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ON CONTROLLABILITY METHODS

FOR THE HELMHOLTZ EQUATION

MARCUS J. GROTE AND JET HOE TANG

Abstract. When the Helmholtz equation is discretized by standard finite differ-
ence or finite element methods, the resulting linear system is highly indefinite and

thus notoriously difficult to solve, in fact increasingly so at higher frequency. The

exact controllability approach [1] instead reformulates the problem in the time
domain and seeks the time-harmonic solution of the corresponding wave equa-

tion. By iteratively reducing the mismatch between the solution at initial time

and after one period, the controllability method greatly speeds up the conver-
gence to the time-harmonic asymptotic limit. Moreover, each conjugate gradient

iteration solely relies on standard numerical algorithms, which are inherently par-

allel and robust against higher frequencies. The original energy functional used
to penalize the departure from periodicity is strictly convex only for sound-soft

scattering problems. To extend the controllability approach to general boundary-

value problems governed by the Helmholtz equation, new penalty functionals are
proposed, which are numerically efficient. Numerical experiments for wave scat-

tering from sound-soft and sound-hard obstacles, inclusions, but also for wave
propagation in closed wave guides illustrate the usefulness of the resulting con-

trollability methods.

1. Introduction

For time-harmonic wave phenomena, that is, for wave phenomena governed by
a single time frequency ω, the efficient numerical solution of the Helmholtz equa-
tion is of fundamental importance. Although the Helmholtz equation merely results
from an apparently benign diagonal shift from an elliptic coercive operator, that re-
semblance is deceiving. Indeed, the performance of standard numerical methods for
Laplace/Poisson-type problems quickly deteriorates when applied to the Helmholtz
equation, in fact increasingly so at higher frequency, which thus remains notoriously
difficult to solve [2]. Despite the recent development of various preconditioners to
accelerate the convergence of standard iterative methods [3–7], the numerical solu-
tion of the Helmholtz equation in three-dimensional heterogeneous media remains a
formidable challenge.

To circumvent those difficulties, Bristeau, Glowinski and Périaux proposed twenty
years ago an alternative method using exact controllability [1,8,9]. Instead of solving
the Helmholtz equation directly in the frequency domain, the controllability method
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(CM) transforms the problem back to the time domain, where it seeks a periodic solu-
tion yp¨, tq with (known) period T “ 2π{ω of the corresponding time-dependent wave
equation. The unknown initial conditions, v0 “ yp¨, 0q and v1 “ ytp¨, 0q, that yield
the desired periodic solution are then determined by minimizing a convex cost func-
tional, J1pv0, v1q, which penalizes the departure from periodicity. Akin to a shooting
method, the controllability approach iteratively solves the least-squares optimization
problem with a standard conjugate gradient (CG) iteration [10]. Each CG iteration
then requires the solution of a forward and a backward wave equation together with
the solution of a symmetric and positive definite linear system independent of ω, both
easily solved using standard numerical methods. Hence, the CM-CG approach solely
relies on standard numerical algorithms, which are not only robust with respect to
ω but also easy to parallelize. In [11], Bardos and Rauch proved the uniqueness of
the minimizer for sound-soft exterior Helmholtz problems. They also proposed an
alternative functional, J8pv0, v1q, which is unconditionally coercive even for trapping
obstacles. Later Koyama proved convergence of the CM-CG method based on J1 for
sound-soft wave scattering from a disk [12].

The CM-CG method in [1, 8] relied on a piecewise linear finite element (FE) dis-
cretization in space and the second-order leapfrog scheme in time. Low-order FE
discretizations, however, are notoriously prone to the pollution effect [13]. Moreover,
local mesh refinement imposes a severe CFL stability constraint on explicit time in-
tegration, as the maximal time-step is dictated by the smallest element in the mesh.
Recently, Heikkola et al. [14,15] combined higher-order P3 spectral FE with the clas-
sical fourth-order Runge-Kutta (RK) method to mitigate the pollution effect. They
also used an algebraic multigrid preconditioner to remove mesh dependence of the
convergence at fixed frequency.

So far the controllability method has always been applied to sound-soft scattering
problems [1,8,14,15], where both Dirichlet and impedance conditions are imposed at
the boundary. However, for wave scattering from sound-hard obstacles, inclusions, or
othe wave phenomena in physically bounded domains, the original CM-CG method
will generally fail because the minimizer of J1 is no longer unique. Although the
alternative functional J8 from [11] in fact restores uniqueness of the minimizer in all
those problem settings, it also requires storing the entire history of the solution of the
wave equation, which may be prohibitive for large-scale problems.

Here, we address those difficulties and show how to efficiently extend the CM-CG
method to general boundary value problems governed by the Helmholtz equation. In
Section 2, we consider the Helmholtz equation in a general setting and reformulate
the boundary value problem in the time domain. Then, we recall the original CM-
CG method based on J1 for sound-soft scattering problems [1, 8] and show that it
does not yield the expected (unique) solution for scattering problems with sound-
hard obstacles or inclusions. To guarantee that the CM-CG method converges to the
correct solution of the Helmholtz equation at little extra cost, we either post-process
it via a compatibility condition or propose an alternative functional Jm, m ě 2. In
Section 3, we show that J3 always yields the (unique) time-harmonic solution of the
Helmholtz equation, even in a physically bounded domain with Dirichlet or Neumann
conditions only. Finally, in Section 4, we present numerical experiments for various
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Figure 1. Typical bounded computational domain Ω

scatterers, but also for wave propagation in physically bounded domains to illustrate
the usefulness of these improvements. In particular, we show how recent explicit local
time-stepping methods [16] overcome the bottleneck due to local mesh refinement in
the time integration of the forward and backward wave equations.

2. Controllability Method for Scattering Problems

We consider the Helmholtz equation in a bounded computational domain Ω Ă Rd,
d ď 3, whose boundary Γ generally consists of physical and artificial boundaries, see
Figure 1. More precisely, we assume that Γ consists of three disjoint components,
Γ “ ΓD YΓN YΓS , each possibly empty, where we impose a Dirichlet, Neumann and
impedance or Sommerfeld-like absorbing boundary condition, respectively. Hence,
the wave field u satisfies the Helmholtz equation

´∇ ¨ pc2pxq∇upxqq ´ ω2 upxq “ fpxq, x P Ω, (2.1a)

Bupxq

Bν
´ i

ω

c0
upxq “ gSpxq, x P ΓS , (2.1b)

Bupxq

Bν
“ gN pxq, x P ΓN , (2.1c)

upxq “ gDpxq, x P ΓD. (2.1d)

Here ω ą 0 denotes the frequency and cpxq ě cmin ą 0 the propagation speed of
the medium, which is assumed constant cpxq ” c0 in the vicinity of ΓS . Moreover, ν
denotes the unit outward normal while f , gN , gS and gD are known and may vanish.

For standard sound-soft or sound-hard scattering problems, for instance, ΓS cor-
responds to an artificial boundary, which truncates the unbounded exterior whereas
the remaining components, ΓD Y ΓN , correspond to the physical boundary of the
obstacle; in the absence of any obstacle, ΓD “ ΓN “ H. Other configurations, such
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as open wave guides or physically bounded domains are also included in our formu-
lation. Hence, the setting in (2.1) is rather general and encompasses most common
applications.

For constant cpxq ” c0 ą 0, it is well-known that (2.1) has a unique solution
u P H1pΩq if |ΓS | ą 0 or if ω2 is not an eigenvalue of the principal elliptic part [17].
Based on the unique continuation principle [18, 19], Graham and Sauter recently
extended this result to the variable coefficient case [20]. Henceforth we shall assume
for any particular choice of ΓD, ΓN , ΓS , cpxq and ω that the boundary value problem
(2.1) has a unique solution u P H1pΩq.

Instead of solving the Helmholtz equation directly in the frequency domain, we
now reformulate (2.1) in the time domain. Hence, the corresponding time-harmonic
wave field, Re

 

upxq e´iωt
(

, satisfies the (real-valued) time-dependent wave equation

yttpx, tq ´ ∇ ¨ pc2pxq∇ypx, tqq “ Re
 

fpxq e´iωt
(

, x P Ω, t ą 0, (2.2a)

Bypx, tq

Bν
`

1

c0

Bypx, tq

Bt
“ Re

 

gSpxq e´iωt
(

, x P ΓS , t ą 0, (2.2b)

Bypx, tq

Bν
“ Re

 

gN pxq e´iωt
(

, x P ΓN , t ą 0, (2.2c)

ypx, tq “ Re
 

gDpxq e´iωt
(

, x P ΓD, t ą 0, (2.2d)

ypx, 0q “ v0, x P Ω, (2.2e)

ytpx, 0q “ v1, x P Ω, (2.2f)

for the (unknown) initial values v0 “ Re tuu and v1 “ ω Im tuu. Again it is well-
known that (2.2) is well-posed and has a unique solution y P C0p0, T ;H1pΩqq X
C1p0, T ;L2pΩqq for given v0 P H1pΩq and v1 P L2pΩq [21, 22]. Note that for the
desired time-harmonic wave field, Re

 

upxq e´iωt
(

, not only the solution but also its

time derivative lie in H1pΩq for all time.
For sound-soft scattering problems where |ΓD| ą 0 and |ΓS | ą 0, Bristeau et

al. [8,9] proposed to determine the solution upxq of (2.1) by computing a time-periodic
solution ypx, tq of (2.2) with period T “ 2π{ω. Its initial values v0, v1, once known,
then determine the solution u of the original Helmholtz equation (2.1) as

u “ v0 `
i

ω
v1, v0, v1 P H

1pΩq. (2.3)

To determine v0 and v1, the problem is reformulated as a least-squares optimization
problem [1,8] over H1pΩq ˆ L2pΩq for the quadratic cost functional

J1pv0, v1q “
1

2

ż

Ω

|cpxq∇pypx, T q ´ v0pxqq|
2
dx`

1

2

ż

Ω

pytpx, T q ´ v1pxqq
2 dx, (2.4)

where y satisfies (2.2). The functional J1 measures in the energy norm the mismatch
between the solution of (2.2) at the initial time and after one period. It is non-
negative and convex, while J1pv0, v1q “ 0 if, and only if, ∇y and yt are T -periodic
in time for the initial values pv0, v1q; in particular, J1pv0, v1q “ 0 for v0 “ Re tuu
and v1 “ ω Im tuu. If J1 has a unique minimizer, ypx, tq necessarily coincides with
Re

 

upxq e´iωt
(

and hence v0, v1 P H
1pΩq.
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For sound-soft scattering problems, where we impose both Dirichlet and impedance
boundary conditions in (2.1), the functional J1 in fact has a unique minimizer [11],
which therefore coincides with the (unique) time-harmonic solution Re

 

upxq e´iωt
(

of
(2.2). In general, however, a minimizer of J1 is neither unique nor does it necessarily
yield the (unique) time-harmonic solution, as shown in the following theorem.

Theorem 1. Let u P H1pΩq be the unique solution of the Helmholtz equation (2.1)
and y P C0pr0, T s;H1pΩqq X C1pr0, T s;L2pΩqq be a (real-valued) solution of the wave
equation (2.2) with initial conditions pv0, v1q P H

1pΩqˆL2pΩq. If ∇y and yt are time
periodic with period T “ 2π{ω, then y admits the Fourier series expansion

pyp¨, tq, ϕq “ pRe
 

u e´iωt
(

, ϕq ` pλ` ηt, ϕq `
8
ÿ

`“1

pα` cospω`tq ` β` sinpω`tq, ϕq (2.5)

for any ϕ P H1
D, where the constants λ, η P R and the eigenfunctions α`, β` P H

1
D,

` ě 1, satisfy

´∇ ¨ pc2pxq ∇α`pxqq “ pω`q2α`pxq, x P Ω, , (2.6a)

α`pxq “ 0, x P ΓD, (2.6b)

Bα`pxq

Bν
“ ´

ω`

c0
β`pxq, x P ΓS , (2.6c)

Bα`pxq

Bν
“ 0, x P ΓN , (2.6d)

´∇ ¨ pc2pxq ∇β`pxqq “ pω`q2β`pxq, x P Ω, (2.7a)

β`pxq “ 0, x P ΓD, (2.7b)

Bβ`pxq

Bν
“

ω`

c0
α`pxq, x P ΓS , (2.7c)

Bβ`pxq

Bν
“ 0, x P ΓN . (2.7d)

Let v “ v0 ` pi{ωq v1. Then v satisfies

pv, ϕq “ pu, ϕq ` pλ`
i

ω
η, ϕq `

8
ÿ

`“1

pα` ` i`β`, ϕq @ϕ P H1
D. (2.8)

Furthermore, if |ΓD Y ΓS | ą 0, then η “ 0 and if |ΓD| ą 0, then λ “ η “ 0.
Here H1

D “ tṽ P H
1pΩq : ṽ

ˇ

ˇ

ΓD
“ 0u and p¨, ¨q denotes the standard inner product on

L2pΩq.

From (2.8) we conclude that u “ v0 ` pi{ωqv1 precisely when λ “ η “ 0 and
all α`, β`, ` ě 1, vanish identically. For later reference, we note that the two real-
valued eigenvalue problems (2.6)-(2.7) can be combined into a single complex-valued
eigenvalue problem as follows.

Remark 1. Let

γ` “ α` ` iβ`, γ´` “ γ`, ` “ 1, 2, . . . (2.9)



6 MARCUS J. GROTE AND JET HOE TANG

Then α` and β` solve (2.6)-(2.7) if, and only if, γ` solves the homogeneous Helmholtz
equation with frequency ω`:

´∇ ¨ pc2pxq∇γ`pxqq ´ pω`q2 γ`pxq “ 0, x P Ω, (2.10a)

Bγ`pxq

Bν
´ i

ω`

c0
γ`pxq “ 0, x P ΓS , (2.10b)

Bγ`pxq

Bν
“ 0, x P ΓN , (2.10c)

γ`pxq “ 0, x P ΓD. (2.10d)

Hence, γ`, or equivalently α` and β`, vanish precisely when (2.10) only admits the
trivial solution for all ` ‰ 0. In particular, if |ΓS | ą 0, then γ` “ 0, ` ‰ 0.

Proof. For the proof, we distinguish between (i) |ΓDYΓS | ą 0 and (ii) ΓDYΓS “ H.

(i) For |ΓD Y ΓS | ą 0, let z denote the difference between ypx, tq and the time-
harmonic solution:

zpx, tq “ ypx, tq ´ Re
 

upxq e´iωt
(

. (2.11)

It is easy to verify that z satisfies

zttpx, tq ´∇ ¨ pc2pxq ∇zpx, tqq “ 0, px, tq P Ωˆ p0, T q, (2.12a)

zpx, tq “ 0, px, tq P ΓD ˆ p0, T q, (2.12b)

Bzpx, tq

Bν
`

1

c0

Bzpx, tq

Bt
“ 0, px, tq P ΓS ˆ p0, T q, (2.12c)

while both ∇z and zt are T -periodic. Hence, ∇zp¨, T q ´ ∇zp¨, 0q “ 0 throughout Ω
and ηpxq “ zpx, T q ´ zpx, 0q is constant a.e. in Ω.

If |ΓD| ą 0, η vanishes on ΓD and hence η “ 0 everywhere in Ω. Otherwise ΓD “ H

and thus |ΓS | ą 0. By integrating (2.12a) and using Green’s formula together with
the homogeneous boundary conditions on ΓN and ΓS , we obtain

0 “

ż T

0

ż

Ω

ztt ´∇ ¨ pc2∇zq dx dt “
ż

Ω

zt

ˇ

ˇ

ˇ

ˇ

T

0

dx`

ż

ΓS

c0 z

ˇ

ˇ

ˇ

ˇ

T

0

ds “ η c0|ΓS |,

where we have used (2.12c) and the T -periodicity of zt. Since c0 ą 0 and |ΓS | ą 0,
η must equal zero. Therefore, z is T -periodic and for any ϕ P H1

D, the function
pzp¨, tq, ϕq : r0, T s Ñ R is also T -periodic and continuous (Theorem 2, §5.9.2 in [21]).
Thus, we can expand it in Fourier series as

pzp¨, tq, ϕq “
α̃0

2
`

8
ÿ

`“1

pα̃` cospω`tq ` β̃` sinpω`tqq, 0 ď t ď T, (2.13)

with Fourier coefficients

α̃` “
2

T

ż T

0

pzp¨, tq, ϕq cospω`tq dt, β̃` “
2

T

ż T

0

pzp¨, tq, ϕq sinpω`tq dt.
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Now let

α`pxq “
2

T

ż T

0

zpx, tq cospω`tq dt, ` ě 0, (2.14a)

β`pxq “
2

T

ż T

0

zpx, tq sinpω`tq dt, ` ě 1. (2.14b)

Then α̃` “ pα`, ϕq and β̃` “ pβ`, ϕq.
Next, we verify that α` and β` solve the eigenvalue problems (2.6) and (2.7) re-

spectively. First, we replace α` on the left side of (2.6) by its definition (2.14a), use
(2.12a), and integrate by parts twice with respect to time the resulting expression to
obtain

´∇ ¨ pc2pxq∇α`pxqq “ ´
2

T

ż T

0

∇ ¨ pc2pxq∇zpx, tqq cospω`tq dt

“ ´
2

T

ż T

0

zttpx, tq cospω`tq dt

“ pω`q2
2

T

ż T

0

zpx, tq cospω`tq dt

´
2ω`

T
zpx, tq sinpω`tq

ˇ

ˇ

ˇ

ˇ

T

0

´
2

T
ztpx, tq cospω`tq

ˇ

ˇ

ˇ

ˇ

T

0

, x P Ω.

Since both z and zt are T -periodic, the last two terms vanish, which yields

´∇ ¨ pc2pxq∇α`pxqq “ pω`q
2 2

T

ż T

0

zpx, tq cospω`tq dt “ pω`q2α`pxq, x P Ω,

by definition (2.14a) of α`.
We still need to verify that α` also satisfies the boundary conditions (2.6b) and

(2.6c). As zp¨, tq vanishes on ΓD, so does α` since

α`pxq “
2

T

ż T

0

zpx, tq cospω`tq dt “ 0, x P ΓD.

To verify that α` satisfies (2.6c) on ΓS , we start from (2.14a) and again use integration
by parts in time, the periodicity of z, and (2.12c) to obtain

Bα`pxq

Bν
“

2

T

ż T

0

Bzpx, tq

Bν
cospω`tq dt “ ´

2

Tc0

ż T

0

Bzpx, tq

Bt
cospω`tq dt

“ ´
2ω`

Tc0

ż T

0

zpx, tq sinpω`tq dt´
2

Tc0
zpx, tq cospω`tq

ˇ

ˇ

ˇ

ˇ

T

0

“ ´
ω`

c0
β`pxq, x P ΓS ,

by definition (2.14b) of β`. Hence, α` indeed satisfies (2.6) for ` ě 0.
In particular, for ` “ 0 equation (2.6) yields

´∇ ¨ pc2∇α0q “ 0 in Ω, (2.15a)

α0 “ 0 on ΓD, (2.15b)

Bα0

Bν
“ 0 on ΓS . (2.15c)
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Multiplication of (2.15) by α0 and integration by parts over Ω then implies

}c∇α0}
2
L2pΩq “ ´p∇ ¨ pc

2∇α0q, α0qL2pΩq “ 0.

Therefore, α0 is constant throughout Ω and we define λ “ α0{2. Similar calculations
show that β` satisfies (2.7) for any ` ě 1.

Next, we use (2.13) in (2.11) and rearrange terms to obtain

pyp¨, tq, ϕq “ pRe
 

u e´iωt
(

, ϕq`pλ, ϕq`
8
ÿ

`“1

pα` cospω`tq`β` sinpω`tq, ϕq, @ϕ P H1
D,

which corresponds to (2.8) with η “ 0.
In particular, (2.5) implies that

pv0, ϕq “ pyp¨, 0q, ϕq “ pRe tuu , ϕq ` pλ, ϕq `
8
ÿ

`“1

pα`, ϕq, (2.16)

pv1, ϕq “ pytp¨, 0q, ϕq “ ωpIm tuu , ϕq ` ω
8
ÿ

`“1

p`β`, ϕq, (2.17)

for any ϕ P H1
D. By combining (2.16) and (2.17) we thus obtain

pv, ϕq “
`

v0 `
i

ω
v1, ϕ

˘

“ pu, ϕq ` pλ, ϕq `
8
ÿ

`“1

pα` ` i`β`, ϕq,

which corresponds to (2.8) with η “ 0.
(ii) For ΓD “ ΓS “ H, that is in a situation of pure Neumann boundary conditions,

y is not T -periodic in general and hence

ηpxq “
1

T
pypx, T q ´ ypx, 0qq

is no longer zero. However, ∇ηpxq ” 0 by assumption and thus η is constant a.e. in
Ω. Now, let

zpx, tq “ ypx, tq ´ Re
 

upxq e´iωt
(

´ ηt.

Clearly, z satisfies

zttpx, tq ´∇ ¨ pc2pxq ∇zpx, tqq “ 0, px, tq P Ωˆ r0, T s,

Bzpx, tq

Bν
“ 0, px, tq P ΓN ˆ r0, T s,

and is T -periodic by definition of η. Therefore, z again admits a Fourier series expan-
sion with coefficients α` and β` which satisfy (2.6) and (2.7), respectively. A similar
argument as in case (i) concludes the proof. �

From Theorem 1, we conclude that the initial values v0 and v1 of a time-periodic
solution are in general not unique whenever λ, η, α` or β` is not identically zero. For
sound-soft scattering problems where |ΓS | ą 0 and |ΓD| ą 0, however, the constants
λ, η and the eigenfunctions all vanish. Then, pv0, v1q is the unique minimizer of J1 in
(2.4) which yields the solution u of (2.1) through (2.3). We summarize this result in
the following corollary – see also [12].
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Corollary 1. Let u P H1pΩq be the unique solution of (2.1) with |ΓS | ą 0, |ΓD| ą 0
and y P C0pr0, T s;H1pΩqqXC1pr0, T s;L2pΩqq be a (real-valued) solution of (2.2) with
initial conditions pv0, v1q P H

1pΩqˆL2pΩq. If ∇y and yt are time periodic with period
T “ 2π{ω, then

u “ v0 `
i

ω
v1.

Proof. From Theorem 1 we know that u satisfies the Fourier expansion (2.8) with
λ “ η “ 0. Since each eigenvalue problem (2.10) corresponds to the Helmholtz
equation (2.1) with frequency ω` and f “ gS “ gD “ gN ” 0, ` ‰ 0, which has only
the trivial solution, we conclude that α` “ β` “ 0, ` ě 1. Therefore (2.3) holds with
α` “ β` “ 0, ` ě 1, and λ “ η “ 0. �

2.1. Sound-Soft Scattering. Let u be the (unique) solution of the Helmholtz equa-
tion (2.1) with |ΓD| ą 0 and |ΓS | ą 0, as in a typical sound-soft scattering problem
where ΓD corresponds to the boundary of the obstacle and ΓS to the exterior arti-
ficial boundary. By Corollary 1 solving (2.1) is then equivalent to minimizing over
H1pΩq ˆ L2pΩq the functional J1 defined by (2.4). Since J1 is quadratic, a natural
choice to minimize J1 is the conjugate gradient (CG) method [1, 8], which requires
the Fréchet derivative of J1 at v “ pv0, v1q for a perturbation δv “ pδv0, δv1q:

xJ 11pvq, δvy “ ´

ż

Ω

c2pxq∇pypx, T q ´ v0pxqq∇δv0pxq dx (2.19)

´

ż

Ω

pytpx, T q ´ v1pxqqδv1pxq dx

`

ż

Ω

`

ppx, 0qδv1pxq ´ ptpx, 0qδv0pxqq dx` c0

ż

ΓS

ppx, 0qδv0pxq ds,

where x¨, ¨y denotes the standard duality pairing and p is the solution of the adjoint
(backward) wave equation,

pttpx, tq ´ ∇ ¨ pc2pxq ∇ppx, tqq “ 0, x P Ω, t ą 0, (2.20a)

Bppx, tq

Bν
´

1

c0
ptpx, tq “ 0, x P ΓS , t ą 0 (2.20b)

Bppx, tq

Bν
“ 0, x P ΓN , t ą 0, (2.20c)

ppx, tq “ 0, x P ΓD, t ą 0, (2.20d)

ppx, T q “ p0pxq, x P Ω, (2.20e)

ptpx, T q “ p1pxq, x P Ω, (2.20f)

and the initial conditions satisfy for any w P H1
DpΩq

p0pxq “ ytpx, T q ´ v1pxq, x P Ω, (2.20g)
ż

Ω

p1pxqwpxq dx “ c0

ż

ΓS

p0pxqwpxq ds

´

ż

Ω

c2pxq∇pypx, T q ´ v0pxqq∇wpxq dx. (2.20h)
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The derivation of (2.19) and (2.20) and the CM-CG Algorithm can be found in [1,8].
Hence in each CG iteration, we compute J 11pvq by solving the forward and backward
(adjoint) wave equations (2.2) and (2.20) over one period r0, T s. If the time-step ∆t
until T “ 2π{ω is chosen inversely proportional to the frequency ω, the number of
time-steps over one period remains independent of ω. Moreover, each CG iteration
requires an explicit (Riesz) representer g̃ “ pg̃0, g̃1q P H

1
DpΩq ˆ L

2pΩq of the gradient
g “ pg0, g1q “ J 11pvq which is determined by solving the symmetric and coercive
elliptic problem [8,23]:

ż

Ω

c2pxq∇g̃0pxq∇ϕpxq dx “

ż

Ω

g0pxqϕpxq dx

“

ż

Ω

c2pxq∇pv0pxq ´ ypx, T qq∇ϕpxq ´ ptpx, 0qϕpxq dx

` c0

ż

ΓS

ppx, 0qϕpxq ds, @ϕ P H1
D, (2.21a)

g̃1pxq “ g1pxq “ v1pxq ´ ytpx, T q ` ppx, 0q, x P Ω. (2.21b)

For the sake of future reference, we list the CM-CG Algorithm from [1,8] below.

CM-CG Algorithm.

(1) Initialize vp0q “ pv
p0q
0 , v

p0q
1 q (initial guess).

(2) Solve the forward and the backward wave equations (2.2) and (2.20) to deter-
mine the gradient of J1, gp0q “ J 11pv

p0qq, defined by (2.19).
(3) Solve the coercive elliptic problem (2.21) with g “ gp0q to determine the new

search direction g̃p0q.
(4) Set rp0q “ dp0q “ g̃p0q.
(5) For k “ 1, 2, . . . ,

5.1. Solve the homogeneous wave equations (2.2) (f “ gD “ gS “ gN “ 0)

with the initial values dpkq “ pd
pkq
0 , d

pkq
1 q and (2.20). Compute the gradient

gpkq “ J 11pd
pkqq defined by (2.19).

5.2. Solve the coercive elliptic problem (2.21) with g “ gpkq to get g̃pkq.

5.3. αk “
}c ∇rpkq0 }2L2pΩq ` }r

pkq
1 }2L2pΩq

pc2 ∇g̃pkq0 ,∇dpkq0 qL2pΩq ` pg̃
pkq
1 , d

pkq
1 qL2pΩq

5.4. vpk`1q “ vpkq ´ αkd
pkq

5.5. rpk`1q “ rpkq ´ αkg̃
pkq

5.6. βk “
}c∇rpk`1q

0 }2L2pΩq ` }r
pk`1q
1 }2L2pΩq

}c∇rpkq0 }2L2pΩq ` }r
pkq
1 }2L2pΩq

5.7. dpk`1q “ rpk`1q ` βkd
pkq

5.8. Stop when the relative residual lies below the given tolerance tol

respkq “

g

f

f

e

}c∇rpk`1q
0 }2L2pΩq ` }r

pk`1q
1 }2L2pΩq

}c∇rp0q0 }2L2pΩq ` }r
p0q
1 }2L2pΩq

ď tol.
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Since g̃0 P H
1pΩq, the updates of r

pkq
0 , d

pkq
0 and v

pkq
0 in Steps 5.4, 5.5 and 5.7 in the

CM-CG Algorithm also remain in H1pΩq. We emphasize that (2.21a) is independent
of ω and leads to a symmetric and positive definite linear system, which can be solved
efficiently and in parallel with standard numerical (multigrid, domain decomposition,
etc.) methods [5, 7].

In (2.21a), g̃ corresponds to the Riesz representer of the gradient J 11pvq with respect
to the inner product associated to the energy (or H1

D semi-) norm. In the absence
of Dirichlet boundary conditions, ΓD “ H, we instead use the Riesz representer
corresponding to the full H1-norm in Steps 3 and 5.2 of the CM-CG Algorithm.

2.2. Sound-Hard Scattering. Let u be the (unique) solution of the Helmholtz
equation (2.1) with |ΓS | ą 0, but now ΓD “ H, as in a typical sound-hard scat-
tering problem where ΓN corresponds to the boundary of the obstacle and ΓS to the
exterior artificial boundary. Since |ΓS | ą 0, we again immediately conclude from
Theorem 1 that η, α` and β` identically vanish in (2.8). However, in contrast to the
situation of sound-soft scattering from Section 2.1, λ is no longer necessarily zero. In
fact, Theorem 1 and Remark 1 imply that any (global) minimizer v of J1 necessarily
corresponds to an arbitrary constant shift of u, i.e. v “ u` λ, λ P R. To remove the
spurious constant shift and restore uniqueness, we propose three distinct approaches:

(i) determine λ by enforcing a compatibility condition,
(ii) replace J1 by an alternative functional or

(iii) use an absorbing boundary condition on ΓS with a zeroth order term.

(i) Compatibility condition. From Theorem 1, we know that if J1pv0, v1q “ 0
there exists a constant λ P R such that

vpxq “ v0pxq `
i

ω
v1pxq “ upxq ` λ.

However, since |ΓS | ą 0, (2.1) always has a unique solution u. Hence, we shall now
derive an additional condition from (2.1) to determine λ.

By integrating (2.1a) and using the boundary conditions (2.1b) and (2.1c), we
obtain

0 “ ´ω2

ż

Ω

upxq dx´

ż

Ω

∇ ¨ pc2pxq∇upxqq dx´
ż

Ω

fpxq dx (2.22)

“ ´ω2

ż

Ω

upxq dx´

ż

BΩ

c2pxq
Bupxq

Bν
ds´

ż

Ω

fpxq dx

“ ´ω2

ż

Ω

upxq dx´ iωc0

ż

ΓS

upxq ds

´

ż

Ω

fpxq dx´ c20

ż

ΓS

gSpxq ds´

ż

ΓN

c2pxqgN pxq ds.

Replacing u by v ´ λ in (2.22) yields after some algebra the compatibility condition

λ “

´ω2

ż

Ω

v ´ iωc0

ż

ΓS

v ´

ż

Ω

f dx´ c20

ż

ΓS

gS ´

ż

ΓN

c2gN

ω2|Ω| ` iωc0|ΓS |
. (2.23)
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(a) without compatibility condition
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(b) with compatibility condition

Figure 2. One-dimensional Helmholtz equation (2.1) with Neumann condition

at x “ 0 and Sommerfeld condition at x “ 1. Exact and numerical solution using
the CM-CG method with the cost functional J1; left: without compatibility

condition, right: with compatibility condition (2.23)-(2.24).

Thus, once we have found a T -periodic solution v “ v0`pi{ωq v1 of (2.2), we determine
the correct (unique) time-harmonic solution u of (2.1) simply by applying the constant
shift

u “ v ´ λ, (2.24)

with λ given by (2.23).
To illustrate the usefulness of the compatibility condition (2.23)–(2.24), we now

consider the following simple one-dimensional example. Let upxq “ eix be the exact
solution of (2.1) in Ω “ p0, 1q with ΓN “ t0u, ΓS “ t1u, ω “ c “ 1, and f ” 0.
In Figure 2, we display the exact and the numerical solution obtained with the CM-
CG method using the functional J1 in (2.4). The CM-CG iteration converges to a
minimizer v, which contains a spurious constant shift from u. By computing λ in
(2.23) and subtracting it from v, we recover the exact solution u, as shown in Figure
2b.

(ii) Alternative functionals. Since the coerciveness of J1 in (2.4) ”depends in
a subtle way on the geometry of Ω” [11], Bardos and Rauch proposed an alternative
cost functional, J8, which is coercive even in situations with trapping rays. In [8],
Bristeau et al. used the following real-valued version of J8:

J8pv0, v1q “
1

2

ż T

0

ż

Ω

| cpxq∇pypx, tq ´ Re
 

vpxq e´iωt
(

q |2 dx dt

`
1

2

ż T

0

ż

Ω

pytpx, T q ´ ω Im
 

vpxq e´iωt
(

q2 dx dt, (2.25)

where y solves (2.2) and v “ v0`pi{ωq v1. In contrast to J1, the functional J8 penal-
izes the departure from the desired time-harmonic behavior not only after one period
at t “ T , but in fact at all times. In (Section 7.6.2, [8]), the CM-CG method with
J1 or J8 was applied to wave scattering from a perfectly conducting circular cavity
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with a crack and the numerical ”solutions obtained with the two control approaches
were the same”.

When the cost functional J1 is replaced by J8 in the CM-CG Algorithm (Sec-
tion 2.1), the Fréchet derivative of J8 requires the solution of modified forward and
backward wave equations akin to (2.2) and (2.20). However, unlike in the original
CM-CG approach with J1, the backward wave equation now depends explicitly on
the entire solution of the forward wave equation. To avoid storing the entire history
of the forward wave equation, which may be prohibitive for large-scale problems, we
consider instead the alternative cost functional

Jmpv0, v1q “
1

2

m
ÿ

j“1

ż

Ω

ˇ

ˇcpxq∇pypx, tjq ´ Re
 

vpxq e´iωtj
(

q
ˇ

ˇ

2
dx

`
1

2

m
ÿ

j“1

ż

Ω

pytpx, tjq ´ ω Im
 

vpxq e´iωtj
(

q2 dx, m ě 1, (2.26)

where y solves (2.2) and v “ v0 ` pi{ωq v1. Here 0 ă t1 ă t2 ă . . . ă tm “ T are m
fixed time instants – we shall only use m ď 3. Note that Jm coincides with J1 for
m “ 1 and t1 “ T . In general, the uniqueness of a global minimizer of Jm depends on
the specific boundary condition in (2.1) and on the choice of ttju

m
j“1. In particular,

for ΓD “ H and |ΓS | ą 0, the functional J2 in (2.26) with t1 “ T {4 and t2 “ T
always has a unique global minimizer.

Theorem 2. Let u P H1pΩq be the unique solution of (2.1) with ΓD “ H and
|ΓS | ą 0. For pv0, v1q P H

1pΩq ˆH1pΩq, the following assertions are equivalent:

(i) u “ v0 ` pi{ωq v1.
(ii) J2pv0, v1q “ 0 with J2 as in (2.26), t1 “ T {4 and t2 “ T .

Proof. The implication (i) ñ (ii) obviously holds, since the solution y of (2.2) with
initial values pv0, v1q “ pRe tuu , ω Im tuuq is unique and equal to Re

 

upxq e´iωt
(

.

To show that (ii) ñ (i), let pv0, v1q P H
1pΩq ˆ H1pΩq be a minimizer of J2 and

v “ v0 ` pi{ωq v1. Then, for the corresponding solution y of (2.2),

∇pypx, T q ´ ypx, 0qq “ 0, ytpx, T q ´ ytpx, 0q “ 0 in Ω

and thus both ∇y and yt are T -periodic. From Theorem 1 and Remark 1, we infer
that

ypx, tq “ Re
 

upxq e´iωt
(

` λ

for some constant λ P R and that v “ u` λ. Thus

ypx, tq “ Re
 

pvpxq ´ λq e´iωt
(

` λ “ Re
 

vpxq e´iωt
(

` λ p1´ cospωtqq. (2.27)

Since J2pv0, v1q “ 0, we also have

ytpx,
T

4
q ´ ω Imtvpxq e´iω T

4 u “ 0, x P Ω. (2.28)

We differentiate (2.27) in time, set t “ T {4 and use (2.28) to obtain

0 “ yt
`

x,
T

4

˘

´ ω Im
!

vpxq e´iω T
4

)

´ ωλ sin
`ωT

4

˘

“ ´ωλ sin
`π

2

˘

“ ´ωλ. (2.29)
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Since ω ą 0, (2.29) implies that λ “ 0 and hence that u “ v, which concludes the
proof. �

To apply the CM-CG method with the alternative functional Jm, we need to com-
pute its Fréchet derivative. Let v “ pv0, v1q P H

1pΩq ˆH1pΩq, δv “ pδv0, δv1q be an
arbitrary perturbation and define

rvpx, tq “ Re

"

pv0pxq `
i

ω
v1pxqq e´iωt

*

, x P Ω, t ą 0,

Ăδvpx, tq “ Re

"

pδv0pxq `
i

ω
δv1pxqq e´iωt

*

, x P Ω, t ą 0.

Then, the Fréchet derivative of Jm is

xJ 1mpvq, δvy “ ´

m
ÿ

`“1

ż

Ω

c2pxq∇pypx, t`q ´ rvpx, t`qq∇Ăδvpx, t`q dx (2.30)

´

m
ÿ

`“1

ż

Ω

pytpx, t`q ´ rvtpx, t`qqĂδvtpx, t`q dx

`

ż

Ω

`

ppx, 0qδv1pxq ´ ptpx, 0qδv0pxq
˘

dx` c0

ż

ΓS

ppx, 0qδv0pxq ds.

Here p “
řm

`“1 p
` and each p` solves the adjoint (backward) wave equation (2.20)

with the initial conditions p`px, t`q “ p`0pxq and p`tpx, t`q “ p`1pxq, 1 ď ` ď m, defined
by

p`0pxq “ ytpx, t`q ´ ṽtpx, t`q, x P Ω,
ż

Ω

p`1pxqwpxq dx “ c0

ż

ΓS

p`0pxqwpxq ds

´

ż

Ω

c2pxq∇pypx, t`q ´ ṽpx, t`qq∇wpxq dx, @w P H1pΩq.

The CM-CG method with the cost functional Jm in (2.30) requires the solution of a
single forward wave equation until time T and m independent backward wave equa-

tions over r0, t`s, ` “ 1, . . . ,m. To ensure that both v
pkq
0 and v

pkq
1 remain in H1pΩq

during the CM-CG iteration, we now determine in Step 3 and 5.2 an explicit Riesz

representer g̃pkq “ pg̃
pkq
0 , g̃

pkq
1 q P H1pΩq ˆ H1pΩq of gpkq “ J 1mpv

pkqq by solving an

elliptic coercive problem similar to (2.21) for both g̃
pkq
0 and g̃

pkq
1 . For m “ 2, t1 “ T {4

and t2 “ T , for instance, the CM-CG Algorithm based on the functional J2 always
computes the correct minimizer at a modest 12.5% increase in the computational cost
over using J1.

(iii) Absorbing boundary condition with zeroth order term. From Remark
1, we know that the eigenvalue problems (2.10) with ΓD “ H, |ΓS | ą 0 and the
Sommerfeld condition (2.10b) only have the trivial solution for ` ‰ 0. However, we
may also replace the simple Sommerfeld-like impedance condition (2.1b) by the (more
accurate) first-order Bayliss-Gunzburger-Turkel (BGT-1) condition [24,25] in d “ 2, 3
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dimensions, for instance:

Bupxq

Bν
´
iω

c0
upxq `

1

p4´ dqr
upxq “ gSpxq, x P ΓS . (2.31a)

The corresponding time-harmonic wave field y then solves (2.2) with (2.2b) replaced
by

Bypx, tq

Bν
`

1

c0

Bypx, tq

Bt
`

1

p4´ dqr
ypx, tq “ Re

 

gSpxq e´iωt
(

, x P ΓS , t ą 0,

(2.31b)

while Theorem 1 and Remark 1 still hold with (2.10b) replaced by

Bγ`pxq

Bν
´
iω`

c0
γ`pxq `

1

p4´ dqr
γ`pxq “ 0, x P ΓS , (2.32)

and similarly for α`, β` in (2.6c) and (2.7c). Because of the strictly positive (or nega-
tive) definite imaginary part of the zeroth order coefficient in (2.31b), the eigenvalue
problems (2.10) still only have the trivial solution for ` ‰ 0 [25]. Moreover even for
` “ 0, the nonzero coefficient of the zeroth order remaining term in (2.32) now im-
plies that γ0 is not only constant but in fact zero everywhere in Ω. In this case, the
T -periodicity of y is sufficient to guarantee convergence to the (unique) solution of
the Helmholtz equation (2.1). Clearly, other absorbing boundary conditions [25] may
also permit the use of J1 without any modification.

3. Controllability Method in physically bounded domains

In Sections 2.1 and 2.2, we considered various scattering problems where we impose
an impedance boundary condition (2.1b) on part of the boundary ΓS . Here, we
consider the Helmholtz equation (2.1) with ΓS “ H, i.e. with pure Dirichlet or
Neumann boundary condition. Clearly, to guarantee the uniqueness of the solution u
of (2.1), we now always assume that ω2 is not an eigenvalue of the principal elliptic
part. Still, the CM-CG method with the cost functional J1 from (2.4) in general will
not yield the correct solution u, not even shifted by an arbitrary constant. Indeed,
let pv0, v1q P H

1pΩq ˆ L2pΩq be a minimizer of J1. According to Theorem 1, v “
v0 ` pi{ωq v1 then satisfies (2.8) with α`, β` solutions of (2.6) and (2.7). While for
|ΓS | ą 0 all eigenfunctions α`, β`, ` ě 1, necessarily vanish (Remark 1), this is no
longer the case when ΓS “ H, as pω`q2 may be an eigenvalue of the principal part for
some ` ě 1, even when ω2 is not.

To illustrate this added ambiguity, we now consider the following simple one-
dimensional example. Let upxq “ 4xp1´xq be the solution of (2.1) in Ω “ p0, 1q with
c “ 1, ω “ π{4 and Neumann boundary conditions u1p0q “ 4 and u1p1q “ ´4. Since
ω2 does not lie in the spectrum Σ “ tp`πq2 : ` P Zu of (2.10), (2.1) is well-posed. How-
ever, pω`q2 P Σ for any ` P 4Z with corresponding eigenfunction α`pxq “ cospω`xq.
Thus

J1pv0 ` α`, v1q “ J1pv0, v1q, pv0, v1q P H
1pΩq ˆ L2pΩq, ` P 4Z,

and minimizers of J1 are neither unique nor do they simply differ by a constant. As
shown in Figure 3a and 3b, the CM-CG method using J1, or even J2, does not yield
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Figure 3. Helmholtz equation in a bounded domain: numerical solutions

of (2.1) in Ω “ p0, 1q with Neumann conditions at x “ 0, 1 using the CM-CG

method either with J1 (top left), J2 (top right), J3 (bottom left) or J8 (bottom
right)

the correct minimizer u. However, the cost functional J8 in (2.25) remains strictly
convex; hence, the CM-CG method based on J8 converges to the correct minimizer
u, as shown in Figure 3d. Similarly, the cost functional J3 in (2.26) with t1 “ T {4,
t2 “ T {2 and t3 “ T always yields u, as illustrated in Figure 3c and shown in the
following theorem.

Theorem 3. Let u P H1pΩq be the unique solution of the Helmholtz equation (2.1)
and pv0, v1q P H

1pΩq ˆH1pΩq. The following assertions are equivalent:

(i) u “ v0 ` pi{ωq v1.
(ii) J3pv0, v1q “ 0 with t1 “ T {4, t2 “ T {2, t3 “ T , and m “ 3 in (2.26).

Proof. As in the proof of Theorem 2, the implication (i) ñ (ii) immediately holds.
Now, let pv0, v1q P H

1pΩq ˆH1pΩq be a minimizer of J3 and y be the solution of
(2.2). Then, ∇pypx, T q´ypx, 0qq and ytpx, T q´ytpx, 0q vanish identically in Ω. Next,



ON CONTROLLABILITY METHODS FOR THE HELMHOLTZ EQUATION 17

we define the “misfit function”

rpx, tq “ ypx, tq ´ Re
 

vpxq e´iωt
(

(3.1)

and use (2.5) and (2.8) from Theorem 1 to replace v and y in (3.1). This yields

prp¨, tq, ϕq “ pyp¨, tq ´ Re
 

u e´iωt
(

, ϕq ´ pRe
 

v e´iωt
(

´ Re
 

u e´iωt
(

, ϕq

“ pλp1´ cospωtqq ` ηpt´ ω´1 sinpωtqq, ϕq (3.2)

`

8
ÿ

`“1

"

pα`pcospω`tq ´ cospωtqq ` β`psinpω`tq ´ ` sinpωtq, ϕq

*

.

Differentiating once with respect to time, we obtain

prtp¨, tq, ϕq “ pωλ sinpωtq ` ηp1´ cospωtqq, ϕq (3.3)

`ω
8
ÿ

`“1

"

p´α`p` sinpω`tq ´ sinpωtqq ` `β`pcospω`tq ´ cospωtqq, ϕq

*

.

Since ∇rp¨, tjq “ 0 and rtp¨, tjq “ 0 for tj P tT {4, T {2u, rp¨, tjq ” µj is constant a.e.
in Ω, j “ 1, 2, while for t “ t2 “ T {2 “ π{ω, (3.2) and (3.3) reduce to

pµ2, ϕq “ p2λ` η
T

2
, ϕ

˘

`

8
ÿ

`“1

pp´1q` ` 1qpα`, ϕq,

0 “ p2η, ϕq ` ω
8
ÿ

`“1

`pp´1q` ` 1qpβ`, ϕq.

Thus,

p2λ` η
T

2
´ µ2, ϕ

˘

` 2
8
ÿ

`“2
` even

pα`, ϕq “ p2η, ϕq ` 2ω
8
ÿ

`“2
` even

`pβ`, ϕq “ 0

for any test function ϕ P H1
DpΩq.

If |ΓD| ą 0, µ1 “ µ2 “ 0 and λ “ η “ 0 by Theorem 1. Otherwise if ΓD “ H,
2λ ` η T {2 ´ µ2 and 2η both solve (2.10) with ` “ 0 and hence are eigenfunctions
with zero eigenvalue unless they vanish identically. Similarly, α` and β` are either
eigenfunctions of (2.6) and (2.7) for the eigenvalue pω`q2 or identically zero. By
orthogonality, η “ 0 and the eigenfunctions α` “ 0 and β` “ 0 for any even ` ě 2.

Now, we set t “ t1 “ T {4 “ π{p2ωq in (3.2) and (3.3) to obtain

pµ1, ϕq “ pλ, ϕq ´
8
ÿ

`“1
` odd

pp´1q` ` `qpβ`, ϕq “ pλ, ϕq ´
8
ÿ

`“3
` odd

p`´ 1qpβ`, ϕq,

0 “ pωλ, ϕq ` ω
8
ÿ

`“1
` odd

p`p´1q` ` 1qpα`, ϕq “ pωλ, ϕq ´ ω
8
ÿ

`“3
` odd

p`´ 1qpα`, ϕq.

If α` and β` do not identically vanish, they are eigenfunctions of (2.6) and (2.7),
respectively. Since ` ´ 1 ą 0 for any odd number ` ě 3, the orthogonality of the
eigenfunctions implies α` “ 0 and β` “ 0 for any odd ` ě 3 and λ “ 0. Hence,
α` “ β` “ 0 for ` ‰ 1 and λ “ η “ 0. Since (2.10) with ` “ 1 corresponds to (2.1),
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J1 JCC
1 J2 J3 J8

number of periods r0, T s 2 2 2.25 2.75 2

relative computational time 1 1 1.125 1.375 1

relative memory requirement 1 1 2 3 nT

sound-soft scattering X X X X X
sound-hard scattering ˆ X X X X

physically bounded domain ˆ ˆ ˆ X X

Table 1. Computational cost and storage of the CM-CG method using the al-
ternative functionals Jm or J8 relative to that using the original functional J1.

Crosses indicate that the CM-CG method generally does not yield the correct

time-harmonic solution. The top line indicates the number of periods r0, T s for
which the forward or backward wave equation (2.2) must be solved.

which has a unique solution by assumption, α1 and β1 are also identically zero, which
concludes the proof. �

In Table 1, we estimate the computational effort and storage of the CM-CG method
using different penalty functionals relative to that using the original functional J1.
Here nT “ T {∆t denotes the number of time steps in the solution of the forward
wave equation over one period r0, T s. The functional Jm is slightly more expensive
for m “ 2, 3, because each time instant tj , 1 ď j ď m, needs the solution of an adjoint
wave equation, but only over r0, tjs. Therefore, the functional J2 with t1 “ T {4 and
t2 “ T requires nT time-steps to obtain the forward solution (2.2) at t “ T and
pnT ` nT {4q time-steps for the two adjoint wave equations (2.20), which yields a
total of 2.25 ˆ nT time-steps. Similarly, the functional J3 with t1 “ T {4, t2 “ T {2
and t3 “ T requires nT time-steps for the forward solution and pnT {4 ` nT {2 ` nT q
time-steps for the adjoint solutions, which leads to 2.75ˆ nT time-steps in total.

In contrast, the functional J8 only needs the solution of a single forward and a
single backward wave equation over r0, T s, which yields the same computational effort
as the functional J1. However, as the adjoint wave equation then involves the entire
history of the forward solution, it becomes necessary to store the forward solution at
all time steps tj “ j∆t, 1 ď j ď nT .

4. Numerical Results

Here we present a series of numerical experiments to illustrate the usefulness of
controllability methods (CM-CG) for the solution of the Helmholtz equation (2.1)
in various typical configurations. First, we consider a plane wave exact solution
and verify that the CM-CG method not only achieves the expected rates of conver-
gence, but also significantly accelerates the convergence to the long-time asymptotic
time-harmonic limit. Second, we apply the CM-CG method with the original energy
functional J1 from (2.4) to a typical sound-soft scattering problem, as in [1, 8]. To
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Figure 4. Plane wave solution: the relative error of the numerical solution in
the unit square using the CM-CG method for varying mesh size h

overcome the bottleneck in the time integration of (2.2) due to local mesh refinement,
we replace standard time marching by Runge-Kutta based explicit local time-stepping
methods [16]. Third, we apply the CM-CG method to a sound-hard scattering prob-
lem, where we restore uniqueness by imposing the compatibility condition (2.22). We
also apply the CM-CG method to scattering from an inhomogeneous inclusion with a
first-order absorbing boundary condition [24] to demonstrate that uniqueness is then
inherently guaranteed (see Section 2.2). Finally, we show how the CM-CG method
can also be efficiently applied in a physically bounded domain by using the functional
J3 in (2.26). For spatial discretization, we always use standard piecewise polynomial
triangular FE with high-order mass-lumping [26].

4.1. Plane Wave Solution. First, we verify that the controllability method with
the functional J1 from (2.4) indeed achieves the same rate of convergence as the direct
solution of the Helmholtz equation. Here, we consider a plane wave solution

upx, yq “ exppikpx cospφq ` y sinpφqq, (4.1)

with the angle of incidence φ “ 135˝ and wave number k “ ω “ 2π (c ” 1). Hence we
consider (2.1) in the unit square Ω “ p0, 1q ˆ p0, 1q and set the boundary conditions
accordingly with ΓD “ r0, 1s ˆ t0, 1u and ΓS “ t0, 1u ˆ p0, 1q. We use Pr-FE for
the spatial discretization with r “ 1, . . . , 3 and the classical fourth-order Runge-
Kutta (RK4) method for the time integration of (2.2). The tolerance in the CM-CG
Algorithm (Section 2.1) is set to tol “ 10´11.

In Figure 4, we observe that the relative error of the numerical solution, ob-
tained with the CM-CG method for a sequence of meshes with mesh size h “ 2´`,
` “ 1, . . . , 5, converges with the (expected) optimal rate as hr`1 with respect to the
L2-norm. Clearly, as the mesh size decreases we also reduce the time-step ∆t for
numerical stability.
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(a) exact solution

200 1,000 2,000 3,000 4,000 5,000 6,000

10´2

10´1

100

CG iteration or T -period

relative error in L2-norm
(CM-CG method)
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(b) relative error

Figure 5. Plane wave solution: the exact solution (a) of the sound-soft scat-
tering problem (2.1) on a rectangular domain with a spiral-shaped cavity; the

relative error of the numerical solution obtained either by the CM-CG method at

each CG iteration or by simple time integration of (2.2) after the same number
of time periods (b).

Next, we show how the CM-CG method greatly accelerates the convergence of the
time-harmonically forced solution y of (2.2) to its long-time asymptotic limit [11,12]

ypx, tq „ Re tupxq expp´iωtqu as tÑ `8. (4.2)

To do so, we consider a plane wave (4.1) with angle φ “ 45˝ and wave number
k “ ω “ 32π (c ” 1) in a rectangular domain with a spiral-shaped cavity – see
Figure 5a. We set the boundary conditions accordingly, where ΓS is the exterior
boundary and ΓD the boundary of the spiral-shaped obstacle. Here we use a P3-FE
discretization in space and the RK4 method for solving (2.2).

In Figure 5, we compare the relative error in the numerical solution obtained either
by the CM-CG approach at the j-th CG iteration or by simple time integration of
(2.2) at times tj “ jT , where T “ 2π{ω is the time period. We observe that the
CM-CG method achieves less than 1% error after j “ 200 CG iterations, whereas
the harmonically forced long-time solution of the wave equation requires over 6000
periods to reach the same accuracy.

4.2. Sound-Soft Scattering. Next, we apply the CM-CG method to a typical
sound-soft scattering problem from the open wedge shown in Figure 6. Hence we
consider (2.1) with ω “ 36π, c ” 1, ΓD the boundary of the wedge (gD “ 0) and
ΓN “ H. The unbounded exterior is truncated by a square artificial boundary ΓS ,
where we impose the absorbing boundary condition (2.1b) with gS “ 0. The initial
conditions are set to zero, while the incident wave originates from three point sources
located at p0.75, 0.4q, p0.5, 0.65q and p0.75, 0.65q in the top right corner of Ω.

For spatial discretization, we use P3-FE with mass-lumping [26] and the mesh
shown in Figure 6 with 79917 nodes and 12116 triangles. To overcome the bottleneck
from the CFL-restriction on the time step ∆t due to local mesh refinement near the
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(a) full mesh (b) zoom on the refined part of the mesh

Figure 6. Sound-soft scattering: computational mesh with local refinement

near the open wedge obstacle and the three point sources

Figure 7. Sound-soft scattering: contour lines of the numerical solution with

the CM-CG method combined with explicit local time-stepping.

wedge, we opt for local time-stepping (LTS) methods based on the classical fourth-
order RK method [16]. Hence, we split the mesh into “fine” and “coarse” elements –
see Figure 6 – and use small local time steps of size ∆τ “ ∆t{q but only in the “fine”
part. Here, q denotes the refinement ratio between the smallest mesh size hcoarsemin in

the “coarse” part and hfinemin in the “fine” part,

q «
hcoarsemin

hfinemin

. (4.3)
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Figure 8. Sound-soft scattering: relative residual and relative error at each

CG iteration using the CM-CG method combined with a local time-stepping
method with a time-step ∆τ “ ∆t{q with q “ 1, . . . , 9 (left); zoom on the relative

residuals at each CG iteration for varying q (right). In the left frame the curves

for different q essentially coincide at this scale.

Figure 7 displays the contour lines of the numerical solution of (2.1) obtained by the
CM-CG Algorithm (Section 2.1) with the functional J1 from (2.4) and a tolerance
tol “ 10´7. The numerical solution obtained with the CM-CG method differs by only
0.15% from that obtained through direct solution of the Helmholtz equation (2.1).
Both solutions differ from a reference solution on a finer mesh by less than 3%.

Now, we combine the CM-CG method with local time-stepping using different
mesh refinement ratios q. For a fixed mesh, shown in Figure 6, we vary the partition
into “fine” and “coarse” elements such that q “ 1, . . . , 9 in (4.3). Regardless of the
tolerance tol “ 10´5, 10´6, 10´7 in the CM-CG Algorithm, we observe in Figure 8 that
the relative residuals and the numbers of iterations remain identical independently
of q. In summary, the CM-CG method yields a comparable accuracy to the direct
solution of the Helmholtz equation while the convergence of the CM-CG method
remains unaffected by the local time-stepping strategy.

4.3. Sound-Hard Scattering. Here we apply the CM-CG method to the tpyical
situation of an incident plane wave scattered from a sound-hard cavity, as shown in
Figure 9. Hence we consider (2.1) with ΓD “ H, ΓN the boundary of the obstacle
(gN “ 0) and ΓS the exterior square artificial boundary.

Since ΓD “ H, the original cost functional J1 in (2.4) does not have a unique
minimizer. To remove the spurious constant shift and thus obtain the correct (unique)
solution, shown in Figure 9, we post-process the solution obtained with J1 by applying
the compatibility condition (2.22) derived in Section 2.2 (i). Here, the angle of the
incident wave (4.1) is φ “ 315˝ with c “ 1 and ω “ 8π whereas the mesh in Ω “
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Figure 9. Sound-hard scattering: contour lines of the total wave field ob-

tained with the CM-CG method and the compatibility condition (2.22).

p0, 3q ˆ p0, 3q consists of 8146 P3-FE with 53456 nodes. For the sake of comparison,
we compute a reference solution by solving the Helmholtz equation directly on a
finer mesh. The CM-CG method yields a relative error of 0.27% with a tolerance
tol “ 10´6, comparable to that in the direct solution of (2.1) on the same mesh with
a relative error of 0.29%.

4.4. Scattering from Inhomogeneous Inclusion. Next, we consider scattering
from a penetrable inhomogeneous inclusion with a circular artificial boundary ΓS ;
hence, we consider (2.1) with ΓD “ ΓN “ H. Instead of applying the compatibility
condition (2.22), we enforce uniqueness by replacing the Sommerfeld-like condition
(2.1b) and (2.2b) on ΓS by the more accurate first-order Bayliss-Gunzburger-Turkel
(BGT-1) absorbing condition (2.31a) and (2.31b), respectively – see Section 2.2 (iii).

Again, we use P3-FEM with 667225 nodes and 102504 elements and apply the RK4
method for the time integration of (2.2). The frequency ω “ 32π and the squared
propagation speed c2pxq “ c20 ` 8 ¨Hpxq, where Hpxq is the indicator function of the
kite-shaped inclusion and c0 “ 1 – see Figure 10 (left). In the right frame of Figure 10,
we display the scattered field for an incident plane wave (4.1) with φ “ 180˝ obtained
by the CM-CG method using the original functional J1 from (2.4). Both the numerical
solution obtained with the CM-CG method and that obtained by solving (2.1) directly
yield a 2.1% relative error with respect to a reference solution computed on a finer
mesh. Thus, the BGT-1 condition, like any other absorbing boundary condition with
a positive (or negative) definite zeroth order term, permits the use of the CM-CG
approach with the original cost functional J1 even when ΓD “ ΓN “ H.

4.5. Closed Wave Guide. Finally, we consider the Helmholtz equation (2.1) in a
physically bounded domain Ω “ p´5, 1qˆp´0.5, 0.5q without any impedance boundary
condition, ΓS “ H. At the right vertical entry boundary x “ 1, the wave field
satisfies the Dirichlet boundary condition (2.1d) with g ” 1; elsewhere, it satisfies
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(a) computational domain with
inhomogeneous inclusion

(b) scattered field

Figure 10. Scattering from a penetrable inhomogeneous inclusion: the

propagation speed c is constant inside and outside of the kite-shaped inclusion
(left); contour lines of the numerical solution obtained with the CM-CG method

using the BGT-1 absorbing condition (2.31) and the functional J1 (right).

a homogeneous Neumann boundary condition. Here, the frequency ω “ 25 and the
squared propagation speed is c2pxq “ c20`Hpxq, where H is the indicator function of
the ellipse-shaped inclusion shown in Figure 11 (top) and c0 “ 1.

Again, we use P3-FEM with 4622 triangles and 30518 nodes for the spatial dis-
cretization and the RK4 method for the time integration of (2.2). Here, the solution
obtained using the CM-CG method and the cost functional J3 in (2.26) with a relative
error of 5.7% is slightly more accurate than that obtained by the direct solution of
the linear system with a relative error of 6.3%, probably due to the high condition
number of the discrete Helmholtz problem.

5. Concluding Remarks

Starting from the original controllability (CM-CG) method for sound-soft scat-
tering problems [4], we have shown how to extend the controllability approach to
boundary-value problems governed by the Helmholtz equation with arbitrary combi-
nations of Dirichlet, Neumann or impedance (or Sommerfeld-like) boundary condi-
tions, while remaining numerically efficient.

Akin to a shooting method, the CM-CG method determines the time-harmonic
solution of the corresponding wave equation in the time domain by iteratively reducing
the departure from periodicity. Each conjugate gradient (CG) iteration then requires
the numerical solution of a forward and a backward (or adjoint) wave equation over
one period r0, T s, T “ 2π{ω, together with the solution of a coercive elliptic problem
independent of the frequency ω ą 0. Both the wave equation and the symmetric
and positive definite linear system required at each CG iteration can be efficiently
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(a) physically bounded domain with an inhomogeneous medium

(b) contour lines of the numerical solution

Figure 11. Closed waveguide: the propagation speed c is constant inside
and outside of the ellipse-shaped inclusion (top); contour lines of the numerical

solution of (2.1) using the CM-CG method with the functional J3 defined by

(2.26) with t1 “
T
4

, t2 “
T
2

and t3 “ T (bottom).

solved in parallel with standard explicit time integration and domain decomposition
methods [5, 27]. In the presence of local mesh refinement, high-order explicit local
time-stepping (LTS) methods [16] overcome the bottleneck due to an overly stringent
CFL stability constraint.

The original CM-CG method is based on the minimization of the cost functional J1

in (2.4), which guarantees convergence to the (unique) solution of the Helmholtz equa-
tion for sound-soft scattering problems when both Dirichlet and impedance boundary
conditions are imposed. For any other combination of boundary conditions, however,
the minimization of J1 generally does not lead to the correct time-harmonic solution.
In contrast, the cost functional J3 in (2.26) always yields the true solution at little ex-
tra computer time or memory. For scattering problems from sound-hard obstacles or
inclusions, the compatibility condition (2.23)-(2.24) eliminates the spurious constant
shift in the minimizer and thus even permits the use of the original cost functional
J1.

With these amendments, the CM-CG method proves an effective alternative for the
numerical solution of the Helmholtz equation, be it in bounded or unbounded domains
truncated by an artificial boundary. It is inherently parallel, easy to implement and
particularly attractive if one has a good (time-dependent) wave equation solver at
hand. The CM-CG approach developed here for the Helmholtz equation immediately
generalizes to other time-harmonic vector wave equations from electromagnetics or
elasticity.
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