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ABSTRACT 

In minimal invasive laser osteotomy precise information about the ablation process can be obtained with LIBS in order 

to avoid carbonization, or cutting of wrong types of tissue. Therefore, the collecting fiber for LIBS needs to be optimally 

placed in narrow cavities in the endoscope. To determine this optimal placement, the plasma plume expansion dynamics 

in ablation of bone tissue by the second harmonic of a nanosecond Nd:YAG laser at 532 nm has been studied. The laser-

induced plasma plume was monitored in different time delays, from one nanosecond up to one hundred microseconds. 

Measurements were performed using high-speed gated illumination imaging. The expansion features were studied using 

illumination of the overall visible emission by using a gated intensified charged coupled device (ICCD). The camera was 

capable of having a minimum gate width (Optical FWHM) of 3 ns and the timing resolution (minimum temporal shift of 

the gate) of 10 ps. The imaging data were used to generate position–time data of the luminous plasma-front. Moreover, 

the velocity of the plasma plume expansion was studied based on the time-resolved intensity data. By knowing the 

plasma plume profile over time, the optimum position (axial distance from the laser spot) of the collecting fiber and 

optimal time delay (to have the best signal to noise ratio) in spatial-resolved and time-resolved laser-induced breakdown 

spectroscopy (LIBS) can be determined. Additionally, the function of plasma plume expansion could be used to study 

the shock wave of the plasma plume. 
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1. INTRODUCTION

LIBS feedback systems for laserosteotomy could help surgeons avoid cutting a wrong tissue or make it carbonized [1-9]. 

Laserosteotomes connected to such a feedback system are so-called smart laserosteotomes [10]. Although compared to 

traditional mechanical tools for cutting bones, laserosteotomes already have several benefits including minimal 

invasiveness, non-contact interaction, functional cuts and accelerated healing [11-15], making them smart can further 

improve the level of safety of the current systems [16]. In minimally invasive interventions there is little space, so the 

placement of the fiber with respect to an observable laser plume is critical [17-20]. This study aims to determine the 

optimal placement of the fiber with respect to a plasma that is easily accessible due to an ablation process carried out in 

open air. While most of the similar previous research has carried out to observe the expansion dynamics of the plasma 

from the side view (perpendicular to the laser beam) [21-23], this study aims to observe the plasma profile from frontal 

view. The reason for selecting the front view is the fact that in endoscopic laserosteotomy, observing the plasma zone 

from the side view needs much more optical components and as a result makes the endoscopes thicker. The expansion 
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behavior of the laser-driven plasma plume involves several processes such as shielding effects, electron-ion 

recombination, attenuation, and shock wave formation. Thus, the plasma behavior depends on laser parameters and 

environmental conditions including the type of sample that is ablated by the laser [24-26]. Therefore, the plasma 

expansion dynamic for different samples should be studied individually in order to determine the appropriate time delay 

and appropriate position of the collecting fiber (optimal signal to noise ratio) in time-resolved and spatial-resolved LIBS 

feedback systems. In this study, the emission intensities of plasma for the axial area (FWHM) as a function of delay were 

measured by means of high-speed gated illumination imaging with a nanosecond gated ICCD during nanosecond 

Nd:YAG bone ablation to find out the best possible time delay and axial distance of collection optic in smart 

laserosteotomes. 

2. MATERIALS AND METHODS

2.1 Bone samples 

In this study, fresh femur porcine bones were used. The bones were kept in the deep freezer (-18° centigrade) between 

the scarification to the starting day of the experiment. Four hours before the experiment, the bones were moved to the 

refrigerator (+ 4° centigrade). The experiments were done at room temperature after removing the surrounding soft tissue 

with a surgical scalpel. 

2.2 Optical setup 

Figure 1 shows the schematic of the experimental setup. A Q-switched Nd:YAG laser (Q-smart 450, Quantel) running in 

its second harmonic at 532 nm with 5 ns pulse duration was used to generate plasma in the air and at the surface of the 

bone. The laser was operated at 200 mJ per pulse and 1 Hz repetition rate. The first harmonic of the laser was separated 

and blocked using a nonlinear crystal (C), and a beam blocker (D) installed right after the harmonic generator, 

respectively. The initial output beam of the laser (E) (6.5 mm diameter, < 0.5 mrad divergence) was horizontally directed 

to a dichroic mirror (G) placed at 45 degree to the laser line. The reflected light was directed to the surface of the sample 

from the side by placing a convex lens (H) between the dichroic mirror and the sample (I). This focusing lens provides a 

spot size in the order of a couple of hundreds of micrometers at the sample surface. The image of the generated plasma 

(J) was passed through the mentioned convex lens and dichroic mirror first and was focused by an imaging lens (M) to

the ICCD (N) (PI-MAX4, Princeton Instruments) after filtering through a laser line filter (L) (532 nm blocker). Both

focusing and collimating lenses had a focal length of +40 mm for providing magnification of 1 to have an appropriate

field of view. The ICCD was synchronized with the Q-switch of the laser through the internal delay generator of the

ICCD to apply a desired time delay (Q-switch as a master and the camera as a slave). Although the camera had the

ability of time delay adjustment with picosecond resolution, due to having 1 ns jitter of Q-switch TTL pulse output,

different time delays ranging from 1 nanosecond to 100 microseconds were set. The gain and the gate of the ICCD were

set to fill 90% of the available counts of the camera (16-bit digitization) to avoid non-linearity effects which normally

happen near the saturation.

Figure 1. The schematics of the optical setup for investigating ionization front. A: Laser (pulsed Nd:YAG), B: Second 

harmonic generator, C: Harmonic separator, D: First harmonic blocker, E: Laser beam, F: Laser line mirror, G: Dichroic 

mirror, H: Convex lens, I: Sample, J: Generated plasma, K: Plasma emission light, L: Notch filter, M: Convex lens, N: 

ICCD, O: Computer. 
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3. RESULTS 

3.1 Imaging of the generated plasma in air 

Figure 1 shows the images of the generated plasmas in the air with different time delays ranging from 1 ns to 10 s. The 

time delay shown in the top-left corner of the pictures is the time between starting point of the generation of the plasma 

and opening the gate of the ICCD. Imaging at each time delay was repeated five times, and the images were found to be 

reproducible in both shape and size. Rapid expansion is observable in the first tens of nanoseconds after the generation of 

the plasma, and afterwards, the plasma size was roughly constant. Table 1 shows the average size of the generated 

plasma in the air in millimeters, including standard deviation of five different measurements at each time delay. 

     

     

     

Figure 2. Images of the generated plasma in the air with different time delay. The scale bar at the corner is 2 mm in all 

images. Images are depicted in full-scale auto-contrast mode (Blue: minimum intensity, Red: maximum intensity). 
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3.2 Imaging of the generated plasma at the surface of the bone 

Figure 2 shows the images of the plasma generated at the surface of the bone with different time delays ranging from 1 

ns to 10 s. The time delay shown in the top-left corner of the pictures is the time between starting point of the 

generation of the plasma and opening the gate of the ICCD. Imaging at each time delay was repeated five times, and 

similar to the measurements above, the images were found to be reproducible in both shape and size. The generated 

plasmas at the surface of the bone were bigger and brighter in comparison to the plasma generated in the air. High 

velocity expansion was observed in the first tens of nanoseconds after the generation of the plasma and later a slower 

expansion was observed. Table 1 shows the average size of the generated plasma at the surface of the bone in millimeter, 

including standard deviation of five different measurements at each time delay. 

     

     

     

Figure 3. Images of the generated plasma at the surface of the bone with different time delay. The scale bar at the corner is 2 

mm in all images. Images are depicted in full-scale auto-contrast mode (Blue: minimum intensity, Red: maximum intensity). 
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Table 1. The average size (FWHM) of the generated plasmas in the air and at the surface of the bone. 

Time delay [ns] 

Size of the plasma 

generated in the air 

[mm] 

Size of the plasma 

generated at the surface 

of the bone [mm] 

1 

5 

10 

50 

100 

500 

1000 

5000 

10000 

2.32 0.04 

2.67 0.04 

2.87 0.01 

2.96 0.01 

2.56 0.02 

2.24 0.02 

2.19 0.03 

2.23 0.05 

2.13 0.07 

2.88 0.04 

3.07 0.01 

3.38 0.02 

3.64 0.02 

3.07 0.01 

3.17 0.06 

3.69 0.02 

3.99 0.07 

4.42 0.17 

 

3.3 Plasma fading 

It was observed that plasma exists for tens of microseconds and then it gradually fades. It is worth mentioning that the 

fading happened in the air earlier than the bone. Figure 4 shows a typical plasma image of the bone sample, right before 

fading (100 s delay). As can be seen from the image, the central part fades earlier than outer part, since the ionized 

particles in the central part of the plasma have a higher lifetime as compare to those in the outer parts. 

     

Figure 4. A typical image of the generated plasma at the surface of the bone right before fading. The scale bar at the corner 

is 2 mm. The image is depicted in optimal-scale auto-contrast mode (Blue: minimum intensity, Red maximum intensity). 

 

4. DISCUSSION 

It was observed that the size of the plasma generated at the surface of the bone was bigger and brighter in comparison to 

the plasma generated in the air in all time delays. This could be related to the fact that more particles could be ionized in 

the bone sample, whereas in air there are not so many particles that effectively can be ionized. Additionally, a rapid 

expansion with very high velocity was observed in the first tens of nanoseconds after the generation of the plasma in 

both samples, confirming a high level of Bremsstrahlung emission in this timescale. Therefore, a time delay of more than 

hundreds of nanoseconds is necessary to prevent covering the atomic plasma lines by the continuum emission in time-

resolved laser-induced breakdown spectroscopy (TRLIBS) of bone samples. In the beginning of the plasma generation in 
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the bone, the size of plasma is less than 3.66 mm. Based on this result, if the collection fiber is placed 1.83 mm away 

from the center of the plasma, it would collect a high level of Bremsstrahlung-free emissions in spatial-resolved laser-

induced breakdown spectroscopy (SRLIBS). However, the idea needs to be confirmed experimentally in the future. 

Moreover, it was observed that the plasma exists up to some hundreds of microseconds in bone samples. This 

observation indicates that using the laser with a repetition rate of more than 10 kHz could result in plasma shielding 

effects and consequently reduce the ablation efficiency due to the absorption of the laser light by the plasma itself. In 

addition, having different sizes and fading times between bone and air samples shows the potential of high-speed gated 

illumination imaging of plasma for auto-focus applications which results in having thinner cuts and more reproducible 

LIBS spectra for smart laserosteotomes. Finally, it should be noted that all of the experiments in this study were done 

with a fixed energy, pulse duration, and wavelength. Thus, the effect of changing the mentioned parameter on the results 

should be examined in future to optimally place the collecting fiber in narrow cavities in the endoscope of smart 

laserosteotomes for in vivo experiments. 

5. CONCLUSION 

The dynamics of the plasma plume is essential to determine the appropriate position of the collecting fiber (to have the 

best signal to noise ratio) in LIBS feedback systems of laserosteotomes. The emission intensities of plasma for an axial 

view (FWHM) as a function of delay were measured by means of high-speed gated illumination imaging with a 

nanosecond gated ICCD during porcine femur bone ablation with a nanosecond Nd:YAG laserosteotome. Results of the 

expansion dynamic of the generated plasma at the surface of the bone suggest to either have a time delay of more than 

hundreds of nanoseconds in TRLIBS or to put the collecting fiber ca. 1.83 mm away from the central part of the ablation 

zone in SRLIBS to have the best signal to noise ratio. Moreover, the results of the fading time study, which was longer in 

bone samples as compared to the air, suggest using lasers with a repetition rate of 10 kHz or less to avoid plasma 

shielding effects for nanoseconds Nd:YAG laserosteotomy. 
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