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Abstract

We adapt a population-based model of Opisthrochis viverrini transmission
dynamics to determine the effectiveness of three different interventions. The
model includes the definitive hosts, humans; the reservoir hosts, dogs and
cats; and the intermediate hosts, snails and fish. We consider the interven-
tions: education campaigns to reduce the consumption of raw or undercooked
fish, improved sanitation and treatment through mass drug administration.
We calculate the control reproduction number, simulate different scenarios
and optimise the interventions with optimal control. We look at the potential
of the interventions to eliminate transmission within 20 years. The model
shows that education and better sanitation need a very high coverage to fulfill
the goal of elimination, whereas drug distribution at medium coverage and
yearly distribution is enough. The best solution is a combination of drug
distribution at a medium level of coverage and as high as possible coverage
of education and better sanitation.
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1. Introduction

The liver fluke Opisthorchis viverrini infects people through nutrition-
related behaviour such as eating raw or undercooked infected fish. The dis-
tribution of O. viverrini occurs mainly in Southeast Asia. Over 67.3 million
people are at risk of getting infected with this liver fluke [1]. Over 8 million
people are infected with O.viverrini in the Mekong area in Thailand, Lao
People’s Democratic Republic (PDR), Cambodia and Vietnam [2]. Infection
with O. viverrini can, in the worst case, lead to a subtype of liver cancer [3].

The life cycle of O. viverrini includes humans, dogs and cats as definitive
hosts and snails and fish as first and second intermediate hosts. The adult
worm lives in the bile ducts of its definitive hosts. Their eggs reach the
external environment through faeces. The eggs are ingested by the first
intermediate host, snails of the genus Bithynia when they reach freshwater.
The free-living cercariae leave the snails and penetrate through skin of the
fish of the family Cyprinidae, their second intermediate host. The cerceriae
develop inside the fish into metacercariae and the fish reaches its infective
stage for the definitive host [4]. The worms can survive in the definitive hosts
for about 10 years [5].

Our model analysis is based on a model from a previously published paper
[6]. This model includes humans, dogs and cats as definitive hosts and snails
and fish as intermediate hosts. Distributions of unknown parameters of this
model were estimated by a Bayesian sampling resampling approach and point
estimates with maximum likelihood estimation.

There is no published paper on modelling interventions against O. viver-
rini, but there are many publications on interventions against other diseases,
such as influenza vaccination, which can be adapted. Optimal control is
used to optimise the coverage of the choosen intervention in different in-
fluenza models. We can adapt the optimal control method of these influenza
models to our model.

To reach the goal of elimination of O. viverrini in 20 years, we have to
find the optimal coverage of each intervention. We consider three different
types of interventions and model their targeted coverage. The first one is
education campaign to change people’s eating habits, that they stop eating
raw or undercooked fish. This results in no new infections in humans. The
second one is improved sanitation, which prevents outdoor defecation. We
assume that this intervention is perfect, so that no egg is able to reach the
environment and be ingested by snails, when people use the latrine. The last
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one is treatment. We look at the coverage of people that has to be treated,
with the assumption that the drugs have complete efficacy. We also look
at the optimal time frequency at which drug distribution takes place. At
the moment Praziquantel is the only drug available against O. viverrini [1],
which has a high efficacy in regard to cure rate and egg reduction rate [2].

After developing the model, we estimate the unknown parameters with
the help of data from Lao PDR. We define the basic as well as the control
reproduction number of the model. This helps us to define the minimum
coverage of each intervention. Then we optimise coverages with the optimal
control method. Finally we estimate the time and probability of reaching
elimination of O. viverrini to investigate more about the potential of the
interventions. We also simulate the influence of the sensitivity of the diag-
nostic test, as it does not have 100 % sensitivity, on the mean worm burden
in humans and on the probability of elimination.

2. Mathematical model

We extend the previously published model with reservoir hosts of O.
viverrini to include the effect of interventions [6]. We assume that the trans-
mission of O. viverrini depends on humans, dogs and cats as definitive hosts
and snails and fish as intermediate hosts. We simulate the mean worm bur-
den in humans, dogs and cats and the prevalence in fish and snails. We
model the interventions as:

(i) education campaign to reduce the consumption of raw or undercooked
fish. We let Ie denote the coverage successfully reached by the education
campaign, that is, the proportion of people who do not get further
infected by eating raw or undercooked fish.

(ii) improved sanitation to stop transmission from humans to snails, we let
Id denote the coverage of sanitation, that is the proportion of people
stop defecating outdoors because of the improved sanitation.

(iii) mass drug administration, we let Im denote the proportion of people
treated annually (except for campaigns at lower frequencies as described
later).

Assuming γ is the rate per unit time of treating people,

exp(−γ × Tγ) = 1− Im
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is the proportion of untreated humans with Tγ as the time interval of treat-
ment in days [7]. It follows that the treatment rate is

γ =
− log(1− Im)

Tγ
.

We consider two modes of mass drug administration: the first is continuous
treatment Im, with Tγ = 1 day in the model, which refers to a daily treatment
rate. The second is a pulsed treatment applied at a fixed frequency. For
example treatment once a year is modelled by,

Im(t) =

{
Im, t mod 365 = 1,

0, else,

with Tγ = 1 day. The full model is given by the ordinary differential equation
system,

dwh(t)

dt
= βhfNf if (t)(1− Ie)−

(
µph −

log(1− Im(t))

Tγ

)
wh(t), (1a)

dwd(t)

dt
= βdfNf if (t)− µpdwd(t), (1b)

dwc(t)

dt
= βcfNf if (t)− µpcwc(t), (1c)

dis(t)

dt
= (βshNhwh(t)(1− Id) + βsdNdwd(t) + βscNcwc(t))(1− is(t))− µsis(t),

(1d)

dif (t)

dt
= βfsNsis(t)(1− if (t))− µf if (t), (1e)

Variable Description
wh Mean worm burden per human host
wd Mean worm burden per dog host
wc Mean worm burden per cat host
is Proportion of infectious snails
if Proportion of infectious fish

Table 1: State variables of the opisthrochiasis model, see [6, Table 1]
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where the state variables are shown in Table 1 and the parameters in Table 2.
We model the mean worm burden per human host, wh, so we distribute

the total number of worms equally to all humans. wh is additionally influ-
enced by the proportion of the people who stop eating raw or undercooked
fish because of the education campaign with coverage Ie. The transmission
rate from fish to humans is proportionally reduced by (1 − Ie). The worms

die naturally in humans, µphwh, or because of the treatment, − log(1−Im(t))
Tγ

wh.

We make the implicit assumption that there is no correlation between worm
burden and the likelihood of being treated so the proportion of people get-
ting treated, with the assumption that treatment is perfect, is equal to killing
this proportion of worms of the mean worm burden in human. The infec-
tion rate of snails depends on the proportion of people who have access to a
latrine and do not defecate outdoors. Making the implicit assumption that
access to a latrine is not correlated with worm burden, improved sanitation
proportionally reduces the transmission from humans to snails by (1− Id).

We use data from a study on two islands in the Mekong in Champasack
province, Lao PDR, conducted from October 2011 to August 2012. We have
data on the prevalence of infection in humans, dogs, cats, snails and fish and
intensity of infection in in humans, see Table 3. The number of humans is
estimated from the study in Champasack province [8], but additional data
on the number of animals and death rates are from literature and expert
opinions.

To estimate β = (βhf , βdf , βcf , βsd, βsc, βsh, βfs), we followed the Bayesian
resampling approach in [6] with the same parameter ranges as in Table 4,
followed by the maximum likelihood estimation (MLE) method. The final
estimate with MLE is found in Table 4.

We simulate the ODE system (1) with the Runge-Kutta 4 method with
the initial value we estimate from the data, (wh(0), wd(0), wc(0), is(0), if (0)) =
(33, 3, 13, 0.003, 0.3), and time steps in days up to 20 years. The numerical
results of the model with parameter values of the MLE are presented in Fig-
ure 1. To show the uncertainty of the parameter sets, we also illustrate the
median, the mean and the standard deviation of the 500 data sets in Figure 1.

3. Basic and control reproduction number

The basic reproduction numberR0 is the average number of new offspring
per parasite in the next step of the life cycle without interventions. It is
calculated as the spectral radius of the next-generation matrix [9]. The cubed
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spectral radius is equal to the number of offspring of one adult worm in the
next generation. It follows that when the basic reproduction number is below
one (R0 < 1) the parasite cannot produce enough offspring to persist. The
control reproduction number Rc includes interventions in the reproduction
number. The next-generation matrix K of the model (1) is given by

K =




0 0 0 0
βhfNf (1−Ie)

µf

0 0 0 0
βdfNf
µf

0 0 0 0
βcfNf
µf

βshNh(1−Id)
µph− log(1−Im(t))

Tγ

βsdNd
µpd

βscNc
µpc

0 0

0 0 0
βfsNs
µs

0



,

assuming that treatment is distributed continuously. Its spectral radius and
so the control reproduction number of the model is given by the expression,

Rc =

(
NsNfβfs(µphTγ − log(1− Im(t)))(Ndβdfβsdµpc +Ncβcfβscµpd)

(µphTγ − log(1− Im(t)))µpdµpcµsµf

+
NsNfβfs(1− Id − Ie + IdIe)(TγNhβhfβshµpdµpc)

(µphTγ − log(1− Im(t)))µpdµpcµsµf

) 1
3

.

The control reproduction number depends on the intervention and their
coverage. In Figure 2, the graphs show the control reproduction number in
dependence of the coverage, each intervention applied singly with the MLE
parameter values and Tγ = 365. The control reproduction number Rc has a
similar dependence on the level of coverage of the interventions of education
campaign (Ie) and improved sanitation (Id). It needs at least a coverage
of 25% of these two interventions each to get Rc below 1. The coverage of
the mass drug administration (Im) has a much stronger effect on the control
reproduction number than the coverage of the education campaign (Ie) and
improved sanitation (Id). The control reproduction number decreases below
1 at the a low coverage of 7% of treated people.

The basic reproduction number

R0 =

(
NsNfβfs(Ndβdfβsdµpc +Ncβcfβscµpd +Nhβhfβshµpdµpc)

µphµpdµsµf

) 1
3
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is equal to the control reproduction number Rc if the coverage of all inter-
ventions is 0 no interventions in the population.

4. Effectiveness of interventions

To find the optimal level of coverage of the interventions, we first look
at them separately. We solve the equation Rc = 1 for the coverage of each
intervention in absence of the other two interventions (see the intercept points
in Figure 2),

Ie = Id = 0.254,

Im = 0.0678,

the other parameters are set to the MLE solutions in Table 4. As seen in
Figure 2, the control reproduction number depends similarly on Ie and Id.
The combination of the interventions Ie and Id (without Im) is only success-
ful if Rc < 1. The possible combinations to reach a control reproduction
number below 1 and a decreasing worm burden in humans are shown in
Figure 3. We use the MLE solutions (Table 4) for the parameters in the
model. The minimum combination such that Rc < 1 is the minimum cov-
erage Ie = Id = 0.1363. Figure 2 also shows that the effectiveness of the
interventions in reducing Rc increases with coverage for improved sanitation
and education campaign but decreases for mass treatment. Figure 2 describes
the minima of coverage we need for each intervention separately to interrupt
transmission, assuming Im is continuous with Tγ = 365. However, the min-
imum levels coverage are too small to reach a low number of mean worm
burden in humans in 20 years. Hence, we simulate the levels of coverage of
Ie ∈ {0.2, 0.4, 0.6} and Id, Im ∈ {0.4, 0.6, 0.8} which cover reasonably achiev-
able levels of coverage. Treatment is assumed to be distributed every year
once. The numerical simulations of these levels of intervention coverage are
shown in Figure 4. We compare the numerical solution without any interven-
tion to the numerical solution including each intervention separately at the
different coverage levels. Here we assume a more realistic pulsed distribution
of treatment once a year.

The mass drug administration depends on time, more precisely on the
frequency which the drug is distributed. We assume different frequencies of
drug distribution every 0.5, 1, 2, 3 and 4 years. Hence, Im(t) is the proportion
of humans who receive a drug against O. viverrini in every drug distribution
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campaign. The influence of the choice of this frequency on the mean worm
burden in humans with different levels of coverage is shown in Figure 5.

5. Optimal Control

To synchronously optimise the level of coverage of the education campaign
(Ie) and the mass drug administration (Im) in the model, we use the optimal
control method. We do not try to optimise the sanitation coverage because
we assume that any program would try to maximise sanitation for all its
additional health benefits. We focus on optimising interventions that are
targeted against O. viverrini. To fulfil the linearity property of the right-
hand side of the model (1), we optimise the treatment rate

γ(t) = − log(1− Im(t))

365

instead of the proportion Im(t), when Im(t) and correspondingly γ(t) are
piecewise constant for a pulsed treatment rate. Since treatment distribution
occurs once a year, we have a rate γ(t) of treated people with the properties,

γ(t) =

{
γk, t mod 365 = 1,

0, else.

with the yearly rate γk for k = 1, . . . , n, n ∈ N. The first equation of the
ODE system (1) changes then to

dwh(t)

dt
= βhfNf if (t)(1− Ie)− (µph + γ(t))wh(t). (2)

To minimise the coverage of the interventions affecting humans leads to the
optimal control problem

min
Ie,γ

∫ T

0

w2
h(t) +

α2

2

(
Ie(t)

2 +
n∑

k=1

γ2k

)
dt

with the weight α = 0.001, the time T = 20 × 365 (in days), n = T
365

,
0 ≤ Ie(t) ≤ 0.9 and 0 ≤ γk ≤ 0.0016, which is equal to 0 ≤ Im = 1−exp(γk×
365) ≤ 0.8 for each k = 1, . . . , n. The regularisation parameter α priorities
the minimisation of the mean worm burden instead of the coverage level.
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We assume that it is not possible to reach all people by drug distribution
and that the maximum of the treatment coverage is 80%. The maximum of
coverage of education on eating raw or undercooked fish is 90%.

To simplify the notation, we write Ie(t) = Ie, γ(t) = γ and I = (Ie, γ1 . . . , γn).
We use the definitions

L(t, wh, I) := w2
h(t) +

α2

2

(
I2e +

n∑

k=1

γ2k

)

as the integrand, df
dt

= f(x, t) with x = (wh, wd, wc, is, if ) as our ODE model
(1), so fi = f(x(i), t) for i = 1, . . . , 5,

J(I) =

∫ T

0

w2
h(t) +

α2

2

(
I2e +

n∑

k=1

γ2k

)
dt

as the integral to minimise and

U = {I(t)|I(t) ∈ [0, 0.9]× [0, 0.0016]n, t ∈ [0, T ]}.

To show that a solution exists to this optimal control problem, we have
to prove the following assumptions [10, 11]:

Proposition 1 (Existence). i) The set of solutions to the system (1) is
not empty and the right-hand side is continuous and bounded.

ii) U is closed and convex and f can be written as

f(t, wh, Ie, γ) = a(t, wh) + b(t, wh)Ie + c(t, wh)γ.

iii) L(t, wh, ·) is convex on U .

Proof. i) The ODE system (1) is well-posed in the strip S ⊆ R5, which is
defined by the boundaries of the system’s solution for (wh, wd, wc, is, if ):

S =

[
0, βhf

Nf

µph

]
×
[
0,
βdfNf

µpd

]
×
[
0,
βcfNf

µpc

]
× [0, 1]2.

The right-hand side of the system is well-posed and with continuous
partial derivatives. The prove of existence and uniqueness of the solu-
tion of the model (1) can be found in [6, Section 2.1].
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The right-hand side of the ODE system (1) is clearly continuous and
bounded in the strip S̃ ⊆ R5, given by

S̃ = [−βhfNf , βhfNf ]× [−βdfNf , βdfNf ]× [−βcfNf , βcfNf ]

×
[
−µs,

βshNhβhfNf

µph

]
× [−µf , Nsβfs].

ii) U is closed and convex because it is a Cartesian product of closed
intervals. f can be written as a linear combination according to

f(t, wh, Ie, γ) = a(t, wh) + b(t, wh)Ie + c(t, wh)γ,

where

f1(t, wh, Ie, γ) = βhfNf if − wh︸ ︷︷ ︸
a(t,wh)

+ (−βhfNf if )︸ ︷︷ ︸
b(t,wh)

Ie + (wh)︸︷︷︸
c(t,wh)

γ.

The linear combination for the other system of equations (f2, f3, f4, f5)
looks similar.

iii) To show that L(t, wh, ·) is convex on U , we must have:

L(t, wh, (1− ε)I1 + εI2) ≤ (1− ε)L(t, wh, I1) + εL(t, wh, I2),

for I1, I2 ∈ I.

It holds

L(t, wh, (1− ε)I1 + εI2)

= w2
h + ((1− ε)Ie,1 + εIe,2)

2 +

(
(1− ε)

n∑

k=1

γk,1(t) + ε

n∑

k=1

γk,2(t)

)2

≤ (1− ε)
(
w2
h +

α2

2

(
I2e +

n∑

k=1

γk(t)
2

))
+ ε

(
w2
h +

α2

2

(
I2e +

n∑

k=1

γk(t)
2

))
.

To characterise the optimal solution, we use Pontryagin’s maximum prin-
ciple [12]. The proof can be found in Pontryagin’s original text [13].
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There exists a piecewise differentiable adjoint variable

λ(t) = (λ1(t), λ2(t), λ3(t), λ4(t), λ5(t))

such that,

λ′(t) =
−∂H(t, x∗(t), I∗(t), λ(t))

∂x

with the Hamiltonian H

H(t, wh, wd, wc, is, if , Ie, γ, λ) = L(t, wh, I) +
5∑

l=1

λl(t)fl(x, t),

and x∗ = (w∗h, w
∗
d, w

∗
c , i
∗
s, i
∗
f ) as the corresponding state variables of the opti-

mal control functions I∗ = (I∗e , γ(t)∗).

Proposition 2. The optimal controls are given by the set

I∗e = min

{
max

{
0,
λ1βhfNf if

α2

}
, 1

}
,

γ∗ = min

{
max

{
0,
λ1wh
α2

}
, 1

}
.

Proof. Let I∗ bet the optimal control functions to the corresponding state
variables w∗h, w

∗
d, w

∗
c , i
∗
s, i
∗
f , which minimise our integral function J(I). It

follows with the Pontryagin’s maximum principle, that adjoint variables
λ(t) = (λ1(t), λ2(t), λ3(t), λ4(t), λ5(t)) exist such that

λ′1 = −2wh + λ1(µph + γ)− λ4βshNh(1− Id)(1− is), (3a)

λ′2 = λ2µpd − λ4βsdNd(1− is), (3b)

λ′3 = λ3µpc − λ4βscNc(1− is), (3c)

λ′4 = λ4(βshNhwh(1− Id) + βsdNdwd + βscNcwc + µs)− λ5βfsNs(1− if ),
(3d)

λ′5 = λ5(βfsNsis + µf )− λ1βhfNf (1− Ie)− λ2βdfNf − λ3βcfNf , (3e)
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with transversality conditions λi(t1) = 0 for i = 1, . . . , 5. Considering the

optimality condition ∂H(t,x∗(t),I∗(t),λ(t))
∂I

= 0, we get the solutions

I∗e =
λ1βhfNf if

α2
, (4a)

γ∗ =
λ1wh
α2

. (4b)

It follows with the characteristics of the control set U that the proposition
holds, compare [11].

We use the Forward-Backward Sweep method with the Runge-Kutta 4
method to calculate the solution of the optimal control [12]. We calculate the
optimal control solution for three different but fixed coverage of Id, namely
0.4, 0.6, and 0.8. We start with the end value of the MLE solution in Figure
1 as initial value of the state variables

(wh(0), wd(0), wc(0), is(0), if (0)) = (44.807, 0.508, 11.665, 0.003, 0.246).

We choose the weight α = 0.001 and solve the ODE system (1) with the
MLE parameters in Table 4 forward in time with 1,000 iterations, followed
by the calculation of ODE system of the adjoint functions (3) backward in
time with 1,000 iterations. With the new solution of the adjoint functions,
we can update the solution of the intervention I accordingly to the equations
(4). We repeat these steps until the relative error of the interventions is
smaller than δ,

∥∥∥I − Ĩ
∥∥∥

‖I‖ ≤ δ,

with Ĩ being the previous solution. To include the option of ‖I‖ = 0 we
transform it to the condition

δ ‖I‖ −
∥∥∥I − Ĩ

∥∥∥ ≥ 0.

The parameter δ is set to δ = 0.001 [12].
The solution of the the treatment rate γ(t) is transformed back to the

proportion Im(γ) = 1 − exp(γ(t) × 365). The minimisation of the inter-
ventions Ie and Im(γ) is shown in Figure 6(a), it is the same solution for
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all three assumption of Id ∈ {0.4, 0.6, 0.8}. The mean worm burden in the
definitive hosts and the prevalence in the intermediate hosts differs about
each assumption on Id as shown in Figures 6(b)–(f).

The solution of the optimal control problem shows that the optimal cov-
erage for treating people is 44%. The coverage of people that should stop
eating raw or undercooked fish is set to the maximum of 90% over the whole
time period.

6. Elimination

We define the elimination of O. viverrini when either the mean worm
burden in humans reaches 1 (wh ≤ 1) or only one infected fish (if ×Nf ≤ 1)
or snail (is × Ns ≤ 1) is left. Treatment depends on the relationship be-
tween the time to elimination of O. viverrini and the frequency of treat-
ment. The application is shown in Figure 7(a). We use the parameter
values of the MLE solution (see Table 4). We consider levels of coverage
Im ∈ {0.4, 0.5, 0.6, 0.7, 0.8} for mass drug administration. The probability
of reaching elimination is calculated with the 500 data sets we constructed
from the Bayesian sampling resampling approach, as the proportion of data
sets reaching elimination out of the total number of data sets (500). Elimi-
nation is achieved when it reaches the threshold limit of less than one worm
per person or one infected fish or snail in 20 years. Time to elimination for
the interventions education campaign, improved sanitation and mass drug
administration at different frequencies as a function of coverage is shown
in Figure 7(b). The probability of elimination depending on the treatment
frequency is shown in Figure 7(c). The probability of reaching elimination
depending on coverage of the interventions is shown in Figure 7(d).

The test to diagnose humans with O. viverrini has an estimated sensi-
tivity of 70 to 95 %. The test is currently used to identify healthy people
after treatment. We add a parameter φ for the sensitivity of the diagnostic
test into the model. This is equal to the assumption that we treat only 70 %
to 95 % of the coverage Im, namely Im × φ. Then, the untreated proportion
of the coverage (1− Im × φ) are tested false negative and get no treatment.
Including the sensitivity changes the first equation of the model (1) to

dwh(t)

dt
= βhfNf if (t)(1− Ie)− (µph − log(1− Im(t)× φ))wh(t). (5)

The impact of the sensitivity of the diagnostic test on the mean worm bur-
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den and the probability of elimination is shown in Figure 8. The time to
elimination is calculated with the MLE parameter in Table 4.

7. Discussion

We defined the basic and control reproduction number of the model (1).
The influence of coverage on the control reproduction number depends on the
interventions as shown in Figure 2. The interventions, education campaign
(Ie) and improved sanitation (Id) behave similarly. The coverage of the
intervention mass drug administration (Im) has a stronger influence on the
reproduction number, and the control reproduction number reaches 1 at a
low coverage. The minimal coverage of targeted humans with education
campaigns is Ie ≈ 0.2540. The same holds true for coverage of improved
sanitation Id ≈ 0.2540. The coverage of annual mass drug administration
has to reach Im ≈ 0.07 at a minimum to decrease the worm burden over
time.

The decrease of the worm burden in humans with mass drug adminis-
tration depends on the frequency of the distribution. The more often the
distribution takes place, the faster the mean worm burden decreases. The
decrease in mean worm burden in humans is much steeper with distributions
once or twice a year, than every 2, 3, or 4 years. At higher coverage of
mass drug administration, the less is difference between the effects of the
distribution frequencies on the mean worm burden in humans.

The optimal control calculation suggests a yearly mass drug adminis-
tration coverage of Im ≈ 0.44, to achieve elimination in 20 years and that
education campaigns should target 90% of people to stop eating raw or un-
dercooked fish. Varying the coverage of Id ∈ {0.4, 0.6, 0.8} does not have an
influence on the optimal control calculations of Ie or Im.

Considering the probability of reaching elimination in 20 years, mass drug
administration has to take place once or twice a year. About 80% of all the
500 parameter sets reach elimination with coverage of the optimal control
solution of 44% distributed twice a year. A treatment once a year with the
same coverage of 44% leads still to elimination in about 50% of the param-
eter sets. The other two interventions, education campaign (Ie) and resepc-
tively improved sanitation (Id), require a very high coverage (over 70%) to
reach elimination under 30, respectively 35 years. Also, the probability of
elimination of these two interventions is below 50% even with a high cov-
erage level. Therefore, education campaigns and improved sanitation alone
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are not enough to reach the elimination goal; and treatment of humans is
needed. We need high coverage of education campaign on stopping to eat
raw or undercooked fish to exclude reinfection of treated humans. Improved
sanitation leads to a lower transmission towards snails and brings additional
health benefits. Hence, we seek for a coverage as high as possible of improved
sanitation.

The sensitivity of the diagnostic test is negligible in terms of the mean
worm burden in humans because the difference in the results is less than
one worm apart after 20 years. If we look at the probability, then it is only
negligible if the mass drug administration covers 80% of the people.

We ignore seasonality, intensity of infection in fish and the age of humans
in this model. The number of fish and snails follow a seasonal pattern.
Including seasonality into the model could help to find the best time, in
terms of effectiveness, to treat humans. The mean worm burden in the
definitive hosts increases as faster as higher the intensity of infection in fish
is. In this model we do not distinguish between different level of intensity
of infection, we only have infected or uninfected fish. We assume that every
human is the same and has the same eating behaviour. In reality older people
have more worms, because they accumulate worms over their life time. This
has the consequences that we have to target the right age group with the
interventions.

Our model suggests that the education campaign reaches as many people
as possible and the coverage of improved sanitation is at the highest possible
level. In minimum about 40% of the people should receive treatment once
or twice a year.
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Parameter Description Dimension
Nh Population size of humans Animals
Nd Population size of dogs Animals
Nc Population size of cats Animals
Ns Population size of snails Animals
Nf Population size of fish Animals
µph Per capita death rate of adult parasites

in humans (includes additional mortal-
ity due to death of humans)

1/Time

µpd Per capita death rate of adult parasites
in dogs (includes additional mortality
due to death of dogs)

1/Time

µpc Per capita death rate of adult parasites
in cats (includes additional mortality
due to death of cats)

1/Time

µs Per capita death rate of snails 1/Time
µf Per capita death rate of fish including

mortality through fishing by humans
1/Time

βhf Transmission rate from infectious fish
to humans per person per fish

1/(Time × Animals)

βdf Transmission rate from infectious fish
to dogs per dog per fish

1/(Time × Animals)

βcf Transmission rate from infectious fish
to cats per cat per fish

1/(Time × Animals)

βsd Infection rate of snails per parasite in
a dog host

1/(Time × Animals)

βsc Infection rate of snails per parasite in
a cat host

1/(Time × Animals)

βsh Infection rate of snails per parasite in
a human host

1/(Time × Animals)

βfs Infection rate of fish per snail 1/(Time × Animals)
Ie Proportion of people who stop eating

raw fish due to intervention
Dimensionless

Id Proportion of people who stop defecat-
ing outdoors due to intervention

Dimensionless

Im(t) Proportion of people getting treat-
ment (medication) at time t

Dimensionless

T Interval of drug distribution Time

Table 2: Parameters of the opisthorchiasis model with interventions, adapted from [6,
Table 2]. 18



Variable Description Value
nh number of tested humans 994
ph number of positive tested humans 603
nd number of tested dogs 68
pd number of positive tested dogs 17
nc number of tested cats 64
pc number of positive tested cats 34
ns number of tested snails 3102
ps number of positive tested snails 9
nf number of tested fish 628
pf number of positive tested fish 169

Table 3: Total number tested and positive hosts from two islands in Lao PDR [8], see [6,
Table 3].
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Variable Value Range MLE Unit
Nh 14542 [7271, 21813] 20394 Animals
Nd 7271 [3635.5, 10906.5] 6981 Animals
Nc 4847 [2423.5, 7270.5] 3618 Animals
Ns 20000 [2000, 40000] 15233 Animals
Nf 8000 [800, 16000] 12488 Animals
µph

1
10×365

[
1

20×365 ,
1

1×365
]

1
4.8×365 1/Days

µpd
1

4×365
[

1
8×365 ,

1
0.4×365

]
1

4.1×365 1/Days

µpc
1

4×365
[

1
8×365 ,

1
0.4×365

]
1

2.9×365 1/Days

µs
1

1×365
[

1
2×365 ,

1
0.1×365

]
1

0.6×365 1/Days

µf
1

2.5×365
[

1
5×30 ,

1
0.25×365

]
1

1.6×365 1/Days

βhf 4.1111×
10−6

[4.1111× 10−7, 8.2222× 10−6] 5.9549×
10−6

1/(Animal
x Day)

βdf 2.0159×
10−7

[2.0159× 10−8, 4.0317× 10−7] 1.1062×
10−7

1/(Animal
x Day)

βcf 4.1077×
10−6

[4.1077× 10−7, 8.2155× 10−6] 3.6374×
10−6

1/(Animal
x Day)

βsh 1.4846×
10−11

[1.4846× 10−12, 2.9693× 10−11] 2.1600×
10−11

1/(Animal
x Day)

βsd 1.4846×
10−11

[1.4846× 10−12, 2.9693× 10−11] 5.6595×
10−12

1/(Animal
x Day)

βsc 1.4846×
10−11

[1.4846× 10−12, 2.9693× 10−11] 7.8199×
10−12

1/(Animal
x Day)

βfs 6.9536×
10−6

[6.9536× 10−7, 1.3907× 10−5] 1.1209×
10−5

1/(Animal
x Day)

Table 4: Parameter values of the model and ranges for the sampling, adapted from [6,
Table 5].
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Figure 1: Numerical simulation of the O. viverrini model (1) with parameter values se-
lected using MLE (black line) and with the 500 parameters sets choosen with the Bayesian
sampling-resampling without any interventions (Ie = Id = Im = 0) the mean (grey line),
median (grey dashed line) and standard deviation (grey area).
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Figure 4: Numerical simulations of the model (1) with different coverage levels of the
interventions compared to the baseline scenarios with no intervention. The parameters
are set to the MLE solution in Table 4.
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Figure 5: Numerical simulations of the frequency of treatment every 0.5, 1, 2, 3 and 4
years and its effect on the mean worm burden in humans. The parameters of the MLE
solution in Table 4 are used for the calculation.
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Figure 6: Optimal control results of the interventions and the solution of the model calcu-
lated with the Forward-Backward Sweep method for the different assumptions on Id. The
MLE solution parameter (Table 4) are used for the calculation.
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Figure 8: Impact of the sensitivity of the diagnose test on mean worm burden and the
probability of elimination of the 500 data sets. We use the parameter of the MLE solution
in Table 4 to simulate the mean worm burden in humans.
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