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Abstract

The Mycobacterium tuberculosis complex (MTBC) causes tuberculosis (TB) in humans and

various other mammals. The human-adapted members of the MTBC comprise seven phylo-

genetic lineages that differ in their geographical distribution. There is growing evidence that

this phylogeographic diversity modulates the outcome of TB infection and disease. For

decades, TB research and development has focused on the two canonical MTBC laboratory

strains H37Rv and Erdman, both of which belong to Lineage 4. Relying on only a few labora-

tory-adapted strains can be misleading as study results might not be directly transferrable to

clinical settings where patients are infected with a diverse array of strains, including drug-

resistant variants. Here, we argue for the need to expand TB research and development by

incorporating the phylogenetic diversity of the MTBC. To facilitate such work, we have

assembled a group of 20 genetically well-characterized clinical strains representing the

seven known human-adapted MTBC lineages. With the “MTBC clinical strains reference

set” we aim to provide a standardized resource for the TB community. We hope it will enable

more direct comparisons between studies that explore the physiology of MTBC beyond the

laboratory strains used thus far. We anticipate that detailed phenotypic analyses of this ref-

erence strain set will increase our understanding of TB biology and assist in the develop-

ment of new control tools that are broadly effective.
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Introduction

Tuberculosis (TB) remains an urgent public health problem causing 10.4 million new cases

and 1.3 million deaths every year [1]. The TB epidemic is worsening due to growing drug resis-

tance and the absence of a universally effective vaccine against the transmissible pulmonary

form of the disease [1].

The outcome of TB infection and disease is highly variable, ranging from rapid clearing by

the innate immune response to life-long latent infection and various forms of active pulmo-

nary and extra-pulmonary disease. In the past, most of this variation was attributed to the host

and environmental factors. Because of the limited genetic diversity within the Mycobacterium
tuberculosis complex (MTBC) compared to other bacteria [2], the view has been that no rele-

vant phenotypic variation should be expected. However, recent advances in whole genome

sequencing of large MTBC clinical strain collections from global sources have revealed more

genomic diversity than previously appreciated. Specifically, the human-adapted MTBC com-

prises seven phylogenetic lineages that differ in their geographic distribution, and individual

members of these lineages can differ by up to ~2,000 single nucleotide polymorphisms (SNPs).

This is equivalent to the phylogenetic distance between M. tuberculosis sensu stricto and M.

bovis, which is a typical pathogen of cattle.

In addition to the genomic diversity across MTBC clinical strains, findings from many

experimental studies have led to a change in paradigm by demonstrating the phenotypic

impact of this genetic diversity. For example, studies have reported differences between clinical

strains with respect to their transcriptomic profiles [3, 4], protein and metabolite levels [5] [4],

methylation profiles [5], drug susceptibility [6] and cell wall structure [7–9]. In addition,

MTBC genetic diversity has also been shown to influence disease severity and human to

human transmission, with “modern” lineages showing a faster progression to disease and

shorter latency periods compared to strains from the “ancestral” clades [10–13].

Most of what we know about TB biology today is based on work performed during many

decades, most of which has relied on the two canonical laboratory strains H37Rv and Erdman.

Both of these strains, as well as the clinical strain CDC1551 used by some TB laboratories

more recently, belong to MTBC Lineage 4 [14]. A notable exception is HN878, which belongs

to Lineage 2 and is a gaining prominence as a laboratory representative of the Beijing family of

strains [15].

H37Rv was first isolated from a patient (H37) with pulmonary tuberculosis in 1905 at the

Trudeau Sanatorium in Saranac Lake, New York, while Erdman was isolated from human spu-

tum by William H. Feldman in 1945, at Mayo Clinic, Rochester.

Since its original isolation, H37Rv has been used extensively in biomedical research. The

sequence of its genome was published by Cole and colleagues in 1998, which was a break-

through in TB research [16]. Indeed, H37Rv and its genome sequence still provide the back-

bone for most of TB biological research today, informing studies ranging from basic

biochemistry and microbiology to global omics profiling, systems biology, drug discovery and

immunology. However, H37Rv has been passaged countless times in various laboratories, and

despite retaining its virulence in mice, it has adapted to laboratory conditions [17]. The same

is likely true for Erdman and CDC1551 which have been isolated later than H37Rv, but which

by now, have also been passaged in the laboratory for several decades. Hence, despite the great

progress in our understanding of TB generated through studies based on laboratory strains,

there are good reasons to expect that the findings from these studies do not paint the full pic-

ture and could benefit from being validated in more genetic backgrounds.

Despite the increasing number of experimental studies revealing important phenotypic dif-

ferences across MTBC clinical strains, many of these studies have been difficult to reproduce
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between different laboratories, and the data are often contradictory. Moreover, linking experi-

mental phenotypes to clinical and epidemiological characteristics of MTBC lineages or strains

has been particularly challenging. We propose that part of these challenges could be overcome

by standardizing the complement of clinical MTBC strains we study. As a first step, we suggest

to broaden the scope of basic and translational TB research by incorporating a set of geneti-

cally well-characterized clinical strains representative of the known phylogenetic diversity of

the pathogen. In time, the community would accumulate a significant body of data that could

support new findings that are more relevant to global TB. To this end it is important that there

is a collective agreement to avoid passaging these strains extensively and minimize laboratory

adaptation.

Over the years, our group has been collecting strains from around the world and character-

izing them by whole genome sequencing. Our main aim was to draw evolutionary and phylo-

geographic inferences [18], however, we also realized the importance of studying this diversity

more broadly, which is why we used our global collection of MTBC clinical strains and the

associated phylogenomic data to rationally select a subset to be used as reference strains for

future research. We believe this set of strains will be of value for the TB research community.

The “MTBC clinical strain reference set” comprises 20 clinical strains covering all 7 known

human-adapted MTBC lineages. These strains have been submitted to the Mycobacterial cul-

ture bank of the Belgian Coordinated Collections of Microorganism (BCCM/ITM) and will be

available for anyone interested in the phenotypic impact of MTBC diversity (http://bccm.

belspo.be/).

Material and methods

Strain selection

We based our initial selection of strains to be included in this reference set on phylogenetic

trees that were built with a combination of genomes from our collection and other publicly

available genomes representing the known global diversity of the human-adapted MTBC [19].

Initially, we picked 43 strains that were intended to represent a diverse sampling of each line-

age, comprising several sub-lineages where appropriate. We strove to include strains that rep-

resent as much as possible the phylogenetic breadth of each lineage, thus attempting to capture

most of the within-lineage diversity The strains had to be free of known drug resistance muta-

tions and carry only genomic deletions that were congruous with their phylogenetic back-

ground, without any rare genomic abnormalities. Moreover, we included strains that were

already used in experimental work in the past; N0072, N0157, N0031, N0145 and N0155 [4,

20]. The remaining strains were selected from the large number of isolates present in the com-

bined collections of the authors. Specifically: N0004, N0054, N0069 and N0136 were contrib-

uted by UCSF, University of California; N1268, N1272, N1274 and N1283, were contributed

by the Research Center in Borstel, Germany; N1176, N1201, N1202 and N1216 were contrib-

uted by the Noguchi Memorial Institute for Medical Research in Accra, Ghana; N0091 was

contributed by MRC-Gambia and N3913 in the Victorian Infectious Diseases Reference Labo-

ratory in Melbourne. None of the strains were isolated specifically for this study.

Bacterial culture and DNA extraction

All MTBC isolates included into the “MTBC clinical strain reference set”, were processed and

derived from single colonies. Strains were grown in 7H9/Tween 0.05% medium (BD) +/-

40mM sodium pyruvate. We extracted genomic DNA for whole genome sequencing (WGS)

from cultures in the late exponential phase of growth using the CTAB method [21].
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Phenotypical drug susceptibility test (DST)

DST was performed for the main anti-TB drugs by the proportion method, using the following

drug concentrations: RMP (4 μg/ml), INH (0.2 and 1.0 μg/ml), EMB (2.0 μg/ml) and SM

(4.0 μg/ml) on Löwenstein-Jensen medium, and OFX (2.0 and 8.0 μg/ml), KAN (6 μg/ml),

CAP (10 μg/ml) and ETH (10 μg/ml) on Middlebrook 7H11 agar.

Spoligotyping

Spoligotyping was performed according to internationally standardized protocols [22]. We

used KvarQ to derive in silico spoligotypes from FASTQ files containing the WGS information

[23] when necessary.

Whole-genome sequencing

Sequencing libraries were prepared using NEXTERA XT DNA Preparation Kit (Illumina, San

Diego, USA). Multiplexed libraries were paired-end sequenced on Illumina HiSeq2500 (Illu-

mina, San Diego, USA) with 151 or 101 cycles at the Genomics Facility Basel.

Sequence read alignment and variant determination

The obtained FASTQ files were processed with Trimmomatic v 0.33 (SLIDINGWINDOW:

5:20) [24] to clip Illumina adaptors and trim low quality reads. Any reads shorter than 20 bp

were excluded for the downstream analysis. Overlapping paired-end reads were then merged

with SeqPrep v 1.2 (overlap size = 15) (https://github.com/jstjohn/SeqPrep). We used BWA v

0.7.13 (mem algorithm) [25] to align the resultant reads to the reconstructed ancestral

sequence of MTBC obtained in [19]. Duplicated reads were marked by the Mark Duplicates

module of Picard v 2.9.1 (https://github.com/broadinstitute/picard) and excluded. The Rea-

ligner Target Creator and Indel Realigner modules of GATK v 3.4.0 [26] were used to perform

local realignment of reads around indels. To avoid false positive calls Pysam v 0.9.0 (https://

github.com/pysam-developers/pysam) was used to exclude reads with alignment score lower

than (0.93�read_length)-(read_length�4�0.07)), corresponding to more than 7 miss-matches

per 100 bp. SNPs were called with Samtools v 1.2 mpileup [27] and VarScan v 2.4.1 [28] using

the following thresholds: minimum mapping quality of 20, minimum base quality at a position

of 20, minimum read depth at a position of 7-fold and without strand bias. Only SNPs consid-

ered to have reached fixation within a patient were considered (at a within-host frequency of

�90%). Conversely, when the SNP within-host frequency was�10% the ancestor state was

called. Additionally, we excluded genomes with average coverage < 15-fold (after all the

referred filtering steps). All SNPs were annotated using snpEff v4.11, in accordance with the

M. tuberculosis H37Rv reference annotation (NC000962). SNPs falling in regions such as PPE

and PE-PGRS, phages, insertion sequences and in regions with at least 50 bp identities to other

regions in the genome were excluded from the analysis as in [29]. Drug resistance-conferring

mutations were annotated based on a previously published list [23]. Determination of sub-

lineage was done using the phylogenetic SNPs according to Stucki et al. [29] and to Coll et al.
[30].

Detection of genomic duplications

We used the output of Samtools v1.2 mpileup and VarScan 2.4.1 to extract the mapping cover-

age depth of short sequencing reads (coverage) per genomic position. We split the genome

into bins of 500 base pairs and calculated the median coverage for each bin. We then computed

the z-score for all the bins across the genome of each strain. Finally, we calculated the median
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of coverage z-score medians for 80 consecutive bins spanning 40,000 base pairs. We plotted

both the z-scores and z-score pool medians and identified large genomic deletions by visual

inspection of the resultant coverage plots. Duplicated regions appear as regions with a marked

increase in the apparent coverage.

Phylogenetic reconstruction

To put the reference strain set into a phylogenetic context, we combined them into a phylogeny

containing publicly available genomes (n = 232) [19]. We used all 16,614 variable positions to

infer a Maximum Likelihood phylogeny using the MPI parallel version of RAxML [31]. We

used the GTR model as implemented in RAxMLto perform 1,000 rapid bootstrap inferences,

followed by a thorough maximum-likelihood search [31]. We show the best-scoring Maximum

Likelihood topology. The phylogeny was rooted using Mycobacterium canettii as an out-group.

Results and discussion

Selection of the “MTBC clinical strain reference set”

Starting from the 43 candidates, we excluded strains that we could not re-grow in the labora-

tory and those that had any mutation known to confer drug resistance [32]. We then selected

20 pan-susceptible clinical strains, based on full genome data for inclusion as reference strains

(Table 1). The selected set covers all 7 known phylogenetic lineages of the human-adapted

MTBC, but does not include any animal-adapted members of the MTBC. For most lineages,

we selected 3 representative strains to maximize the within- and between-lineage diversity (Fig

1). Given the current limited availability of Lineage 7 strains, we were able to include only a

Table 1. “MTBC clinical strains reference set” list.

Strain Place of Birth Lin Spoligotypea Date of isolation Sub-Lin +Pyr DR SIT BCCM/ITM n˚

N0069 China L1 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■□□□□■□■■■■■■□□□ 9/11/1998 L1.1.1 wt nd ITM-2018-00102

N0072 India L1 ■□□■■■■■■■■■■■■■■■■■■■■■■■■■□□□□■□■■□□□□■■■ 6/15/1997 L1.1.2 wt 355 ITM-2018-00083

N0157 Philippines L1 ■■□■■■■■■■■■■■■■■■■□□■■■■■■■□□□□■□■■■■■■■■■ 6/15/1999 L1.2.1 wt 19 ITM-2018-00082

N0031 China L2 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 6/15/1994 L2.1 wt 523 ITM-2018-00087

N0052 China L2 □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□■■■■■■■■■ 6/15/1998 L2.2.2 wt 1 ITM-2018-02241

N0145 China L2 □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□■■■■■■■■■ 6/15/1997 L2.2.1.1 wt 1 ITM-2018-00085

N0155 China L2 □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□■■■■■■■■■ 6/15/1998 L2.2.1 wt 1 ITM-2018-00088

N0004 India L3 ■■■□□□□■■■■■■■■■■□■■■■□□□□□□□□□□□□□□■■■■■■■ 3/1/2010 nd wt nd ITM-2018-00089

N0054 Ethiopia L3 ■■■□□□□■■■■■■■■■■■■■■■□□□□□□□□□□□□■■□□■■■■■ 6/15/1999 nd wt 309 ITM-2018-00091

N1274 Afghanistan L3 ■■■□□□□■■■■■■■■■■■■■■■□□□□□□□□□□□□□□□■■■■■■ 2/15/2005 nd STR 357 ITM-2018-00090

N0136 USA L4 ■■■■■■■■■■■■■■■■□□□□□■■■■■■■□■■■□□□□■■■■■■■ 8/19/1991 L4.3.3 wt 222 ITM-2018-00093

N1216 Ghana L4 ■■■■■■■■■■■■■■■■■■■■■■□□□■■■■■■■□□□□■■■■■■■ 2/15/2011 L4.6.2.2 wt 61 ITM-2018-00092

N1283 Germany L4 ■■■■■■■■■■■■□■■■■■■■■■■■■■■■□□□■□□□□■■■■■■■ 5/15/2003 L4.2.1 wt 35 ITM-2018-00094

N1176 Ghana L5 ■■■■■■■□□□□□■■■■■■■■□□□□■■■■■■■■■■■■□□□■■■■ 9/11/2009 nd yes wt 331 ITM-2018-00095

N1268 Sierra Leone L5 ■■■■■■■□□□□□■■■■■■□□□□□□■■■■■■■■■■■■□□□■■■■ 12/15/2003 nd yes wt 761 ITM-2018-00097

N1272 Ghana L5 ■■■■■■■□□□□□■■■■■■■■□□□□■■■■■■■■■■■■□□□□■■■ 6/1/2002 nd yes wt 330 ITM-2018-00096

N0091 Gambia L6 ■■■■■■□□□■■■■■■■■■■■■■■■■■■■■■■■■■■■■■□■■■■ 6/14/2002 nd yes wt 181 ITM-2018-00099

N1201 Ghana L6 ■■■■■■□□□■■■■■■■■■■■■□□□■■■■■■■■■■■■■■□□■■■ 2/17/2009 nd yes wt nd ITM-2018-00098

N1202 Ghana L6 ■□■■■■□□□■■■■■■■■■■■■■■■■■■■■■■■■■■■■■□■■■■ 2/5/2008 nd yes wt 318 ITM-2018-00100

N3913 Ethiopia L7 ■■■□□□□□□□□□□□□□□□□□□□□□■■■□□■■■■■■■■■■■■■■ 11/6/2011 nd wt 910 ITM-2018-00101

Place of birth, genotyping data (SNP typing and splogotypinga), date of isolation, sublineage classification based on Coll et al. [30], suggested growing conditions, SIT

number and BCCM/ITM number for the strain bank.
aSpoligotyping data for each strain are shown, where black squares indicate the presence of a particular spacer and a white square the absence of a particular spacer.

https://doi.org/10.1371/journal.pone.0214088.t001
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Fig 1. Maximum Likelihood topology of the 20 reference strains (open circles) plus 236 genomes representative of MTBC global diversity. Branch lengths

are proportional to nucleotide substitutions and the topology is rooted with Mycobacterium canettii. Bootstrap values for clades corresponding to main MTBC

lineages are shown. Grey circles indicate the phylogenetic placement of laboratory M. tuberculosis strains commonly used. “A” stands for animal MTBC.

https://doi.org/10.1371/journal.pone.0214088.g001
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single representative. In the case of Lineage 2, we chose 4 strains to cover the wide range of

genomic deletions found in this lineage [33]. These include N0155, a clinical strain that was

used by our group in the past [20], and all the Lineage 2 strains that were transcriptionally pro-

filed by Rose et al. [4]. We also included a “Proto-Beijing” strain (N0031), which belongs to a

Lineage 2 clade that is phylogenetically basal compared to all other Lineage 2/Beijing strains.

Proto-Beijing strains are also characterized by a deletion of RD105 but no deletion in RD207,

which differentiates “proto-Beijing” from the regular “Beijing strains [34]. Moreover, N0031

shows an ancestral spoligotype with all DR spaces present (Table 1). Its basal branching pro-

vides an important contrast to the classical Beijing strains which carry deletions in both

RD105 and RD207 [34, 35]. The Lineage 1 strains N0157 and N0072 have also been transcrip-

tionally profiled [4]. In the case of Lineage 4, we selected representative strains of the “general-

ist” and “specialist” groups as defined by Stucki et al [29], respectively N0136 and N1216. The

Lineage 4 strain N1283 is a representative of the sub-lineage L4.2 [29], which is also referred to

as “Ural” based on spoligotyping [36]. The phylogenetic relationships of the 20 reference

strains with respect to other representative MTBC strains are shown in Fig 1. Phenotypic resis-

tance to STR was observed in N1274. This strain did not carry any mutation in the most com-

mon STR DR associated genes; rpsL or in the region 530_900 of rrs, however, a rare mutation

was found in gydB (Rv3919c) at the AA position R137P. The rest of the “MTBC clinical strains

reference set” was confirmed to be phenotypically drug susceptible to all main TB drugs.

Genomic characteristics

All annotated SNPs and insertions/deletions (indels) identified by comparison with the recon-

structed MTBC ancestor sequence [37] and considered fixed (at frequency of�90%) for each

strain are provided as supplementary files (S1 and S2 Tables). The general characteristics of

the genome of each strain are presented in Table 2. We were able to observe all the large geno-

mic deletions reported before [33] as gaps in sequencing coverage. For example, all Lineage 2

strains carried the deletion in RD105 and all but the Proto-Beijing strain also had a deletion in

RD207. N0145 and N0155 shared the deletion in RD181, while N0145 harboured an additional

deletion in RD150.

Given several reports in the literature regarding the importance of the duplication of a part

of the genome that includes DosR and DosS (Rv3133c and Rv3134c) for MTBC virulence [4],

we looked for areas of excessive read coverage within the genomes (S1 Fig). We identified four

strains showing evidence of overlapping duplications covering DosR/S–N0031, N0145, N0155

and N1283 (S2 Fig). The first three strains belong to Lineage 2 while N1283 belongs to Lineage

4, corroborating past suggestions of convergent evolution [38, 39]. We did not detect any

other genomic duplications of a comparable size in the genomes (S1 Fig).

Recommendations for growing and preserving the reference strains

Strains have been deposited in the Belgian Coordinated Collections of Microorganism

(BCCM) and can be obtained from the BCCM/ITM: http://bccm.belspo.be/about-us/bccm-

itm. Upon receipt, we suggest to grow a large culture of each strain in 7H9 (BD) and freeze

multiple glycerol stocks for future use to avoid the acquisition of genetic changes due to labo-

ratory adaptation during sequential sub-culturing [17]. Note that some strains require the

addition of 40mM sodium pyruvate for optimal growth (Table 1).

Conclusions

For decades, TB research has almost exclusively focused on the two laboratory-adapted MTBC

reference strains H37Rv and Erdman. Both strains have provided a common language across
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TB laboratories allowing knowledge to be built incrementally, with interoperable protocols,

results and resources. However, insufficient attention has been given to the fact that both of

these strains show patterns of laboratory adaptation and that they do not adequately represent

the phylogenetical breadth of the human-adapted MTBC.

Table 2. Characteristics of the “MTBC clinical strains reference set” genomes.

Strain Coveragea SNPsb Indelsb % Genome Coveredc AC_Numberd

N0069 81.09 898 135 98.11 ERR2704679

N0072 72.11 894 129 98.31 ERR2704680

N0157 74.32 894 132 98.87 ERR2704704

ERR2704685

N0031 66.8 845 104 98.57 ERR2704676

N0052 110.37 862 93 98.98 ERR2704677

ERR2704699

ERR2704698

N0145 39.46 875 95 98.84 ERR2704702

ERR2704701

ERR2704683

N0155 115.19 897 105 99.14 ERR2704703

ERR2704684

N0004 46.34 873 102 98.98 ERR2704675

ERR2704696

ERR2704697

N0054 64.21 886 110 98.4 ERR2704678

N1274 80.82 874 111 98.25 ERR2704693

N0136 52.92 823 52 99.15 ERR2704682

ERR2704700

N1216 66.75 817 52 98.93 ERR2704705

ERR2704689

N1283 52.97 831 61 98.97 ERR2704709

ERR2704694

N1176 76.08 934 146 98.37 ERR2704686

N1268 51.11 937 134 98.58 ERR2704706

ERR2704690

N1272 73.57 908 141 98.39 ERR2704708

ERR2704707

ERR2704692

ERR2704691

N0091 72.87 1049 147 98.36 ERR2704681

N1201 77.64 1055 148 98.39 ERR2704687

N1202 78.02 1015 144 98.25 ERR2704688

N3913 100.62 1021 149 99.02 ERR2704711

ERR2704695

ERR2704710

a Average read depth after mapping and filtering out duplicated reads.
b Number of SNPs and short Indels considered fixed.
c Percentage of the reference chromosome (H37Rv) to which reads have been mapped.
d Accession Run Number.

https://doi.org/10.1371/journal.pone.0214088.t002
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The new “MTBC clinical reference set” presented here covers much of this diversity and

will provide the TB research community the opportunity to go beyond one single strain/line-

age. The potential of sharing and integrating the experimental data generated with this strain

set will enrich our understanding of the relationship between genotype and phenotype and

potentially lead to fundamental new insights into TB biology. The true impact of genetic diver-

sity in MTBC is slowly coming into focus; however there are still considerable gaps in our

understanding. For example, it is known that clinical isolates show variations in drug suscepti-

bility, but the basis for this is unclear [40]. Similarly, the association between drug resistance

and specific strain backgrounds has been proposed in several studies, but the underlying

mechanism remains unknown [9]. Vaccine and diagnostics development are two areas where

understanding the impact of genetic diversity could be key to delivering effective products

[14]. Similarly, we are only beginning to scratch the surface of the interplay between bacterial

and human genetics at the immune interface [41]. These aspects of MTBC physiology deserve

further attention especially due to their potential to have real clinical relevance. At a minimum,

testing new TB diagnostics, drugs and vaccines against this strain set will help ensure these

innovations are broadly effective.
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