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Abstract

Starting from classical absorbing boundary con-
ditions (ABC), we propose a method for the sep-
aration of time-dependent wave fields given mea-
surements of the total wave field. The method is
local in space and time, deterministic, and makes
no prior assumptions on the frequency spectrum
and the location of sources or physical bound-
aries. By using increasingly higher order ABC,
the method can be made arbitrarily accurate and
is, in that sense, exact. Numerical examples il-
lustrate the usefulness for source separation and
echo removal.

1 Introduction

For decades absorbing boundary conditions1

(ABC) have been used to truncate computa-
tional domains [2, 5, 11, 10, 6, 13] for the sim-
ulation of time-dependent wave phenomena in

1a.k.a. nonreflecting, transparent, outgoing, one-way,
etc. boundary conditions

unbounded regions. Typically, an ABC consists
of a linear partial differential ”one-way” oper-
ator, B, which eliminates outgoing waves. By
imposing the boundary condition

B[u] = 0 (1)

at the outer artificial boundary, (unphysical) in-
coming waves are set to zero while outgoing
waves remain unaffected. The result is a bound-
ary condition that completes the statement of
a well posed initial boundary value problem
(IBVP) and allows outgoing waves to leave the
computational domain without spurious reflec-
tions.

Here we show that one-way operators also per-
mit to split and recover individual wave fields
given observations from a time-dependent total
wave field, a problem that commonly arises in
a variety applications under different disguise.
During the collection of marine hydrophone seis-
mic data, for instance, sound wave reflected
from the sea floor are recorded by hydrophone
streamers towed at a finite depth. After reflec-
tion from the (moving) ocean surface, however,
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those sound waves travel back generating an (un-
wanted) echo; the process of removing that ghost
signal from the data is also known as ”deghost-
ing” [16]. In signal processing, blind source sep-
aration uses ray-based statistical tools to detect
individual sources [3] or remove noise [1] from
their recorded mixture.

When an unknown medium or obstacle is illu-
minated by an incident probing wave, the scat-
tered data recorded at remote sensors can be
used to recover the nature, location or shape of
the buried object. While many methods exist
to solve such inverse scattering problems, they
always assume that the scattered field is read-
ily available by subtraction of the incident wave
from total field measurements. Although essen-
tial for any subsequent inversion, the extrac-
tion of the scattered field certainly becomes non-
trivial if the location, spatial distribution or time
dependence of the original source are not pre-
cisely known or other undesired sources or phys-
ical boundaries interfere with the signal. In tran-
scranial ultrasonic imaging [14], for instance, the
time signature of the small shock wave induced
by cavitation bubbles is never precisely known.
Similarly, in photoacoustic imaging [17], the time
signature of the laser induced ultrasonic pressure
wave generated by the transient thermoelastic
expansion of biological tissues is hardly available.

In the presence of two or more obstacles,
the inversion from total field measurements is
greatly simplified if the multiple scattered fields
can be split into individual outgoing compo-
nents; then, each isolated scattering problem
will be smaller in size and less ill-conditioned
than their total sum. There is a long history
of wave splitting techniques for multiple scat-
tering problems, but mainly in the frequency
domain. By combining the inverse Radon ap-
proximation with a Galerkin ansatz, Griesmaier,

Hanke and Sylvester determine the convex scat-
tering support of individual far-field components
separately [7]. For time-dependent source sepa-
ration, Potthast, Fazi and Nelson recently de-
vised a filter using the point source method via
Fourier transform in the frequency domain [15].
Recently, Grote, Kray, Nataf and Assous devised
a method to split a time-dependent, scattered,
total wave field into its distinct outgoing compo-
nents induced by separate sources or obstacles
[9]. While their approach is purely local in space
and time, it still requires deriving a first-order
hyperbolic PDE satisfied by each scattered field
component on the observational boundary.

Here we propose a different approach for the
separation of time-dependent wave fields, which
is still local in space and time but does not re-
quire deriving any new PDE. In Section 2, we
consider a simple generic set-up to illustrate the
basic underlying idea. Next, we recall in Section
3 a particular family of one-way operators based
on the high-order ABC by Collino [4]. Finally, in
Section 4, we illustrate through numerical exam-
ples how to apply the our one-way wave splitting
approach to source separation and echo removal.

2 Wave splitting

We consider the simple but generic set-up of
source separation in free space to present the
main idea underlying our approach for wave
splitting. Hence, let the total wave field u satisfy
the wave equation

∂2u

∂t2
−∆u = F (x, y, t) (2)

in R2 × (0, T ) with homogeneous initial condi-
tions at time t = 0. Now, let F be given by

F = F1 + F2 (3)
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Figure 1: Source separation, generic set-up.
Left: unsplit problem posed in R2; right: setup
in D∞ for the approximation v1 of u1

where each F1 and F2 is compactly supported
in Ω1 = {x < 0}, and Ω2 = {x > 0}, respec-
tively. Then, the wave field u admits the unique
(Kirchhoff) decomposition [8]

u = u1 + u2 , (4)

where u1 and u2 each solve (2) in R2×(0, T ) with
F = F1 and F = F2, respectively. From Ω1, the
wave field u1 thus appears purely outgoing as it
crosses the separating artificial boundary Γ (y-
axis) at x = 0, and vice-versa for u2.

More generally, when Ω includes nonzero ini-
tial conditions, obstacles or inhomogeneities,
all compactly supported outside some neighbor-
hood of Γ, the same decomposition (4) still
holds in that neighborhood. Each wave field ui
then solves the homogeneous wave equation with
zero initial conditions, no obstacles and constant
wave speed outside Ωi, i = 1, 2; therefore, ui
is entirely determined inside Ωj , j 6= i, by the
boundary condition imposed on Γ.

Given the time-dependent total wave field u
and its normal derivative ∂u/∂n on Γ, we wish
to recover u1 and u2 on Γ for all t. As seen from
Γ, u1 is purely rightward moving whereas u2 is
purely leftward moving; therefore, we may use
one-way operators to distinguish between them.

Let B be a one-way operator such that
B[u2] = 0 on Γ and the corresponding IBVP
in Ω2 is well-posed. Applying B to u on Γ then
yields

B[u1] = B[u1] +B[u2] = B[u]. (5)

Assuming that B[u] can be computed from the
measured total field u, (5) clearly yields an in-
homogeneous boundary condition for u1. Still,
it is by no means obvious how to reconstruct u1

itself from (5), as it involves not only time and
tangential but also normal derivatives of u1 at Γ.
For Γ a circle, (5) can be used to derive a hyper-
bolic partial differential equation for u1, which
involves only time and tangential derivatives and
thus can be solved on Γ [9].

Instead, we note that u1 is the unique solution
of the IBVP in D∞ = {x > 0}:

∂2v

∂t2
−∆v = 0 in D∞ × (0, T ) (6a)

B[v] = g(y, t) on Γ× (0, T ) (6b)

v(0) = 0 in D∞ , (6c)

with g = B[u], which is well-posed by assump-
tion. Although here D∞ coincides with Ω2, this
is not true in general – see Section 4.2, for in-
stance. To recover u1, we simply solve numeri-
cally the IBVP (6) in D∞. In fact, when u1 is
only required on Γ, we may simply restrict the
computation to the vicinity of Γ. Clearly, once
u1 is known we immediately recover u2 = u−u1.

In practice, the ABC (1) does not eliminate
all rightward moving waves. Then B[u2], al-
beit small, is not identically zero and the first
equality in (5) holds only approximately. Nev-
ertheless, we may still solve (6) with g = B[u],
thereby introducing a perturbation, B[u2], into
g. Since (6) is well-posed, that perturbation will
only result in a small error in the reconstruction
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of u1. Depending on the application considered,
that error may or may not be significant. By
choosing a sufficiently accurate one-way opera-
tor B, however, that error can always be made
arbitrarily small.

3 High-order ABC

To recover u1 from u on Γ, we require a one-way
operator B that discriminates between incoming
and outgoing waves and also yields a well-posed
IBVP (6) in D∞. Here, we consider the high-
order ABC by Collino [4, 6] and let B equal the
corresponding P -th order one-way operator:

B[w] =

(
∂w

∂t
− ∂w

∂x

)∣∣∣∣
Γ

−
P∑

p=1

bp
∂ψp

∂t
(7a)

where v|Γ denotes the restriction of v to Γ
and each auxiliary function ψp = ψp(y, t), p =
1, . . . , P , solves the following initial value prob-
lem:

∂2ψp

∂t2
− ap

∂2ψp

∂y2
=
∂2w

∂y2
(x, y, t) , (x, y) ∈ Γ ,

ψp(y, 0) =
∂ψp

∂t
(y, 0) = 0 .

(7b)
Note that (7b) only involves tangential and time
derivatives of ψp, which are only defined and
computed on Γ.

For well-posedness [18], the parameters
a1, . . . , aP and b1, . . . , bP must satisfy 0 < ap < 1
and bp > 0 for p = 1, . . . , P , ap 6= ak for p 6= k,
and

P∑

p=1

bp
1− ap

< 1 . (8)

Following [6], we choose

ap = cos2

(
πp

2P + 1

)
(9a)

bp =
2

2P + 1
sin2

(
πp

2P + 1

)
. (9b)

Note that parameter values may be adapted to
any particular problem. The ABC becomes in-
creasingly accurate with increasing P ; hence, it
is exact in the sense that we can always choose
P sufficiently large to reduce the error in the
boundary condition below a prescribed error tol-
erance (without moving Γ any farther).

For computations, we truncate D∞ by a ver-
tical perfectly matched layer (PML) in the x di-
rection [12]. In principle, the truncated domain
(excluding the PML) can be arbitrarily narrow
and even consist only of a fixed number of mesh
points in width; thus, its width may even shrink
with decreasing mesh size h.

4 Numerical examples

Here we consider two distinct applications of
wave splitting: source separation and echo re-
moval. All computations are performed on
an equidistant Cartesian mesh with standard
second-order finite differences in space and time.
We let T denote the final time, h > 0 the mesh
size and κ > 0 the time step. The relative global
error in the reconstruction uh1 of u1 at Γ is mea-
sured as

E =
‖uh1 − u1‖Γ,T
‖u1‖Γ,T

, (10)

where

‖w‖Γ,T = max
n,j

∣∣w|Γ (yj , tn)
∣∣. (11)

for any grid function w evaluated at time tn =
nκ, n ≥ 0.
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(a) (b)
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Figure 2: Source separation. (a) Snapshot of u
at t ≈ 3.5; the measurement surface Γ is marked
by a dashed line, (b) the space-time data u on
Γ, (c) the reference solution u1 (d) the split data
uh1 obtained with P = 4

4.1 Source separation

First, we consider the generic set-up from Sec-
tion 2 and let the total wave field u and its nor-
mal derivative ∂u/∂x, both recorded at Γ, con-
sist of two outward propagating circular waves
u = u1 + u2 in free space, each ui originating
from its respective half-space Ωi on either side
of the y-axis. Following the approach described
in Section 2, we shall now reconstruct u1, given
the time history of the total wave field u, and

its normal derivative ∂u/∂x on Γ. To do so, we
solve the IBVP (6) with g = B[u] computed at Γ.
The infinite domain D∞ is truncated at x = 5h,
that is at a distance of five mesh points from Γ,
beyond which a PML is added to absorb out-
ward going waves. We set h = 10−2 and κ > 0
according to the CFL stability condition of the
leap-frog method.

Figure 2a shows a snapshot of the total field
u at t ≈ 3.5 whereas Figure 2b displays the
space-time data on Γ used for the reconstruc-
tion. In particular, we observe the emergence of
two space-time cones as the leftward and right-
ward moving wave fronts cross Γ. The numerical
solution, uh1 , of the IBVP (6) is shown in Figure
2d and compares remarkably well with the refer-
ence solution, u1, shown in Figure 2c. In fact, u1

and uh1 essentially coincide, as shown in the left
frame of Figure 3 where we compare their time
evolution at a fixed location (x, y) = (0, 0). In
the right frame of Figure 3, we observe that the
relative space-time global error E, given by (10),
decays exponentially with P until it saturates at
the level of the discretization error.

We recall that our wave-splitting approach
makes no use of the locations or space-time de-
pendence of the sources. In fact, it is indepen-
dent of the sources generating the waves and
would remain identical in the presence of obsta-
cles or inhomogeneities.

4.2 Echo removal

Next, we show how to remove an (undesired)
echo due to a physical boundary (wall, ocean
surface, etc.) from the total wave field observed
again on the y-axis Γ at x = 0. The incident
wave field u1 originates from the left half-space
Ω1 = {x < 0}. After crossing the observational
boundary Γ, the incident signal u1 enters the
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Figure 3: Source separation. Left: the numerical
solution u driven by the two sources, the refer-
ence solution u1 and the reconstructed signal uh1
at (x, y) = (0, 0); right: the relative global error
E as a function of P .

subdomain Ω2 = {0 < x < b} until it impinges
upon the physical boundary ∂Ω = ΓBC, located
at x = b, where it is reflected; the resulting signal
u2 then propagates back and causes an (unde-
sired) echo in the observations of the total field
u at Γ.

Hence, the total wave field u satisfies (2) in
Ω = (−∞, b) × R, with b > 0 and homogeneous
initial conditions at t = 0. The source F consists
of two point sources located inside Ω1 and we
impose a homogeneous Dirichlet boundary con-
dition u = 0 at the physical boundary ∂Ω = ΓBC
located at x = b, for simplicity – see Figure 4.

Given measurements of the total field at Γ =
{x = 0}, we wish to recover the signal u1 on Γ
from the total field u and thus effectively remove
the echo u2 generated by the physical boundary
at x = b. To do so, we let D∞ = {x > 0} and
consider (6), where B is a Collino operator (7) of
order P . Now, we again solve the IBVP (6) for
u2 numerically using the same parameters (mesh
size, time-step, etc.) as in Section 2.1.

Figure 5a shows a snapshot of the total field

Γ ΓBC

Ω1 Ω2

Γ

n̂
D∞

Figure 4: Echo removal, generic setup. Left: un-
split problem posed in R2; right: setup in D∞ for
the approximation v1 of u1

u at t ≈ 3.5 whereas Figure 5b displays the
space-time data on Γ used for the reconstruc-
tion. In Fig. 5b, in particular, we see the two
space-time cones which correspond to the two
point sources located at (x, y) = (−0.5, 0), and
(x, y) = (−0.7, 0.5), respectively. Upon compar-
ison of the total field u in Figure 5b with the
reference solution u1 in Figure 5c, we observe
how the reflection from the physical right wall
propagates back and crosses the incoming signal
while causing destructive interference behind the
first arrival.

The numerical solution, uh1 of the IBVP (6)
is shown in Figure 5d and compares remarkably
well with the reference solution u1. Again, u1

and uh1 essentially coincide, as shown in the left
frame of Figure 6 where we compare their time
evolution at a fixed location (x, y) = (0, 0). In
the right frame of Figure 6, we observe that the
relative space-time global error E, given by (10),
decays exponentially with P until it saturates at
the level of the discretization error.

Again, we emphasize that our wave-splitting
approach does not rely on any information from
the sources and applies regardless of the type
of boundary condition imposed at the (possibly
moving) physical boundary ∂Ω. It would also
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(a) (b)

(c) (d)

Figure 5: Echo removal. (a) Snapshot of u at
t ≈ 3.5, where Γ is marked by a dashed line, (b)
full data u on Γ, (c) reference solution u1, (d)
the recovered uh1 obtained with P = 4.

apply in the presence of inhomogeneity or ob-
stacles compactly supported inside Ω1 or Ω2.

5 Concluding remarks

Starting from high-order ABC, we have shown
how to split a wave field u = u1 + u2 into
individual ”one-way” components u1 and u2,
given observations of the total field u at some
recording boundary Γ. Thus, we can separate
wave fields originating from different (unknown)
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Figure 6: Echo removal. Left: the numerical so-
lution u driven by the two sources, the reference
solution u1 and the reconstructed signal uh1 at
(x, y) = (0, 0); right: the relative global error E
as a function of P .

sources or remove an unwanted echo in measure-
ments due to a (possibly unknown or moving)
physical boundary. Our wave-splitting approach
is deterministic and local both in space and time,
as it involves no integrals or Fourier transforms.
It also makes no prior assumptions on the fre-
quency spectrum or the location of sources or
physical boundaries.

To reconstruct u1, for instance, we first choose
a one-way differential operator, B, from a known
high-order ABC for which B[u2] vanishes. Then,
we numerically solve the IBVP (6) for u1 in a
computational domain, located on one side of Γ,
where we impose an inhomogeneous boundary
condition that involves the observations via B[u].
The accuracy in the reconstruction of u1 (or u2)
is determined by the accuracy of the ABC and
the numerical discretization error. Both can be
made arbitrarily small and hence, in that sense,
our approach is exact. As the computational do-
main along Γ can be arbitrarily narrow, the com-
putational effort for the reconstruction is kept
minimal. While we have used the family of high-
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order ABCs by Collino [4] here, other ABCs cer-
tainly apply, too.

For inverse scattering problems, our approach
also permits to extract the scattered field from
measurements of the total (physical) wave field,
when the incident wave is only partially known,
say, when the location or direction but not the
time dependence of the source is known. Even
in situations of multiple scattering, our approach
still permits to split the right- and left-moving
components u1 and u2 of the total field bouncing
back and forth between two obstacles. However,
each individual wave field, ui, will not precisely
correspond to the scattered field resulting due
to the illumination of a single obstacle, but in-
stead also contain all higher order one-way mov-
ing multiple reflections.
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