. 271 in [10], for each k ∈ N, the set Xk of the

points x = (s,w) ∈ X such that ϕ−1(ϕ(x)) has local dimension ≥ k at x, is closed.

Let X̃ = X ∩ (Uα×R4); this is a closed subset of X and it coincides with the graph of

the Betti map. In particular, the intersection X̃k := Xk ∩ X̃ is also a closed subset of the

graph X̃ of the Betti map. The projection X̃ → Uα is a homeomorphism, so the image of

Xk ∩ X̃ in Uα is closed in Uα. This proves the first assertion, since we may work locally

in each Uα.

Since by the above remark the projection to Uα of X̃2d−r is open and dense in Uα, the

second assertion also follows.

Although it will not be needed in the sequel, for the purpose of clarity and complete-

ness, we shall collect some further facts about the structure of Betti maps.

First, observe that if the section σ is torsion, then the corresponding Betti coordinates

are constant (equal to rational numbers). It is a consequence of a deep theorem of Manin

(see [11] and corrections in [3] and [4]) that a converse holds: if the Betti coordinates are

locally constant, then the section is the sum of a torsion section plus a section with image

in a constant abelian subvariety.

• One might also ask about the structure of the variety defined by the vanishing of

the maximal minors of the jacobian of the Betti coordinates. For this purpose, we can

consider again, given locally an open subset U ⊂ S, isomorphic to an open ball of Cd,

the variety X ⊂ U × C4 defined by L(s) −∑4
i=1 ziFi(s) = 0. The variety X is complex

analytic of dimension d + 2. We can consider the projection ϕ : X → C4. The locus in

which we are presently interested is the intersection with U ×R4 of the locus in X where

the differential of ϕ on X has not maximal rank (indeed the only complex subspace of C4

containing R4 is the full space C4). This last one is a complex-analytic subvariety of X.

We do not know whether the former set of points, i.e. the points of U where the rank

of the Jacobian is not maximal, is necessarily a complex analytic subvariety of S and even

do not know whether it may have odd real dimension.

Restricting for instance to the case where S is a complex surface with local complex

coordinates z, w, it may be proved that the following identity holds:

4DF det Jac = ±| detM |2
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where:

(i) DF is the determinant of the 4 × 4-matrix with rows given by the Fi and their

complex conjugates;

(ii) M is the 2 × 2 matrix whose column vectors are ∂z(L) −∑i bi(s)∂zFi, ∂w(L) −∑
i bi(s)∂wFi and where ∂z, ∂w are the complex derivatives with respect to z and w.

It may be checked that for instance choosing the vectors Fi to be (1, 0), (z, 0), (0, 1), (0, w)

L(z, w) = (z2 + w2, zw) the vanishing set of the jacobian determinant is a real analytic

but non complex analytic variety in the region S ⊂ C2 where z, w are both non-real. This

choice would represent an abelian logarithm of a transcendental section; however we sus-

pect that also in the case of algebraic sections the variety in question can be non-analytic.

As to its dimension, seemingly it should be even.

1.3 Torsion values

As explained in the introduction, we are interested in the set of points s ∈ S where σ(s) is

torsion. More precisely, for each integer n ≥ 0, we can consider the set Σn of points s ∈ S
where σ(s) has exact order n. The relation n · σ(s) = 0 is algebraic on S, hence Σn is

a quasi-projective subset in S. Note that saying that σ is a non-torsion section amounts

precisely to the assertion that no finite union of Σn covers S, or equivalently that no Σn is

Zariski-dense. Usually, these sets will have codimension ≥ 2 (because the fibers of A → S

have dimension 2). However, it may happen that some Σn has codimension one and this

is precisely the main situation investigated in the paper.

We end this section with an important remark about these sets:

Proposition 1.3. Each set Σn is closed in S. In particular, for distinct m,n the

closures of Σm and Σn in S are disjoint.

We remark that the last conclusion clearly follows from the first.

This conclusion is trivial if Σn consists of isolated points, whereas when the closure of

Σn has positive dimension, it amounts to saying that the order of any point in this closed

set remains exactly n (whereas a priori the order might decrease to a proper divisor).

Proof. It suffices to argue locally on each Uα. Now, the vector bα of Betti coordinates

assumes on Σn rational values with exact common denominator n; hence, bα takes values

on Σn in a discrete closed set. These values will therefore be constant on connected

components of Σn. Hence Σn is closed.

The proposition can also be proved algebraically just by appealing to the well-known

fact that reduction maps (with respect to some maximal ideal) are injective on torsion

points when the torsion order is prime to the residue characteristic (see for instance [18]
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Lemma 2 and the following lines for this last fact). We may then deduce the proposition

as follows: take any curve Γ inside Σn and consider its closure in S; the restriction of σ to

such a closure is a section of exact order (generically) n, and specialization at a point is

a reduction operation, to which the above applies (this works also for non-smooth points

of Γ by taking base extension to a normalisation).

2 Theorem 0.1 over number fields

In this section we work over an arbitrary variety S defined over a number field k; our aim

is to prove Theorem 0.1 in this case; in next section we shall deduce the full Theorem

0.1, where the field of definition is the complex number field, by first reducing to a

finitely generated field over Q and then by using the present result over number field after

increasing the dimension of the base. Hence our main result, which shall be proved in

this section, is the following:

Theorem 2.1. Let S be a smooth affine geometrically irreducible variety of dimension

d ≥ 1 defined over a number field k, A → S a simple family of abelian surfaces. Let

σ : S → A be a non-torsion section. There exist only finitely many torsion hypersurfaces

X ⊂ S for σ.

Our torsion hypersurfaces will automatically be defined over k and we shall consider

their irreducible components over k̄.

We shall argue by induction on the dimension of S, the case of dimension 1 being

covered by [MZ].

2.1 Sketch of the strategy

In this sketch, we treat for simplicity only the case when S is a surface, showing how to

reduce to curves. We assume there are infinitely many torsion hypersurfaces (i.e. curves)

Xn and we wish to find a curve Y ⊂ S defined over Q̄ intersecting infinitely many of

the Xn, so to be able to apply induction. The difficulty is that the Xn may ‘escape’ to

infinity, in the sense that for every fixed curve Y , only finitely many of them intersect Y

in S. The following example, with S = A2, shows that this problem cannot be neglected:

Example: There exists a sequence of plane curves Xn ⊂ A2, for n = 1, 2 . . ., defined over

Q̄ such that:

1) degXn →∞ for n tending to ∞;

2) each algebraic curve Y ⊂ A2 defined over Q̄ intersects in A2 only finitely many

curves Xn.
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To prove that such a sequence indeed exists, let us enumerate the irreducible curves

in A2 defined over Q̄ as Y1, Y2, . . .. Each curve Yi ⊂ A2 will be defined by a polynomial

equation fi(x, y) = 0. Now define Xi to be the curve of equation f1(x, y) · · · fi(x, y) = 1.

Clearly, Yj cannot meet Xj, Xj+1, . . . in A2.

To overcome this kind of obstacle, our first point in the strategy will be to find a

compact region in S intersecting infinitely many of the Xn. We shall achieve this by using

a uniform version of Silverman’s bounded height theorem: namely, by intersecting the Xn

with a suitable denumerable union of curves of bounded height, we shall find infinitely

many intersection points of bounded height and by taking conjugates we shall deduce

that some conjugate of each of these points lies in a bounded region. These curves are

parte of a continuous algebraic family of curves Cθ, where we shall restrict θ to roots of

unity. By results on uniform distribution and a simple measure theoretic lemma we shall

prove the existence of a single Cθ (where θ might possibly be transcendental) intersecting

infinitely many of the Xn in the said bounded region and in � degXn points.

By means of a rather delicate lower bound of Masser and David (used also in the

paper [16], [15]) we shall prove that degXn is at least a positive power of n. Using this

fact, by means of a theorem of Gabrielov in real analytic geometry we shall deduce that

the Betti map (restricted to the said bounded region) takes many distinct values on each

Cθ ∩Xn and this shall allow us to apply Pila-Wilkie estimates, deducing that the image

of the Betti map on Cθ contains a real algebraic arc. Applying algebraic independence

results of André this forces Cθ to be a torsion curve which is impossible.

This last argument has something in common with the case when S has dimension

one, where however the present use of uniform Silverman’s bounded height theorem was

totally absent.

Another important ingredient of the proof is a specialization theorem of the second au-

thor, which shall enable us to perform certain specializatios to algebraic points preserving

the simplicity of the abelian fibers.

For the case when the Betti map has maximal rank, a simpler proof is possible.

In this case, our torsion curves Xn will lie in the locus Ẽ where the rank is < 4, because

the Betti map is locally constant on Xn, forcing Ẽ to have (real) dimension ≤ 3 (actually

exactly 3, otherwise finiteness follows). Actually, since the Betti map is locally constant

on each Xn, we may restrict to the sub-locus E where the restriction of the Betti map to

Ẽ has rank ≤ 1. Now the image of the Betti map on this locus E shall be a finite union

of points and sub-analytic smooth arcs.

The image b(Xn) will consist of finitely many rational points with the same denomi-
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nator n. 3

Now, if there are infinitely many accumulation points in the union of these images, we

may pick one such point in the interior of one of the mentioned arcs, and choose one of its

pre-images y0 such that the Betti map restricted to E has rank exactly one at y0. If this y0

is algebraic, it is easy to find a suitable algebraic curve Y defined over Q̄ passing through

y0 and intersecting infinitely many Xn, reducing to the algebraic case. Otherwise, we

choose an algebraic curve defined over Q̄, passing sufficiently near to y0. Then the image

of this curve by b will coincide with b(E) in a neighbourhood of y0, and so will contain

infinitely many rational points, as desired. (This will be achieved by local analysis.)

If, on the contrary, there are only finitely many accumulation points, let us fix one

of them. We use again the mentioned curves Cθ. We may find infinitely many complex

numbers θ on the circle S1 such that the image of the Betti map on Cθ contains a neigh-

borhood of the said accumulation point. This will enable us to conclude, by finding an

algebraic θ with such property.

2.2 Auxiliary results

In this section we collect some preliminary results which will be used in our proofs.

We embed once for all S in a projective space PN , so that by degree and height we

will refer to the ones associated to the given embedding.

We use the fact that every abelian variety is isogenous to a principally polarized one

(see [22]) and that the statement of Theorem 0.1 is invariant under isogeny. We then

assume from now on that the scheme A → S is principally polarized.

The first auxiliary result is the following theorem proved by Masser in [12].

Theorem 2.2. There exists an effective absolute constant l such that for every real

numbers δ, h ≥ 1, the set of points s ∈ S(k̄), with [k(s) : k] ≤ δ, h(s) ≤ h such that the

endomorphism ring of As is not isomorphic to the generic endomorphism ring, is con-

tained in a hypersurface of S of degree � max(δ, h)l, where the implied constant depends

only on k, S,A and the given embedding.

Observe that for an abelian variety A, being simple is equivalent to End(A) having no

zero divisors. Hence, for instance, one obtains from Theorem 2.2 ‘many’ algebraic points

on S where the variety As is simple. To make this deduction, we can view S as a finite

cover of Ad, by a morphism of a certain degree δ. Every k-rational point in Ad has a

pre-image in S of degree ≤ δ. Take now a ‘large’ value of h. By Theorem 2.2 the set

of points in Ad(k) whose pre-image in S is exceptional, is contained in a hypersurface of

3Note that the Betti map is not necessarily globally defined on Xn
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Ad of degree bounded by � hl. In particular, in a given line of Ad there are at most

� hl exceptional points. Since the total number of k-rational points on a given line of

height ≤ h is � 2h, we obtain ‘many’ non-exceptional points, as asserted. In particular,

by taking h ‘large’, we obtain that the non-exceptional points are Zariski dense.

Another useful ingredient will be the following upper bound for the order of of a

torsion point on an abelian variety, in term of its degree. The first result in this direction

in due to David (in the case of simple abelian varieties); here we use a variant of it, where

simplicity for the abelian variety is not required, drawn from [16]:

Proposition 2.3. Given g ≥ 1 there is a constant c = c(g) with the following property.

Let A be a principally polarized abelian variety of dimension g defined over a number field

κ and let P be a point on A with finite order n. Then

n ≤ c([κ : Q][κ(P ) : κ] max{1, h(A)})G

for G = 8gg!2 and the semistable Faltings height h(A).

This is Lemma 7.1 in [16].

Further, we shall need an algebraic independence result due to André. We give the

formulation appearing in Lemma 5.1 of [16]. Recall that to our section σ : S → A
is associated locally on Uα an abelian logarithm L : Uα → C2; let us write L(s) =

(l1(s), l2(s)) for two holomorphic functions l1, l2 : Uα → C. Also, the four periods are

given by holomorphic maps Fi : Uα → C2, where Fi = (fi,1, fi,2), where for i = 1, . . . , 4

fi,1, fi,2 : Uα → C are holomorphic functions.

Theorem 2.4 (André). Given a simple family A → S of abelian varieties, non iso-

constant, and a non-torsion section σ : S → A, locally on each open set Uα the functions

l1, l2 are algebraically independent over C(fi,j), (i, j) ∈ {1, . . . , 4} × {1, 2}.

2.3 Proofs

We assume in the sequel that d ≥ 2. Recall also that we are assuming that A → S is not

isoconstant.

We denote by N the set of integers n ≥ 1 such that the dimension of the set denoted

previously by Σn (the variety of points p in S where σ(p) has exact order n) has dimension

d−1; our aim is to prove that in factN is finite, and we shall assume the contrary, deriving

a contradiction.

For n ∈ N , we denote by Xn ⊂ S the stratum of dimension (d− 1) of Σn. Note that

Xn may be reducible; we shall generally denote by Yn an irreducible component of Xn

over k̄.
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In order to prove Theorem 2.1, we start by taking a suitable algebraic family of curves

on S̄. We can use the following simple lemma, which practically consists in defining a

useful system of coordinates:

Lemma 2.5. There exists a dominant rational map λ : S̄ 99K Ad−1 defined over k such

that:

(1) the fibers of λ are curves and the generic fibers are irreducible;

(2) the indeterminacy locus of λ (i.e. the intersection of the closures of the fibers) is

contained in S, contains a point s0 where the abelian variety As0 is simple and a point s1

such that the variety As1 is not isomorphic to As0;

(3) each fiber lies in the numerical class Ad−1 for an ample divisor A of S̄.

(4) for every choice of points θ = (θ1, . . . , θd−1), θ′ = (θ′1, . . . , θ
′
d−1) in the image of λ

such that θi 6= θ′i for every i = 1, . . . , d − 1, the curves Cθ and Cθ′ intersects only in the

base-locus, in particular in S.

Proof. We start by defining a linear system of curves Cλ, of dimension d − 1 as

follows. As above, we embed S̄ into a projective space PN ; denote by T := S̄ \ S the

hypersurface at infinity of S. We take a linear subspace R1 of codimension two in PN
intersecting T in a subvariety of dimension d− 3 (which we interpret as empty if d = 2)

and such that R1 ∩ S contains a point s0 such that the abelian variety As0 is simple (we

can do this by applying Theorem 2.2) and a point s1 with As1 not isomorphic to As0 (we

can do this since we are assuming that the scheme A → S is not isoconstant).

The pencil of hyperplanes containing R1 defines a linear system in S. By Bertini’s

theorem we may also choose R1 suitably (and defined over Q̄) so that the generic section

of S by this pencil is geometrically irreducible.

Chosing a parameter λ1 for this pencil of hyperplanes corresponds to a rational map

λ1 : S 99K P1, restriction to S of a projection PN \ R1 → P1. The fibers of λ1 are the

hyperplane sections in the linear system. If d = 2 we stop at this stage. Otherwise we

choose another codimension-two subspace R2 such that R1∩R2∩T has dimension ≤ d−4,

giving rise to another rational map λ2 : S 99K A1 such that the generic fiber for the map

(λ1, λ2) : S 99K A2 is also geometrically irreducible. We can also suppose that R2 contains

the point s0. We continue until we obtain a map λ = (λ1 : . . . : λd−1) : S 99K Ad−1, whose

fibers are curves Cθ, θ ∈ Ad−2, generically geometrically irreducible. Also, all of these

curves contain the chosen point s0 above which A is simple.

Moreover, according to the above construction, if (θ1, . . . , θd−1) and (θ′1, . . . , θ
′
d−1) are

points in the image of λ such that θi 6= θ′i for each index i = 1, . . . , d− 1, then Cθ and Cθ′
meet only in the base locus and in particular do not meet at infinity.

In the sequel we shall always denote by Cθ, for θ = (θ1, . . . , θd−1) ∈ Ad−1, the fiber

λ−1(θ) in S̄ (so Cθ is a complete curve). By our construction, the Cθ are in particular
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algebraically equivalent, and for each hypersurface Y ⊂ S̄, the degree of Y (in PN) equals

the intersection product Y · Cθ. Also, by property (2) in Lemma 2.5, the abelian scheme

restricted above Cθ is simple and not isoconstant.

We start our proof of Theorem 2.1 by the following weak version of it:

Lemma 2.6. There exist only finitely many torsion hypersurfaces of given degree.

Here, we are considering irreducible components over k̄.

Proof. Let by contradiction Yn ⊂ Xn, n ∈ N ⊂ {0, 1, 2 . . .}, run through an infinite

sequence of torsion hypersurfaces, defined over k̄ and irreducible, such that their closure

Yn has fixed degree D1. By our present notation, for each n ∈ N , σ has exact order n on

Yn.

Then Yn ∩ T is a hypersurface of T of degree D2 = D1 · deg T . The family of hyper-

surfaces of T of degree D2 is finite dimensional; it is parametrized by a finite union of

projective spaces (possibly of different dimensions). Let now θ(1) ∈ Pd−1(k) be a k-rational

point and consider the curve Cθ(1) ; it has only finitely many points in T . For each n in

the infinite set N the intersection product Cθ · Yn = D1 is the degree of Yn, so it is > 0.

Suppose that for infinitely many n ∈ N , at least one point of intersection Yn ∩ Cθ(1) lies

in S, i.e. outside T ; then Cθ(1) is not a torsion curve (because then by Proposition 1.3 the

order of torsion would be constant, i.e. not depending on n, so Cθ(1) could intersect only

one Yn) and we can apply [16] and conclude.

Suppose on the contrary that all but finitely many Yn intersect Cθ(1) only at infinity

(i.e. in T ). Then in particular for each n in an infinite set N1 ⊂ N the variety Yn ∩ T
passes through one of the finitely many points at infinity of Cθ(1) . This means that the

varieties Zn = Yn ∩ T , for n ∈ N1, are contained in the family of hypersurfaces of T of

degree D2 passing through one of the points of Cθ(1) ∩ T . Let us call Λ1 such a family,

which will be prametrized by a finite union of projective spaces. For a generic point p

of T , the sub-family formed by those hypersurfaces of degree D2 passing through p has

a strictly less dimension than the full family. Hence we can find a second curve Cθ(2) , for

a rational point θ(2) ∈ Pd−1(k), such that the varieties belonging to Λ1 intersecting Cθ(2)
form a subfamily Λ2 of stricly lower dimension than Λ1. If Cθ(2) intersects infinitely many

Yn in S, we are done as before. Otherwise there exists an infinite set N2 of indices such

that for each n ∈ N2 both the intersections Yn ∩Cθ(1) and Yn ∩Cθ(2) lie entirely at infinity.

But this means that Zn = Yn ∩ T lies in the lower dimensional family Λ2.

Going ahead, we can find finitely many curves Cθ(1) , . . . , Cθ(N) , defined over k, such

that no hypersurface of degree D2 in T can intersect each of the finite sets Cθ(1) ∩ T , for

i = 1, . . . , N ; in other words, no hypersurface of degree D1 in S̄ can intersect each such
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curve only at infinity. So one of these curves Cθ(i) intersects infinitely many Yn in S and

we apply [16] as previously explained.

Remark. In general, the variety of points of S of exact order n might be irreducible over

k, but reducible over k̄, and of course its geometrically irreducible components would have

lower degree. Lemma 2.6 just proved states that even the degree of these components

tend to infinity with n.

Suppose now we dispose of an infinite sequence of torsion hypersurfaces Xn, n ∈ N ,

of degree tending to infinity. Here N ⊂ {1, 2, . . .} is an infinite set and Xn denotes the

(d− 1) dimensional part of the closure in S̄ of the subset of S formed by the points p ∈ S
where σ(p) has exact order n. In particular, Xn is defined over the number field k. By

the above remark, the degree of their absolutely irreducible components tend to infinity.

A main point in the proof is the proposition below. In its statement we denote by µ

the normalized invariant measure on the torus

(S1)d−1 = {(θ1, . . . , θd−1) ∈ Cd−1 : |θi| = 1, ∀i = 1, . . . , d− 1}.

Proposition 2.7. There exist an index α, a compact semi-algebraic set Γα ⊂ Uα,

positive real numbers c, δ such that

µ
(
{θ ∈ (S1)d−1 : for infinitely many n ∈ Nα, |Γα ∩ Cθ ∩Xn| > c degXn}

)
> δ.

The content of the proposition includes the fact that the set in brackets is measurable.

The meaning of the proposition is obtaining a compact set Γα such that, restricing

our torsion n hypersurfaces to Γα, we obtain suitably many intersection points with each

curve Cθ in a subset of θ positive measure. This shall be useful.

Recall that the intersection product Cθ ·Xn equals the degree of Xn; however it could

a priori happen that the intersection points would excape to infinity for growing n, and

this would be a serious obstacle in our proof.

The next subsection is devoted to the proof of Proposition 2.7.

2.4 Uniform distribution, measures

We use the previous notation: λ : S 99K Ad−1 is a rational map defined outside a finite

base locus, whose fibers are open subsets of the curves Cθ (namely the fibers are the Cθ
with points at infinity removed). The curves Cθ satisfy the conclusion of Lemma 2.5.

Recall that for n ∈ N , Xn is the union of the hypersurfaces of exact torsion order n;

it is a pure d− 1 dimensional subvariety of S defined over k.
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We fix for the moment an index n ∈ N . Note that Xn ∩ T is a fixed codimension two

closed subset of S̄. Then there exists a proper Zariski closed subset Zn ⊂ Ad−1 such that

for each θ ∈ Ad−1 \ Zn:

- Cθ ∩Xn does not intersect infinity (so it is contained in S);

- Cθ intersects Xn at finitely many points and transversally therehin, hence with mul-

tiplicity 1.

(For the second condition to hold just include in Zn the ramification divisor of the

map λ : Xn → Pd−1.)

As a consequence, for all θ outside Zn, we have

(2.1) |(Cθ ∩Xn ∩ S| ≥ degXn.

(Recall that the degree of a hypersurface in S is equal to its intersection product with

any curve Cθ; actually the above inequality is in fact an equality.)

Let now m = (m1, . . . ,md−1) ∈ Nd−1 be a multi-index; at the end of the proof each

mi will tend to infinity. The entries mi are chosen in such a way that the Galois group

Gal(k(Ωm)/k) acts transitively on the set

Ωm := {(θ1, . . . , θd−1) ∈ Sd−1
1 : θi has order mi}.

It suffices that the mi are pairwise coprime and divisible only by primes large enough in

term of k. We also require that Ωm∩Zn = ∅, which is ensured from the above assumptions

in the mi are sufficiently large.

Let θ ∈ Ωm; by Uniform Silverman’s Theorem (see Appendix A), the height of each

point in Cθ ∩Xn is bounded (independently of m, θ ∈ Ωm and n) since the value by the

section is torsion:

(2.2) h(p) ≤ C1, ∀p ∈ Cθ ∩Xn.

(The height appearing on the left can be taken to be a height function associated to the

given embedding of S̄, so it is associated to the divisor at infinity of S).

Let now f1, . . . , fr be generators of the algebra k[S] (for instance r is the dimension of

an affine space containing S and f1, . . . , fr are the coordinate functions). Then for each

p ∈ S(k̄) and each i = 1, . . . , r,

(2.3) h(fi(p)) ≤ C2(h(p) + 1).

Our plan is to define a compact set Γ ⊂ S by a system of inequalities involving the

f1, . . . , fr, in such a way that Xn ∩ Cθ will have ‘many’ points in Γ for ‘many’ choices of

the parameter θ.
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Recalling that the index n is fixed, let us put for θ ∈ Sd−1
1 ,

Iθ = Iθ,n = Cθ ∩Xn.

We also define G = G(m) = Gal(k(Ωm)/k) and

Um =
⋃

θ∈Ωm

Iθ.

Pick a function f in {f1, . . . , fr}. Then from (2.3), for every p ∈ Xn(k̄)

C2|G|(h(p) + 1) ≥ |G|(h(f(p)) ≥
∑

σ∈G
(log+ |f(pσ)|),

where the involved absolute value is the usual complex absolute value. The second in-

equality expresses the fact that the height is at least its archimedean part.

Now, as remarked above, by Uniform Silverman, for every θ ∈ Ωm and every p ∈
Xn ∩ Cθ, h(p) ≤ C1 by (2.2). Then, for each real number H ≥ 1, the number of σ ∈ G
such that |f(pσ)| > H is bounded by (C1 + 1)C2|G|/ logH. It follows that there exists

H0 such that

|{σ ∈ G : |f(pσ)| ≤ H0}| ≥ |G|(1− 1/2r).

Since the set Um is G-invariant, we may partition it in G-orbits and deduce that for

at least |Um|/2 elements p ∈ Um, |fi(p)| ≤ H0 for all i = 1, . . . , r. In other words, for at

least |Um|/2 points p ∈ Um, all the coordinates of p are bounded by H0, so p lies in a

fixed compact set Γ in S. Note that this compact set is independent of n, because C1, C2

are independent of n, due to Uniform Silverman.

Observe now that |Um| ≥ degXn · |Ωm| (Here we are using that Ωm does not intersect

Zn and also that for two distinct θ, θ′ ∈ Ωm the two curves Cθ, Cθ′ intersect only in the

(finite) base locus, so in particular outside Xn if n is sufficiently large).

Let us put

γ(θ) := |Iθ ∩ Γ| = |Cθ ∩Xn ∩ Γ|
and note that γ(θ) ≤ degXn.

By the above consideration,

(2.4)
∑

θ∈Ωm

γ(θ) ≥ degXn ·
|Ωm|

2
.

We now use the following lemmas

Lemma 2.8. Let µ be the invariant measure on the torus Sd−1
1 . Let I ⊂ Sd−1

1 be a

product of intervals. Suppose that for an infinite sequence of m = (m1, . . . ,md−1) as above

and for a positive real c with 0 < c < 1/2 we have
∑

θ∈Ωm∩I
γ(θ) ≥ c degXn · |Ωm ∩ I|.
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Then we have the lower bound:

µ
(
{θ ∈ I : γ(θ) ≥ c

2
· degXn}

)
≥ c

2
µ(I).

Proof. We remark that in general for a rational map π : Y → Z the set of points of

Z where the fiber has cardinality ≥ N can be described as follows: take the N -fold fiber

product Y (N) over Z, endowed with the natural map πN : Y (N) → Z, and consider the

grand diagonal ∆N . The points in questions are those z ∈ Z in the image πN(Y (N) \∆N).

In our case we apply this with Y = Xn ∩ Γ ∩ (
⋃
θ∈I Cθ), Z = I ⊂ Sd−1

1 and π = λ.

Since this set Y is semi-algebraic, so are Y (N) \∆N and its projection under λ.

Let us denote by Σ the semi-algebraic set

Σ = {θ ∈ I : γ(θ) ≥ c

2
· degXn} ⊂ Sd−1

1 .

The boundary of this set is by standard properties of semi-algebraic sets a finite union of

analytic subvarieties Lipschitz-parametrizable.

We make a deduction from the inequality in the assumption. Let us put

Nm := |{θ ∈ Ωm ∩ I : γ(θ) ≥ c

2
degXn}| = |Σ ∩ Ωm|.

We recall that in any case γ(θ) ≤ degXn. We clearly have

∑

θ∈Ωm∩I
γ(θ) ≤ Nm degXn +

c

2
(|Ωm ∩ I| −Nm) degXn.

We deduce from the main assumption of the lemma

Nm ≥
c

2
|Ωm ∩ I|

(
1− c

2

)−1

≥ c

2
|Ωm ∩ I|.

Reading the angles of the θ ∈ Sd−1
1 in terms of rational points in [0, 1]d−1, we have

reached the conclusion that the number of rational points of the shape (a1/m1, . . . , ad−1/md−1) ∈
Qd−1 ∩ [0, 1]d−1, for (m1, . . . ,md−1) = m counted in Nm, is at least c

2
|Ωm ∩ I|. In turn,

by standard (and easy) uniform distribution results on the residue classes coprime with

the modulus, we have that |Ωm ∩ I| ∼ |Ωm| · µ(I). On the other hand, by the mentioned

results on its boundary, the set Σ contains asymptotically |Ωm∩ I| rational points of that

type, and the result follows.

Lemma 2.9. Let (I, µ) be a measure space with finite total measure, ϕn : I → [0, 1] be

an infinite sequence of measurable functions with 0 ≤ ϕn ≤ 1, c1, c2 positive real numbers.

Suppose that for all n

µ ({θ ∈ I : ϕn(θ) ≥ c1}) ≥ c2µ(I).

Then the set of θ ∈ I such that ϕn(θ) ≥ c1 for infinitely many n has measure ≥ c2µ(I).
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In fact this lemma could be stated for an arbitrary sequence of measurable subsets,

not necessarily in terms of functions.

Proof. We first note that the set in question is measurable, since its complement

consists of the set of θ such that ϕn(θ) ≥ c1 for only finitely many n; so the complement is

the union over the finite subsets K of N of the intersections ∩n∈K{θ : ϕn(θ) ≥ c1} ∩n6∈K
{θ : ϕ(θ) < c1}, hence it is measurable.

Now, since for all n ∈ N,
∫
I
ϕndµ ≥ c1c2µ(I), we have for all N ∈ N

∫

I

(∑

n≤N
ϕn

)
dµ ≥ c1c2µ(I)N.

Let us denote by K(θ,N) the integer

K(θ,N) = |{n ≤ N : ϕn(θ) ≥ c1}|.

Then, setting µi = µ({θ : ϕi(θ) ≥ c1}), we have
∫

I

K(θ,N)dµ ≥ µ1 + . . .+ µN .

By our assumption, µi ≥ c2µ(I) for all i. Then

(2.5)

∫

I

K(θ,N)dµ ≥ Nc2µ(I).

Let k(θ) = lim supN→∞K(θ,N) = supN K(θ,N). Let I = Ω∞ ∪ Ω0 ∪ Ω1 ∪ . . . be the

partition of I defined by

Ωj = {θ : k(θ) = j}.
It is easily seen as above that all the Ωj are measurable. Then µ(I) = µ(Ω∞) + µ(Ω0) +

µ(Ω1) + . . . = m∞+m0 +m1 + . . ., for mi := µ(Ωi). We want to prove that m∞ ≥ c2µ(I).

Note that the tails σi := mi +mi+1 + . . . of the converging sum m0 +m1 +m2 + . . . tend

to zero for i→∞. We have
∫
I
K(θ,N)dµ ≤

∫
I

min(N, k(θ))dµ

= m1 + . . .+ (N − 1)mN−1 +N(m∞ +mN +mN+1 + . . .)

= (
∑N−1

j=1 jmj) +NσN +Nm∞

We note that
∑N−1

j=1 jmj = σ1 + . . . + σN−1. Since
∑

j≥1mj converges, we have σN → 0

for N →∞; this implies in particular that σ1 + . . .+ σN−1 = o(N).

Hence
∫
I
K(θ,N)dµ = Nm∞ + o(N), and the result follows from the lower bound

(2.5).

Now Proposition 2.7 follows from (2.4) using the above lemmas (we apply the second

lemma with ϕn(θ) = γ(θ)
degXn

). The fact that the compact set can be taken inside Uα follows

from the finiteness of the cover {Uα}α.

21



2.5 Proof of Theorem 2.1

We argue by induction on the dimension d of the base S. The case d = 1 is contained in

[16]. We then assume to have proved our assertion for all bases of dimension < d, and

proceed to deduce the theorem in dimension d.

This induction hypothesis also allows us to assume that certain ‘generic’ properties of

π hold everywhere on S (for we may restrict to the Zariski open dense subset where they

hold, and then use induction on the complement). For instance, we can use this remark

in Appendix A.

Proof. Fix an index α as in Proposition 2.7. We can suppose that Γα is semi-

algebraic and the closure of an open subset of S. The image b(Γα) is a compact sub-

analytic subset B ⊂ R4. For each positive integer n ∈ N the set b(Xn ∩ Γα) consists of

finitely many rational points in B ∩Q4: in fact b is locally constant on Xn and Xn ∩ Γα

has only finitely many connected component, since it is semi-algebraic. The denominators

of these rational numbers divide n; by compacity, their numerators are also bounded by

O(n).

By a very weak form of Proposition 2.7, there exists a θ such that the set Xn∩Γα∩Cθ
has ≥ c degXn points for all n in an infinite set Nθ and a fixed number c > 0. (Actually

Proposition 2.7 provides a set of such θ of positive measure.)

Suppose first that |b(Xn∩Γα)|/ degXn → 0 for n ∈ Nθ. Then, for every N there exist

infinitely many integers n ∈ Nθ and points ξn ∈ B ∩ Q4 such that b takes the value ξn

more than N times on Xn ∩ Γα ∩ Cθ (here we use the fact that degXn tends to infinity).

This implies that the map b : Γα ∩ Cθ → R4 has a fiber above the point ξn of cardinality

exceeding N . However, by Gabrielov theorem the number of connected components of

the fibers of this map is uniformly bounded (see Theorem 3.14 of [5]). Hence we deduce

that if N is large enough the said fiber must have a component of positive dimension.

In turn, this would imply by analytic continuation that the whole Cθ is a torsion curve.

However this is impossible because Cθ intersects infinitely many Xn in Γα (or else it would

follow also from the fact that Cθ contains a point of good reduction).

We now consider the case when the map b takes more than ε deg(Xn) values on Xn for

some fixed ε > 0 and infinitely many n ∈ Nθ. We shall obtain a contradiction by using

the following results:

Proposition 2.10. There exists a positive constant c > 0 such that the degrees degXn

of the torsion hypersurfaces satisfy

(2.6) nc � deg(Xn)� n2
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Proof . We first prove the upper bound degXn � n2.

Let Sn be the set of p in S with nσ(p) = 0, a quasi-projective subset. Because S is

irreducible and σ is not torsion, we have dimSn ≤ d−1. As the Zariski closure Xn also of

dimension d− 1 lies in Sn, it must be a union of components of Sn (and dimSn = d− 1).

Now Sn is defined in S by the equations expressing multiplication by n evaluated at σ(p).

According to Serre [20] (and viewing the generic fiber of our abelian scheme as an abelian

variety over a function field), we can choose a quasi-projective embedding of A such that

the multiplication equations have degrees n2 and are everywhere defined. Thus Sn is

defined in S by equations of degrees � n2. Thus standard results show that the sum of

the degrees of the (d − 1)-dimensional components of Sn is � n2. So the same bound

holds for degXn.

We now prove the lower bound with any c < 1/513.

Suppose that for some c > 0 there are infinitely many torsion hypersurfaces Xn with

degXn < nc.

Let us consider a generic line r ⊂ Ad−1, defined over k, in the space Ad−1; the pre-

image λ−1(r) is a surface S ′ ⊂ S. By generic for a line r we mean that for two generic

distinct points (θ1, . . . , θd−1) and (θ′1, . . . , θ
′
d−1) on r, for each i = 1, . . . , d − 1 we shall

have θi 6= θ′i.

We shall work over this surface S ′, fibered over r, which we can suppose to be non-

torsion for σ and such that As is generically simple for s ∈ S ′. Our aim is finding, for

each sufficiently large value of n, a curve Cθ in S ′ (for some θ ∈ r) intersecting Xn at an

algebraic point p ∈ S ′, i.e. outside infinity. Then we shall apply David’s estimate to the

variety Ap and the point σ(p).

Observe that Xn intersects infinity at ≤ C1 degXn points (here and in the sequel

C1, C2 . . . will denote numbers depending on all the data A → S, σ, r but not on n). Since

the line r is generic in the sense just mentioned, by our construction (see Lemma 2.5, part

(4)) no two distinct curves Cθ (for distinct choices of θ ∈ r) can meet at infinity. Hence, if

we consider a sub-set of r consisting of more than C1 degXn elements, for at least one θ in

this subset the curve Cθ will intersect Xn inside S ′ (i.e. outside infinity). We shall choose

this finite subset of r as the set of k-rational points of height ≤ B for some B = B(n).

For our purpose we define, for each n ≥ 1,

B = B(n) := nb

for some suitable b > 0; it will turn out that b = 1/513 will be a convenient choice, but

many other choices for the function B(n) are possible, as it will be clear from the sequel.

Note that for large n there are ≥ exp(B) = exp(nb) points θ ∈ r of (logarithmic)

height h(θ) ≤ B (the estimate holds for n large enough with respect to the height of the
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line r). So for large n we can find a point θ ∈ r with h(θ) ≤ nb such that Cθ intersects Xn

in S ′.

By the Uniform Silverman’s Theorem, for each θ ∈ r of height ≤ B such that Cθ is

non-torsion, the points p ∈ Cθ for which σ(p) is torsion satisfy h(p) ≤ C2B. Those points

which lie on Xn(and so are of exact order n) satisfy also [k(p) : k] ≤ degXn deg Cθ = C3n
c.

Let choose one such point p.

The abelian variety Ap will be defined over the number field κ := k(p) and satisfies

(2.7) h(Ap) ≤ C4n
b, [κ : Q] ≤ C5n

c.

We apply the estimates in Proposition 2.3 to the torsion point P := σ(p) ∈ Ap(κ). Now

for g = 2 we have G = 256. Thus Proposition 2.3 gives

n� (C6n
c · nb)256.

This gives the required contradiction with c = b = 1/513.

The next proposition is a theorem of Pila [17].

Proposition 2.11. Let B ⊂ Rn be a compact sub-analytic subvariety. Suppose that

the set of rational points B ∩Qn of B satisfies the growth condition:

|{ξ ∈ Qn ∩B : H(ξ) ≤ N}| ≥ N c

for infinitely many N and a fixed c > 0. Then the set B contains a semi-algebraic

subvariety of dimension 1.

The next result can be deduced from the already mentioned theorem of André on

algebraic independence of abelian integrals, given as Theorem 2.4:

Proposition 2.12. Under our assumptions, the set B = b(Cθ ∩ Γα) does not contain

algebraic arcs.

Proof. Let γ ⊂ b(Γα ∩ Cθ) be an algebraic arc and consider the real analytic set

b−1(γ) = V ⊂ Γα. Let r be the transcendence degree of the eight complex-valued functions

f1, . . . , f8 arising as coordinates of the periods, restricted to V ; we have r ≤ 8 and actually

the period functions can be algebraicailly dependent even on the whole S (e.g. in presence

of a constant part for the family). The components b1,α, . . . , b4,α of the Betti map, when

restricted to V , have transcendence degree at most 1, in the sense any two of them verify

a fixed algebraic relation with constant coefficients. So, the transcendence degree of the

field generated by f1, . . . , f8, b1, . . . , b4 is ≤ r + 1; this field contains the two (complex)

coordinates of our abelian logarithms restricted to V ⊂ Cθ ∩ Γα. Therefore these two

coordinates, restricted to V , would be algebraically dependent over C(f1, . . . , f8) when
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restricted to V . Since however they are analytic functions on Cθ ∩ Γα and V has real

dimension ≥ 1, they must be algebraically dependent over C(f1, . . . , f8) also on Cθ; but

then by Theorem 2.4 applied to Cθ (recall that by construction the abelian family over Cθ
remains simple and non-isoconstant) the section would be torsion on Cθ, which is excluded

by the fact that Cθ intersects infinitely many Xn. 4

We can now conclude: we are supposing that for infinitely many n, b(Γα∩Xn) contains

� ε degXn points (actually b(Γα∩Xn∩Cθ)), which must be rational of exponential height

� n. By inequality 2.6 of Proposition 2.5 this implies that the set B ∩Q4 contains � nc

rational points of height � n; then by Proposition 2.11 such a set B must contain an

algebraic arc, which contradicts Proposition 2.12.

Remark 2.13. One could replace Theorem 2.11 by a stronger version which is uniform

in θ. Namely, given a compact region Γα, there is an upper bound for the number of

rational point of height ≤ n in Cθ ∩ Γα valid for every θ, of the form nε as in Theorem

2.11. This would allow to avoid the full force of Proposition 2.7 (achieved via the measure-

theoretic lemma). It would suffice to find some θ as above intersecting some Xn in more

then c degXn points.

Remark 2.14. . In the particular case where the rank of the differential of the Betti

map is 2, a simpler path can be followed. The main point is that b restricted to a non-

torsion curve (e.g. Cθ) takes essentially the same values as it takes in the whole Γα. Then

one can choose an algebraic value of θ to reduce to the case of curves (over number fields)

already treated in [16].

2.6 Maximal rank of the Betti map

In this section we give an alternative proof of Theorem 0.1 under the assumption that the

generic rank of b is 4. As mentioned above, this argument probably adapts generally and

has the advantage of reducing to the algebraic case without appealing to the deep results

used in the previous section.

We choose again an index α such that the conclusion of Proposition 2.7 holds.

4We thank a referee for pointing out that in order to apply Theorem 2.4 we need that the the scheme

remains non iso-constant over Cθ. The referee also suggests a possible alternative method, that is to use

a theorem of Ax in addition to André’s theorem. See Theorem 4.3 in [4] for a combination of the two

theorems.
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We denote by A ⊂ Γα the subset of Γα formed by the points s such that the rank of

db in s is ≤ 2 (recall that by Proposition 1.1 the rank cannot be odd). Note that A is

a semi-analytic set of real dimension ≤ 2d − 1, by our present assumption on the rank,

and contains all the hypersurfaces Xn (or better all their intersections with Γα). Let A′

be the smooth part of A; A′ is obtained on removing finitely many smooth subvarieties of

dimension ≤ 2d − 2 from A, we obtain a smooth subvariety A′ of real dimension 2d − 1

which still contains all but finitely many Xn (otherwise all the hypersurfaces Xn would

be contained in finitely many connected analytic hypersurfaces, and we would have only

finitely many Xn as wanted). Moreover, at each point p ∈ Xn ∩ A′ the rank of the

restriction of db to A′ is ≤ 1, since b is constant on the real hypersurface Xn ∩ A′ of A′

passing through p. Then, letting A′′ be the following subset of A′:

A′′ = {p ∈ A′ : rankp(db|A′) ≤ 1},

we obtain that A′′ contains open subsets of each but finitely many Xn intersecting Γα.

We also have that b(A′′ ∩ Γα) is a sub-analytic subset of R4, of dimension 1 (for if the

dimension would be zero, we would have only finitely many Xn intersecting A′′). By [5],

Thm. 6.1(1), it is also semi-analytic, i.e. finite union of analytic arcs and isolated points.

Put Γ′′α = Γα ∩A′′. We know that the set ∪n≥1b(Xn ∩ Γ′′) is an infinite set of rational

points in b(Γ′′α). So there is an arc B in b(Γ′′α) containing infinitely many of these points

(since there are only finitely many arcs). We can also suppose that b−1(B) contains an

open subset of A′′ and that Proposition 2.7 still holds restricting to this set: in other

words, the set of θ ∈ (S1)d−1 such that Cθ intersects infinitely many Xn in b−1(B) ∩ A′′
has positive measure.

Let us denote by C the intersection of b−1(B) ∩ A′′ with the set of points where the

rational functions θ1, . . . , θd−1 take values of modulus 1.

The image b(C) is a smooth arc in R4 containing infinitely many rational points and

morevoer there is a set Θ ⊂ Sd−1
1 of positive measure such that b(C ∩ Cθ) is infinite for

θ ∈ Θ. We now distinguish two cases:

First case. There exist only finitely many accumulation points for the set R :=

∪n≥1(b(C ∩Xn)).

Recall that for θ ∈ (S1)d−1 of positive measure the curve Cθ intersects infinitely many

Xn in C, so its image by b contains infinitely many rational points; since b(Cθ ∩ C) has

only finitely many components, it must contain all but finitely many rational points in B.

By Gabrielov’s Theorem, the set b−1(ξ) ∩ C has a uniformly bounded number of

components, say at most N components, independently of ξ. So in particular the first

component of the λ function on (b−1(ξ) ∩ C) is a union of ≤ N intervals in S1.

Note that by Fubini’s theorem the set of θ1 ∈ S1 such that Zθ1 intersects infinitely

many Xn in Γ′′α has positive measure, so in particular is infinite. Using the finiteness of
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the accumulation points of R, we can find N + 2 points θ
(1)
1 , . . . , θN+2

1 such that the sets

b(Z
θ
(i)
1
∩ Γ′′α) all contain a single interval J containing an accumulation point for R.

Using real coordinates for the circle S1 (identified to the interval [0, 1)) we can order

these θ such that θ
(1)
1 < θ

(2)
1 < . . . < θ

(N+2)
1 . Let now ξ1, . . . , ξN+1 be algebraic points in

S1 such that

θ
(1)
1 < ξ1 < θ

(2)
1 < . . . < ξN+1 < θ

(N+2)
1 .

By the inductive assumption, the Zξ1 , . . . , ZξN+1
intersect only finitely many Xn, so they

give rise to only finitely many rational points of the set R. Then there exists a point η ∈ J
of the form η = b(p), for some p ∈ Xn∩Γ′′α, such that η ∈ b(Z

θ
(i)
1

) for all i = 1, . . . , N + 2,

but η 6∈ b(Zξi) for all i = 1, . . . , N + 1. This implies that θ1(b−1(ξ) ∩ Γ′′α) consists of at

least N + 1 disjoint intervals.

Second case: The set ∪n∈N(b(C ∩Xn)) has infinitely many accumulation points.

Since the image of the points where b|A′ has rank 0 is finite, there must be a point

p ∈ A′′ where the differential of b restricted to A′′ has rank ≥ 1 (hence = 1) such that

b(p) is an accumulation point for R. Also, by the same reason, we can and shall suppose

that b(p) lies in a single arc of b(A′′) and is an interior point of this arc.

Now, up to analytically changing coordinates in R4, we can suppose that for a neigh-

borhood D of p in A′′, b(D) ⊂ R4 is the set (x, 0, 0, 0) for |x| < ε. So writing b(s) =

(x1(s), x2(s), x3(s), x4(s)), the restriction to D of the function x1 has non-zero differential

in p and the other xi vanish identically on D. Identifying a neighborhood of p in S with

an open subset of R2d, we can speak of the gradient of x1 at p. This gradient is not

perpendicular to the tangent space at D in p. Hence we can find real analytic coordinates

(t1, . . . , t2d) in a neighborhood of p in S such that: (1) the hypersurface A′′ is defined by

the equation t1 = 0 and (ii) ∂
∂t1

(x1) 6= 0. The last condition is equivalent to the indepen-

dence of the differentials of x1 and t1 at the point p, hence in a neighborhood of the point

p in S.

Let us choose regular functions f1, . . . , fd−1 ∈ Q̄[S] such that their differentials in p,

together with the differentials of x1, and t1, generate the cotangent space in p. By this we

mean that, viewing f1, . . . , fd−1 as maps to R2, the corresponding map (f1, . . . , fd−1, x1, t1)

to R2d has maximal rank in p.

This map is then surjective to an open subset of Cd−1 × R× R, containing the point

(f1(p), . . . , fd−1(p), 0, 0). We can then find an algebraic point ξ ∈ Q̄d−1 such that: (i)

(f1, . . . , fd−1)−1(ξ) is an algebraic curve C containing a point above which the abelian

variety is simple (use Masser’s Theorem 2.2); (ii) the image of the map (x1, t1) : C → R2

contains a neighborhood of the image of p by (x1, t1). In particular, restricting x1 to

C ∩ A′′ = C ∩ t−1
1 (0) we obtain that x1 takes all the values close to the values taken at p;

but then b takes in C ∩ A′′ all the values in a neighborhood of b(p) in b(A′′). Then we
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apply [13] to conclude.

3 Proof of Theorem 0.1

In this short paragraph we just deduce Theorem 0.1, which holds for schemes defined over

the field of complex numbers, from Theorem 2.1, where the ground field was supposed to

be a number field.

We first recall that Theorem 0.1 was already proved in [16] for non-simple abelian

schemes of relative dimension two, so we suppose the schemeA → S appearing in Theorem

0.1 is simple. A field of definition for A, S, the map A → S and its section σ : S → A can

be taken to be a subfield K ⊂ C, finitely generated field over Q. Then K can be viewed

as the function field of an affine variety B over a number field k and K(S) as a function

field of a variety S ′, endowed with a (rational) projection S ′ 99K B, defined over k, whose

generic fiber is an open subset of S. Let d = Tr deg(K) + dimS = dimB + dimS be the

dimension of S ′. Up to eliminating possibly a closed proper subset of S ′, we obtain a well

defined projection S ′ → B; the rational points in S(K) correspond to rational sections

B 99K S ′ defined over k. Also, from the variety A one can obtain a variety A′ defined

over k, endowed with a rational map A′ → S ′; to a section σ : S → A defined over K

corresponds a rational section σ′ : S ′ → A′ defined over k.

Now, every hypersurface in S defined over K gives rise to a hypersurface in S ′ defined

over k. 5. Since the torsion hypersurfaces relative to σ are all defined over K, they give

rise to torsion hypersurfaces of S ′ relative to σ′, defined over k. The finiteness Theorem

2.1 proved in last section then implies Theorem 0.1.

4 APPENDIX A: Uniform Silverman’s Theorem

Let S be a smooth affine algebraic variety of dimension d over Q̄, ϕ : S → Pd−1 a morphism

whose generic fibers ϕ−1(λ) =: Cλ are geometrically irreducible.

As a rule, we shall denote by λ a Q̄-generic point of Pd−1, while algebraic specializations

of λ shall be denoted by the letter θ.

Theorem 4.1. Let π : A → S be a family of abelian varieties over S, defined over a

number field. Let σ : S → A be a non-torsion section. Let ϕ : S → Pd−1 be a morphism

as before. Then, there exist an open dense subset S0 ⊂ S, a positive real number C1 > 0

depending only on σ such that for all θ ∈ Pd−1(Q̄), with the property that the restriction

5note that the vice versa does not necessarily hold
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of σ to Cθ is non-torsion, every point p ∈ Cθ ∩ S0(Q̄) such that σ(p) is torsion satisfies

h(p) < C1(h(θ) + 1).

Remarks

-Here the height of p is defined by any previously fixed projective embedding of S.

-If the point θ is fixed, this is a corollary of Silverman’s specialization bound applied

to the family A → Cθ.

Proof: We use the setting of Chapter 12 in Lang’s book [9]. We note at once that by

induction on dimS we may replace in the sequel S with a Zariski open dense subset.

We can compactify the scheme A → S above a suitable dense open subset S0 of S,

to obtain a morphism π̄ : A → S̄ between projective varieties which coincides with our

previous abelian scheme above S0 and is flat above S0.

Take an ample divisor on A, inducing an ample symmetric divisor on each abelian

variety As := π−1(s), for s in S0. This divisor gives an embedding A ↪→ PN , hence a

naive height in A(Q̄). For each s ∈ S0, we also get en embedding of the abelian variety

As into PN , so a (naive) height in π−1(s) induced by that of A.

Let now σ : S0 → A be a non-torsion section. Composing with the embeddingA ↪→ PN
we obtain a map S0 → PN . Recall the construction of a rational map λ : S → Pd−1; for

the generic λ ∈ Pd−1, we can consider the restriction of the section σ to the curve Cλ,
which will be denoted by σλ. Then we can write σλ : Cλ → A ↪→ PN as

(f0,λ : . . . : fN,λ) : Cλ → PN .

More generally, replacing σ by M · σ, we obtain corresponding maps (f
(M)
0,λ : . . . :

f
(M)
N,λ ) : Cλ → PN . Here each f

(M)
i,λ is a rational function on the curve Cλ. We may also

suppose f
(M)
0,λ = 1.

Provided θ is an algebraic point in Pd−1 lying outside a proper Zariski closed set, we

may specialize at λ = θ obtaining corresponding functions f
(M)
i,θ on the irreducible curve

Cθ (which are irreducible by Lemma 2.5 (1)).

Remark. In the proof of the Theorem and of the subsequent lemmas, we shall

choose a fixed M ; hence we can argue for specializations θ of λ outside some prescribed

hypersurface, and then use induction with a new S, namely the pre-image by ϕ of such a

hypersurface.

We shall use the lemmas below, for which we introduce a definition: given a rational

function f ∈ Q̄(x) its height will be the height of the vector of the coefficients of the

defining polynomials. This height is naturally defined also for rational functions on curves,
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once x is chosen and the function field of the curve is viewed as a finite extension of Q̄(x).

We shall not use sharp estimates, but only inequalities up to a constant factor.

Lemma 4.2. There is a c3 > 0 depending only on σ such that for large M we have

maxi deg f
(M)
i,θ ≥ c3M

2 for all θ ∈ Pd−1(Q̄) outside a suitable proper Zariski-closed set

depending on M .

Sketch of the proof of the Lemma. The canonical height ĥ(σλ) is > 0, where this height

is referred to the function field Q̄(Cλ). Hence there exists c4 > 0 with ĥ(Mσλ) > c4M
2 for

all M ≥ 0. By the usual average procedure of Néron-Tate used to construct the canonical

height from the naive height (see §3, page 29 in Serre’s book [19]), as in the proof of

Zimmer’s theorem, applied to A → Cλ over the function field Q̄(Cλ), we deduce that

maxi(deg f
(M)
i,λ ) > c5M

2. However, the special degree of a rational function in a family

may decrease with respect to the generic one only in a proper Zariski closed set, proving

the lemma.

Lemma 4.3. Let Cλ, be as above defined over a number field k, fλ ∈ k(Cλ) be a

rational function of degree d. Let h : S(Q̄) → R be a height function associated to an

ample divisor; let δ be the degree of such divisor on the curve Cλ. Then there exists a

function c5 = c5(ε, deg fθ) such that for all ε > 0 and for all θ ∈ Pd−1(Q̄) for which Cθ is

irreducible and fθ is defined,

(deg fθ−ε)h(p)−c5 ·(h(fθ)+h(θ)+1) ≤ h(fθ(p))

δ
≤ (deg fθ+ε)h(p)+c5 ·(h(fθ)+h(θ)+1).

Remark: A proof should follow from the classical height machine, since the precise

dependence of c5 is not specified. Moreover, for our purpose it is sufficient to use the left

inequality with deg(f)/2 instead of deg(f)−ε. In any case, a formal proof of the lemma as

stated here follows for instance from Abouzaid’s Corollary 1.2 of [1] as follows: we take a

fixed rational function x on Cλ and we apply Abouzaid’s result to F (λ, x, y) ∈ Q̄(λ)[x, y],

the minimal polynomial such that F (λ, x, fλ) = 0. It is irreducible also as a polynomial

over Q(λ), since Cλ is absolutely irreducible over Q̄(λ).

The lemma will be applied with fλ = f
(M)
i,λ .

In the following lemma we bound the height of the coefficients of f
(M)
i,λ :

Lemma 4.4. In the above notation, there exists a function M 7→ c7(M) (depending

only on A → S and σ), such that for all i = 0, . . . , N, θ ∈ Pd−1(Q̄) and M ≥ 1,

(4.8) h(f
(M)
i,θ ) ≤ c7(M) · (1 + h(θ)).
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Remark: We omit the easy proof. We could obtain c7(M) to be c7 ·M2 but we shall

not need this.

Let ĥAs denote the Néron-Tate height in As associated to the above embedding (i.e.

the renormalization of the naive height associated to the embedding) and hA the naive

height on A, still relative to the given embedding; by restriction this gives the naive

heights on As. Then, with the above setting:

Lemma 4.5. There exist γ1, γ2 > 0 such that for all s ∈ S and all P ∈ π−1(s),

|ĥAs(P )− hA(P )| ≤ γ1h(s) + γ2.

This may be viewed as a ‘Uniform Zimmer’s Theorem’ and essentially follows from The-

orem 1.3, due to Silverman-Tate, Chapter 12 in Lang’s book [9]. Note that we need the

estimate only above a Zariski-dense subset S0 of S.

We now proceed to the proof of the Theorem. As remarked before the above lemmas

it suffices to prove the statement for all θ outside any prescribed hypersurface, because

then we may argue by induction on the dimension of S, replacing S with the inverse image

ϕ−1(hypersurface).

Let M be a sufficiently large integer to justify the estimate which shall follow, and let

us argue supposing tacitly that θ does not belong to the above mentioned hypersurface,

so that we can apply Lemma 4.2 to θ.

Let then θ be such that Cθ is non-torsion relative to σ. Suppose p ∈ Cθ(Q̄) is a point

such that σ(p) is torsion.

Then ĥAp(σ(p)) = 0 and also ĥAp(Mσ(p)) = 0. By the last lemma,

|hA(Mσ(p)| ≤ γ1h(p) + γ2.

However Mσ(p) = (1 : f
(M)
1,θ (p) : . . . : f

(M)
N,θ (p)). By Lemma 4.4 (left inequality),

Lemma 4.3 and Lemma 4.5 we obtain

hA(Mσ(p)) ≥ c8M
2h(p)− c9(M) · (1 + h(θ)).

for a function c9, which can be suppose to be increasing in M .

Let us choose an index i providing the maximum of the degree for f
(M)
i,λ . Comparing

upper and lower bounds for h(Mσ(p)) and expressing in term of f
(M)
i,λ (p) we obtain

h(p)(c8M
2 − γ1) ≤ γ2 + c9(M)(1 + h(θ)).

Choose M such that c8M
2 > 2γ1 and we obtain for a suitable constant C1, h(p) <

C1(h(θ) + 1).
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5 APPENDIX B: Remarks on the split case

In this Appendix, we shall deal with a very special case of our theorems when the family

is not simple. This case has been treated in the paper [16], by methods somewhat com-

plicated. Hence we believe it is not entirely free of interest to present here an alternative

approach more in line with the methods used in this paper for the case of simple families.

For these reasons, we limit ourself to a very special situation, giving moreover only a

sketch of the argument.

Let S be a surface with algebraically independent regular functions λ, µ, so that we

have a generically surjective map (λ, µ) : S → A2.

Our abelian family will be As : Eλ(s) × Eµ(s), where Et is the Legendre curve:

Et : y2 = x(x− 1)(x− t)

We tacitly assume that λ, µ do not assume in S the value 0, 1. Now the section σ : S → A
corresponds to a pair of sections P = Ps ∈ Eλ(s), Q = Qs ∈ Eµ(s), where the coordinates of

P,Q (which may be viewed as points defined over a fucntion field) are rational functions of

s. We suppose that none of P,Q is torsion, which yields that they are linearly independent

over End(A/S), since Eλ, Eµ are not identically isogenous.

As for the general case treated in the paper, we can define the Betti coordinates of the

section, for which we adopt the same notation. Now our proof considers the two cases,

according to the rank of the differential of the Betti map. We notice at once that the

generic rank can be two or four, since by Proposition 1.1 it must be even, and it can be

zero only for a torsion section.

Case I. The generic rank of the differential of the Betti map is 2.

Note that, writing the Betti map as s 7→ (a1(s), a2(s), a3(s), a4(s)), where (a1, a2)

is the Betti map corresponding to the first elliptic curve, a1, a2 (resp. a3, a4) must be

analytically independent, for otherwise the fibers of the Betti map would have dimension

≤ 1, hence 0 which we have excluded. Then locally either a3, a4 are functions of a1, a2 or

vice-versa.

We let U be the maximal open set where b has rank exactly two. It is the complement

of the set where the rank is zero; on this latter set the Betti coordinates are locally

constant, so this set is a countable union of fibers for the Betti maps; as observed in

the preliminaries, the fibers of the Betti maps are complex-analytic curves. So U is the

complement of an analytic curve.

As in the opening section of the paper, U is the union of finitely many simply connected

open sets Uα.
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Lemma 5.1. For every Uα there exists a non empty open set Vα ⊂ Uα and a ’transverse’

algebraic curve Zα defined over Q̄ that meets in Vα all the level curves which meet Vα.

By ‘transverse’ we mean transverse in the usual sense, i.e. non-tangent, to the level

curves of the Betti map.

Proof. As above, by restricting Uα we can suppose that two coordinates of the Betti

map, say a3, a4, are functions of a1, a2 (see also the notation above). The map s 7→
(a1(s), a2(s)) is injective with differential of maximal rank (so a1, a2 become coordinates

in the image). The level curves above a1, a2 in (Uα) are level curves for (a1, a2, a3, a4),

therefore are complex-analytic; also, they are smooth because the rank of the differential

is constant in Uα.

Take an algebraic point p in Uα; it is a smooth point in the corresponding level curve.

We now take an algebraic curve Zα, defined over Q̄, passing through p and not tangent to

the level curve. Shrinking the neighborhood of p, by the implicit function theorem again,

we obtain the assertion.

Let us now fix the neighborhood Vα as in the lemma and let Zα be the algebraic curve

appearing in the lemma. By the construction of the lemma, the Betti map restricted to

Zα still has rank 2 As remarked above, we may suppose that the projection to the first

two coordinates of the Betti map has still rank 2. Then we may find on Zα a z where the

Betti coordinates a1, a2 are rational of any given large enough denominator and this point

z will be necessarily algebraic. This means that the section P takes a torsion value Pz on

Eλ(z), whose order is the said denominator. The point z defines a level curve Xz (the level

curve containing z). This is a torsion curve for P , hence it is algebraic. Since a3, a4 are

constant on Xz, by (a very special case of) Manin’s Theorem of the kernel they must be

rational. Then we obtain that for every point z ∈ Zα which is torsion for the section P ,

this point is also torsion for the section Q. In this way we obtain infinitely many torsion

values of the section σ restricted to Z. By the algebraic case of [13], this is impossible

since the restriction σZα is non torsion unless P,Q are linearly dependent on Zα. However

by Silverman’s specialization theorem we may choose the curve Zα in the lemma, with

tangent vector of sufficiently large height so that this does not happen (or else, it suffices

to exclude that Eλ, Eµ become isogenous along Zα; this can be achieved e.g. by taking Zα

to be a line in the plane λ, µ, since only finitely many lines might correspond to isogenous

families).

Case II: The generic rank of the differential is 4. Let us fix a transcendental λ0 and

consider the curve V = Vλ0 ⊂ S, defined by λ = λ0. There exists a non-empty open subset

(in the complex-topology) A ⊂ Eλ0 such that P−1(A)∩Vλ0 does not contain critical points
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of the jacobian. Let X be a torsion curve of high order N . It intersects Vλ0 in a point

x ∈ S because λ0 is transcendental. Since λ0 is transcendental, we may view x as a

Q̄-generic point of X. By Galois, if the order of torsion N is sufficiently large, there is a

conjugate of x inside our open set P−1(A), so the open set P−1(A) would contain a level

curve.

6 APPENDIX C: An issue of Mazur

Let us recall the last problem considered in the introduction. We take for the base S

a finite cover of the moduli space M2 of (complex) curves of genus 2, which is a quasi

projective algebraic variety of dimension three. The fiber Ax over a point x ∈ M2 (rep-

resenting a curve of genus 2) will be the jacobian of that curve, which is a principally

polarized abelian surface. We thus obtain an abelian scheme of relative dimension 2 over

a three-dimensional base.

Take now a non-torsion section σ : S → A. We shall prove

Theorem 6.1. There exist torsion curves for σ of arbitrarily high torsion order, and

the union of these curves is topologically dense in S, and thus Zariski-dense.

Similarly to the proof of the Main Theorem, the present proof involves the rank of

the Betti map, and we can split it into two cases according. Since this rank is even by

Proposition 1.1, and since it cannot be zero (by Manin’s theorem, because σ is not torsion)

we have only two cases to consider.

Case I. The generic rank of the differential of the Betti map is 4 (maximal rank).

In this case the Betti map is locally surjective, so in particular it takes some rational

value in every open set of S. Also, on a suitable open dense subset of S, the rank is

exactly 4 and there the fibers of the Betti map are complex subvarieties of dimension 1

(use Proposition 1.2 above). The fibers of the rational points, being torsion curves are

algebraic curves. This proves our assertion in this case.

Case II. The generic rank of the differential of the Betti map is 2 (degenerate Betti map).

We shall in fact exclude this case, thus completing the proof of Theorem 6.1.

In this Case II, all non-empty fibers of the Betti map, which are complex varieties,

will have complex dimension at least 2 (use again Proposition 1.2 above). On the other

hand, by Manin’s theorem, this dimension cannot be 3 (for otherwise the Betti map would

be constant, hence a rational constant by Manin’s theorem, so σ would be torsion), so

it will be exactly 2. If now the Betti map takes rational values with infinitely many

denominators, we can apply our Main Theorem obtaining a contradiction. To prove that
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this would be in fact the case, we shall restrict our analysis to some special surfaces inside

M2, namely those corresponding to split-jacobians.

Let us first prove that there are infinitely many such surfaces. Given a (smooth,

projective) genus-1 curve E and two points P1, P2 on it, one can find, for every d ≥ 3,

a cover X → E of degree d, ramified only over P1, P2, where X has genus 2: it suffices

to apply Riemann’s Existence Theorem with the suitable combinatorial data, which in

this case correspond to having exactly one ramified point over each Pi, i = 1, 2, with

ramification index 2. Now, such curves X depend, up to isomorphisms, on two parameters:

the choice of the elliptic curve E (one-dimensional moduli space) and the choice of the

point P2 − P1 (where the operation is made according to the group law on E). Hence we

have a surface on the moduli space, and correspondingly a surface on S. Also, it is easy to

see that if we take pairwise coprime values of the degree d, the corresponding surfaces are

indeed distinct (here we use the fact that the Jacobian of a generic curve X corresponding

to a point on this surface is isogenous to a product of two non-isogenous elliptic curves,

for otherwise the moduli space of such jacobians would be one-dimensional).

Now, by our Main Theorem applied to S, only finitely many such surfaces can be

torsion surfaces.

Take one such surface which is not torsion; by our results in Appendix B, there are

infinitely many torsion values for σ on such a surface. This concludes the proof that Case

II cannot occur.

As pointed out by the referee, in the situation of Appendix C the base, being a finite

cover of the moduli space A2,1, admits an explicit compactification, where the points

at infinity can be described in modular terms. This may perhaps be used to obtain a

simpler proof, by ‘algebraically’ constructing the relevant curves Cθ avoiding the torsion

hypersurfaces at infinity.
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