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ABSTRACT 

Although laserosteotomes have become generally accepted devices in surgical applications, they still suffer from a lack of 

information about the type of tissue currently being ablated; as a result, critical structures of the body under or near the 

focal spot of the laser beam are prone to inadvertent ablation. The lack of information about the properties of the ablated 

tissue can be solved by connecting the laserosteotome to an optical detection setup which can differentiate various types 

of tissues, especially bone from connective soft tissues. This study examines the applicability of laser-induced breakdown 

spectroscopy (LIBS) as a potential technique to differentiate bone from surrounding soft tissue (fat and muscle). In this 

experiment, fresh porcine femur bone, muscle, and fat were used as hard and soft tissue samples. The beam of a nanosecond 

frequency–doubled Nd:YAG laser was used to ablate the tissue samples and generate the plasma. The plasma light emitted 

from the ablated spot, which corresponds to the recombination spectra of ionized atoms and molecules, was gathered with 

a collection optic (including a reflective light collector and a fiber optic) and sent to an Echelle spectrometer for resolving 

the atomic composition of the ablated sample. Afterwards, Discriminant Function Analysis (DFA) based on the ratio of 

the intensity of selected peak pairs was performed to classify three sample groups (bone, muscle, and fat). Lastly, the 

sensitivity, specificity, and accuracy of the proposed method were calculated. Sensitivity and specificity of 100 % and 

99 % were achieved, respectively, to differentiate bone from surrounding soft tissue. 
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1. INTRODUCTION 

In comparison to well established mechanical instruments for cutting bone, laserosteotomes provide several important 

benefits like functional cuts, minimal invasiveness, non-contact interaction, and accelerated healing [1-10]. At the same 

time, they still suffer from a lack of feedback on the type and properties of the tissue being cut; as a result, critical structures 

of the body under the laser line are prone to iatrogenic damage [11-15]. The lack of information on the type of tissue being 

ablated by the laserosteotome limits its application as a minimally invasive osteotomy tool. In order to advance the range 

of applications for laserosteotomes, there is a need for a feedback control system that can provide accurate information on 

the type and properties of the tissue being cut. Such feedback mechanisms can rely on photoacoustic, spectroscopic or 

OCT-based measurements [16-21]. Hereby, the potential spectroscopic methods include diffuse reflectance, laser-induced 

breakdown, Raman, and fluorescence spectroscopy [22-26]. Among them, laser-induced breakdown spectroscopy (LIBS), 

as a powerful analytical technique, seems to be most promising to us since it enables using the same laser as during the 

cutting process. Authors have recently shown that LIBS feedback systems for laserosteotomy could help surgeons avoid 
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carbonizing bone [18]. Moreover, LIBS has shown its potential to differentiate between healthy and carious teeth [27, 28], 

bone and spinal cord [29, 30], bone and cartilage [31], nerve and fat [32], as well as nerve and gland [33]. Laserosteotomes 

connected to such a feedback system are so-called smart laserosteotomes [34]. Making laserosteotomes smart can further 

improve their efficiency and safety. This study aims to examine LIBS to differentiate hard femur bone from surrounding 

soft tissue (muscle and fat) as a feedback system for smart laserosteotomy. A high-resolving power (/ of 4000) Echelle 

spectrometer connected to an intensified CCD (ICCD) was employed to collect the plasma emission spectrum. Fresh hard 

pig bone, muscle, and fat were ablated with 5 ns laser pulses at 532 nm, while simultaneously the laser-driven plasma 

plume was monitored spectroscopically with a fixed time delay. Finally, canonical discriminant function analysis was 

employed to provide a function to classify groups of samples. Receiver Operating Characteristic (ROC) analysis was 

performed additionally to confirm the performance of the proposed classifier later on. 

 

2. MATERIALS AND METHODS 

2.1 Specimens 

In this study, fresh femur porcine samples (bone, muscle, and fat) bought from a local supermarket were used. The 

specimens were kept in the deep freezer (- 18° C) between the scarification to the day of the experiment. Four hours before 

the experiment, specimens were moved to the refrigerator (+ 4° C). The tissue types were separated with a surgical scalpel 

and rinsed in tap water prior to the experiments. 

2.2 LIBS setup 

Figure 1 shows the schematic of the LIBS setup. A flash-lamp pumped Q-switched Nd:YAG laser (Q-smart 450, Quantel) 

running in its second harmonic at 532 nm (5 ns pulse duration) was used to ablate the specimens. The laser was operated 

at 108 mJ energy per pulse and 1 Hz repetition rate. The fundamental harmonic of the laser (1064 nm) was separated and 

blocked using a nonlinear crystal (C) and a beam blocker (D) installed right after the harmonic generator, respectively. 

The initial output beam of the laser (E) (6.5 mm diameter) was horizontally directed to a convex lens (F) placed 

perpendicular to the laser line. The focused light was directed to the surface of the specimen from the side. This focusing 

lens provides a spot size in the order of hundreds of micrometers at the specimen surface. The emitted light from the 

produced plasma (H) with a diameter of ca. 3 mm [35] was collected by a light collector placed at 45-degree angle in 

reference to the laser beam (I), passed through an optical fiber (J) and finally guided to a high-resolution Echelle 

spectrometer (K) that sent the spectrometer data forward to the computer (L). The spectrometer was empowered with a 

16-bit ICCD with a built-in delay generator and adjustable gain. The ICCD (as a slave) was synchronized with the Q-

switch of the laser (as a master) with the jitter of 1 ns. The gate delay of 5 s was applied to avoid collecting continuum 

emissions which could cover the LIBS peaks [36]. The LIBS spectra were integrated for 1 ms. The CCD-sensor was cooled 

down to - 30° C to reduce the background noise level. Also, the experiment was run at the same temperature that was 

employed to calibrate the spectrometer (+ 25° C) to avoid misalignment caused by thermal expansion/contraction of the 

system. 

 

Figure 1. The schematics of the LIBS setup. A: Laser (nanosecond Nd:YAG), B: Second harmonic generator, C: Harmonic 

separator, D: First harmonic beam blocker, E: Output beam, F: Focusing lens, G: Specimen, H: Generated plasma, I: Light 

collector, J: Optical fiber, K: Echelle spectrometer, L: Computer. 
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2.3 Data analysis 

The specimens were separated into three groups: femur bone as a hard tissue sample and femur muscle and fat as 

surrounding soft tissue samples. Each group consisted of 5 specimens; 50 shots were recorded from each specimen. In 

total, 750 spectra were recorded, 250 from each group. Then, to determine the atomic composition of the samples, the 

emission lines in the recorded LIBS spectra of all groups of samples were mapped with the atomic spectra database of the 

National Institute of Standards and Technology (NIST) [37]. After finding the related lines of the emitted atomic elements, 

the wavelengths and the intensities of reproducible peaks were stored in a separate file. Later on, the ratio between the 

intensity of the stored peaks was calculated and used as input of Discriminant Function Analysis (DFA) to generate 

functions to classify sample groups. This ratio-based analysis allows for more robust results, as it is more stable than data 

based on absolute intensity values in the spectra of a given tissue type [18]. Afterwards, the performance of the employed 

classifier was evaluated using ROC analysis. Additionally, statistical parameters of the classifier including the true positive 

rates (sensitivity), true negative rates (specificity), positive predictive values (precision), negative predictive values and 

accuracy were calculated between different sample pairs (i.e., hard-soft tissue pair, bone-muscle pair, bone-fat pair and 

fat-muscle pair). 

 

3. RESULTS 

Figures 2 shows LIBS spectra of bone, muscle and fat samples. Each depicted spectrum is the average of 250 measurements 

without any background reduction. 

 

Figure 2. Average LIBS spectra of hard and soft tissue samples (bone in blue, muscle in red and fat in green). 

The recorded spectra may include emission lines of the elements found in the ambient air. In the collected spectra, 21 

reproducible atomic emission lines were observed including calcium (Ca), sodium (Na), potassium (K), zinc (Zn), 

hydrogen (H), iron (Fe), oxygen (O), chlorine (Cl), and nitrogen (N). In addition, a molecular line of carbon to nitrogen 

bonding (CN) was observed in the recorded spectra. The observed lines were in agreement with the lines described in 

literature [26-34]. Later on, based on the 22 chosen peak intensities, 231 intensity ratios were generated using permutation 
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without repetition. These 231 generated ratios were used as input for DFA. Figure 3 shows the result of the employed 

canonical DFA.  

 

Figure 3. Result of employed canonical DFA to classify groups of samples (bone in blue, muscle in red and fat in green). 

In Figure 3, function 1 enables the classification between hard (bone) and soft tissues (muscle and fat) classes and function 

2 provides classification between muscle and fat classes. By employing function 1, all 250 bone spectra were correctly 

classified as bone, 249 muscle as muscle and only 1 as bone and also all 250 fat spectra as fat. By employing function 2, 

out of 250 recorded muscle spectra, 228 of them were classified as muscle, and 22 as fat, also out of the 250 recorded fat 

spectra, 223 of them were correctly classified as fat and 27 as muscle. Table 1 shows the peak ratios that had the highest 

contribution to the functions, sorted from lowest to highest Wilks' Lambda. 

Table 1. The peak ratios with most contribution to the functions, sorted from lowest to highest Wilks' Lambda (from highest 

to lowest contribution). I means single ionized atomic line, P means persistent line and M means Molecular line. 

 Ratio 

1 Ca I (P) @ 616.2 nm / K I (P) @ 769.9 nm 

2 Ca I (P) @ 612.2 nm / K I (P) @ 769.9 nm 

3 Ca I (P) @ 610.3 nm / CN (M) @ 388 nm 

4 Ca I (P) @ 616.2 nm / K I (P) @ 766.5 nm 

5 Ca I (P) @ 558.9 nm / CN (M) @ 388 nm 

6 Ca I (P) @ 610.3 nm / K I (P) @ 769.9 nm 

7 Ca I (P) @ 612.2 nm / K I (P) @ 766.5 nm 

 

Table 1 clearly shows that atomic lines of calcium and potassium, as well as the molecular line of carbon to nitrogen 

bonding, had the highest contribution to differentiate groups of samples. Table 2 shows the statistical parameters of the 

classifier between different pairs of groups. 
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Table 2. Statistical parameters of the classifier between different pairs of groups. 
 

Hard (Bone)-Soft 

(Muscle and Fat) 

Tissue Pair 

Bone-Muscle 

Pair 

Bone-Fat 

Pair 

Fat-Muscle 

Pair 

True Positive Rate (Sensitivity) 100 % 100 % 100 % 90.0 % 

True Negative Rate (Specificity) 99.8 % 99.6 % 100 % 91.2 % 

Positive Predictive Value (Precision) 99.6 % 99.6 % 100 % 91.1 % 

Negative Predictive Value 100 % 100 % 100 % 90.1 % 

Accuracy 99.9 % 99.8 % 100 % 90.6 % 

 

It is clear from Table 2 that all groups of samples were classified with an accuracy of more than 90 %. Additionally, a 

ROC analysis was performed, and the Area Under Curve (AUC) was calculated afterwards. Figure 4 shows the result of 

the ROC analysis for different pairs of samples. 

 

Figure 4. Result of ROC analysis for different pairs of samples. 
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4. DISCUSSION 

Laser-induced breakdown spectroscopy showed reliable results to differentiate porcine femur bone from surrounding soft 

tissue in ex vivo conditions. Since the accuracy of the classifier to detect surrounding soft tissues was high (more than 

99.99 %) the ex vivo results are likely to transfer to in vivo conditions. Nevertheless, the obtained accuracy from the ex 

vivo conditions is expected to decrease for in vivo experiments, where tissues are surrounded by rinsing solutions (e.g., 

blood) during the clinical procedures. A possible approach to overcome the influence of rinsing solutions in in vivo 

conditions could be utilizing a double-pulse LIBS setup, where the first pulse can remove the superficial liquid on the focal 

spot and the second pulse can quickly reach the target surface before the target area is refilled with liquid that would falsify 

the results. While the primary aim of the study was to differentiate soft from hard tissue, the applicability of LIBS to 

differentiate internally between soft tissue groups (muscle and fat) was examined as well; the accuracy of internal soft 

tissue differentiation was close to 90 %. A possible reason for this decrease in the accuracy of muscle-fat pair differentiation 

could be the existence of connective tissue in between soft tissues. Employing either more advanced classification methods 

or a more robust LIBS setup, such as LIBS being connected to an auto-focus system, might result in even higher 

classification accuracy for internal soft tissue differentiation. Alternatively, considering the average of multiple spectra for 

the analysis or employing a fiber with less absorption in UV might improve the accuracy further. Finally, it is noteworthy 

that the area under the ROC curve of the fat-muscle pair was higher than 96 %. This suggests that depending on the 

application, either more sensitivity (true positive rate) or specificity (true negative rate) are achievable by moving the 

threshold line. 

 

5. CONCLUSION 

Laserosteotomes have to efficiently and safely cut bones without damaging the surrounding soft tissues, and therefore, the 

type of tissue being cut has to be identified. One viable option is to include real-time feedback mechanisms in the cutting 

process. This study examined the applicability of LIBS for differentiating femur bone from surrounding soft tissue (muscle 

and fat) by monitoring the laser-driven plasma generated during a nanosecond pulse ablation using a frequency-doubled 

Nd:YAG laser at 532 nm. The observed atomic and molecular emissions in the recorded LIBS spectra of both hard and 

soft classes were in agreement with literature. Also, the preliminary results of this study demonstrate that LIBS is a 

powerful technique for differentiating surrounding soft tissue from hard bone. Sensitivity and specificity of 100 % and 

99 % were achieved, respectively. 
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