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A B S T R A C T

Trypanosoma congolense is a protozoan parasite that is transmitted by tsetse flies, causing African Animal
Trypanosomiasis, also known as Nagana, in sub-Saharan Africa. Nagana is a fatal disease of livestock that causes
severe economic losses. Two drugs are available, diminazene and isometamidium, yet successful treatment is
jeopardized by drug resistant T. congolense. Isothermal microcalorimetry is a highly sensitive tool that can be
used to study growth of the extracellular T. congolense parasites or to study parasite growth inhibition after the
addition of antitrypanosomal drugs. Time of drug action and time to kill can be quantified in a simple way by
real time heat flow measurements. We established a robust protocol for the microcalorimetric studies of T.
congolense and developed mathematical computations in R to calculate different parameters related to growth
and the kinetics of drug action. We demonstrate the feasibility and benefit of the method exemplary with the two
standard drugs, diminazene aceturate and isometamidium chloride. The method and the mathematical approach
can be translated to study other pathogenic or non-pathogenic cells if they are metabolically active and grow
under axenic conditions.

1. Introduction

Nagana, or African Animal Trypanosomiasis (AAT), is a parasitic
livestock disease in sub-Saharan Africa caused by Trypanosoma con-
golense, T. vivax and, to a lesser extent, T. brucei brucei, and is trans-
mitted by tsetse flies (Glossina spp.). If left untreated, infected animals
will die (Auty et al., 2015). Nagana causes annual economic losses of US
$ 4.5 billion to the agricultural industry due to unproductive livestock
farming (Shaw et al., 2014). T. congolense has the highest prevalence
and is considered, together with T. vivax, the main livestock pathogen
in cattle. T. congolense Savannah is the most virulent and the main
cattle-infecting subgroup across sub-Saharan Africa (Auty et al., 2015).

In the absence of a vaccine, antitrypanosomal drugs are crucial in
the control of AAT. Two trypanocides, which have been on the market
for more than 50 years, are mainly used to treat Nagana. Diminazene
aceturate is only administered as a therapeutic agent, whereas iso-
metamidium chloride can also be employed for prophylaxis (Geerts
et al., 2001). Due to extensive drug use, resistance has been spreading.
Drug resistance was reported from 21 African countries and multi-drug

resistance from 10 African countries (Tsegaye et al., 2015). Therefore,
the discovery and development of new drugs is needed desperately.
This, in turn, requires robust in vitro cultivation and drug efficacy tests
for T. congolense.

Different viability assays (Räz et al., 1997; Vennerstrom et al., 2004;
Cal et al., 2016) are routinely used to test compounds against various
protozoan pathogens in vitro. A cheap, simple and reliable drug sensi-
tivity test was also established for T. congolense using the viability
marker Alamar blue (Räz et al., 1997; Gillingwater et al., 2017).
However, since this is an endpoint read-out, several Alamar blue assays
with different exposure times have to be carried out to assess the time of
drug action. This is highly labour-intensive and yet only provides a
rough estimate of the kinetics of drug action.

Isothermal microcalorimetry is a simple tool that measures the heat
flow of processes of biological, physical or chemical nature in real time.
The heat produced by cell samples can be attributed to metabolic ac-
tivity of the cells and to changing number of cells during growth or
decay. For review see Braissant et al. (2010a). The continuous re-
cording allows phenotypic analysis of cell growth, as the metabolic
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activity per cell is more or less constant, especially in the exponential
growth phase (Kemp and Guan, 1999), and it can also be used to de-
termine pharmacodynamic parameters such as onset of drug action and
time to kill. The method has already been established for the human
pathogenic protozoans Trypanosoma brucei and Plasmodium falciparum
(Wenzler et al., 2012), for pathogenic helminths (Manneck et al., 2011;
Keiser et al., 2013) and prokaryotes (Baldoni et al., 2010; Braissant
et al., 2010a, 2010b).

Here, we validate the potential of isothermal microcalorimetry to
measure growth and drug action in T. congolense cultures. We establish
a protocol to monitor T. congolense growth in real time, apply this
protocol to determine time of drug action, and validate it with the re-
ference drugs diminazene aceturate and isometamidium chloride.

2. Materials and methods

2.1. T. congolense cultivation

T. congolense IL3000 bloodstream forms, subtype Savannah (Wellde
et al., 1974) were cultivated in vitro in Iscove's Modified Dulbecco's
Medium (IMDM) supplemented according to Hirumi (Hirumi and
Hirumi, 1991) with 1mM sodium pyruvate, 0.5 mM hypoxanthine,
0.05mM bathocuproinedisulfonic acid, 1.5 mM L-cysteine, 0.16mM
thymidine, 2 mM L-glutamine, 0.2mM 2-mercaptoethanol and 20% (v/
v) heat inactivated bovine serum. All cultures were maintained in a
humidified atmosphere containing 5% CO2 at 34 °C. This culture
medium was used for all microcalorimetry experiments.

2.2. Standard drugs

The standard drugs, diminazene aceturate (Sigma, MW: 515.52 g/
mol) and isometamidium chloride (Trypamidium-Samorin®; Merial,
France; MW: 496.01 g/mol) were selected to study the anti-
trypanosomal effect on T. congolense. Both standard drugs were dis-
solved in 100% dimethyl sulfoxide (DMSO) to obtain stock solutions of
10mg/ml of which serial dilutions (1:10) were made in DMSO and
stored at −20 °C.

2.3. Preparation of calorimetry ampoules

Growth phenotype of initially separated surface attached and de-
tached T. congolense phases of a culture in the exponential growth phase
were studied. Detached trypanosomes were directly transferred into a
Falcon tube. Fresh culture medium was added to the surface attached
phase, and the culture plate was gently scratched to collect the attached
trypanosomes. Both separated phases were centrifuged for 10min at
1840 g and 34 °C to replace the medium. The cell pellets were then re-
suspended in fresh culture medium to the desired initial cell density.
Ampoules were filled with 1ml of trypanosome suspension at 105 cells/
ml. Measurements were performed in two independent experiments on
separate days.

To determine the optimal initial cell density for growth studies,
ampoules were filled in triplicate with 2ml trypanosome suspension of
the mixed T. congolense phase containing 107, 106, 105, 104, 103, 102

and 10 cells/ml. Measurements were performed in two independent
experiments on separate days.

Different sample volumes were tested in order to evaluate their
influence on the heat flow curves. Ampoules were filled in triplicate
with 0.25, 0.5, 1, 2 and 4ml of mixed trypanosome suspension of an
initial density of 105 cells/ml. Measurements were performed in two
independent experiments on separate days.

Viable parasite cells of samples from the ampoules (2 ml with in-
itially 105 cells/ml) were counted with a Neubauer chamber at least
every 24 h for 6 consecutive days in three independent experiments, to
correlate the heat flow signals with the number of viable cells. Parasite
cells were detached from the ampoule surface by resuspending the

culture in the ampoule. A linear model for the regression was calculated
using the statistical software R (version 3.3.2) (Fig. S2). The detection
limit was calculated from the linear model using the data points of the
exponential growth phase.

Antitrypanosomal effects of diminazene and isometamidium on T.
congolense were studied in duplicate with 2ml of 105 cells/ml mixed
trypanosome suspensions. The ampoules were supplemented with di-
minazene or isometamidium at various concentrations with a final
DMSO concentration ranging from 0.03 to 0.1% for diminazene and
from 0.01 to 0.1% for isometamidium. DMSO at concentrations of
≤0.1% has no effect on T.congolense growth (Fig. S6). Trypanosome
free samples in the absence of drug served as negative controls, in
duplicate. Drug free trypanosome samples served as positive controls,
in triplicate. Measurements were performed in two independent ex-
periments on separate days.

2.4. Calorimetric equipment and measurements

The isothermal calorimeter (TAM III Thermostat 249, TA
Instruments, New Castle, DE, USA) was equipped with 48 channels and
aluminium thermal references with a heat capacity equivalent to 2ml
of water. The calorimeter was calibrated using the built in electric
heater as recommended by the manufacturer. The calibrated instrument
was utilised to continuously measure heat flow of T. congolense samples
at 34 °C. The gas phase was ambient air. Air-tight 4ml glass ampoules
were introduced into the calorimeter and remained for 45min in the
thermal equilibration position at 34 °C, before being lowered into the
measuring position. The temperature of the instrument was maintained
within 0.0001 °C. The sensitivity of the instrument was±0.2 μW, ac-
cording to the manufacturer's instructions.

2.5. Analysis of calorimetric data

Heat flow changes were recorded as an electrical signal converted
into watt (W). After the measurements had been recorded, the number
of data points were reduced to 1 data point per 90 s intervals and ex-
ported into Microsoft Excel spreadsheets. The time required for the
preparation of the ampoules was added to the final dataset. Time of
drug action and growth parameters, such as onset of drug action, time
to peak, time to kill and maximum growth rate μ, were calculated using
the statistical software R.

The maximum growth rate μ was estimated using the heat over time
curve and fitted with a logistic model (Braissant et al., 2013) using the
grofit package (Kahm et al., 2010) (Fig. S4). Curves were first smoothed
using a bicubic spline (Legendre and Legendre, 2012) prior to the es-
timation of the onset of drug action, time to peak and time to kill,
because of short term noise and metabolic oscillation sometimes per-
turbating the signal. The time to peak was calculated as the time until
the maximum of the smoothed curve was reached. Similarly, the time to
kill was calculated as the time until the slope of the smoothed curve
could be considered as flat again (a slope below 0.005 μW/hour, Fig.
S3b). We estimated that the chosen cut-off corresponded to a detection
limit/sensitivity for time to kill of 1.3× 103 cells (assuming 4 pW/cell
and 0.005 μW detection limit). Finally, for the onset of drug action, the
slope of averaged controls (untreated parasites; drug free) was com-
pared to the slope of the drug containing sample. The time at which the
slopes diverged by more than 0.04 μW/hour (i.e, activity of the control
was still increasing while the treated samples showed levelling and then
decrease) was considered as the onset of drug action (Fig. S3a). Slopes
were used for the calculations instead of raw heat flow threshold to
avoid errors due to baseline shift of the calorimetric measurements.
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3. Results

3.1. Growth phenotype of different T. congolense phases

Unlike other trypanosomes, T. congolense grow axenically in vitro in
two distinct phases (Hirumi and Hirumi, 1991). Some trypanosomes are
attached to the base of the culture vessel (attached phase), whilst others
swim freely near the surface of the culture medium (detached phase).
We monitored the growth of the individual and mixed T. congolense
phases with the microcalorimeter. Both of the initially separated
phases, as well as the mixed phase, grew well when transferred into the
microcalorimeter ampoules (Fig. 1a). Only minor growth differences
were observed, whereby the initially detached trypanosomes showed a
slightly higher heat flow peak (28 μW) than the initially attached
samples (21 μW). The heat flow peak of the mixed culture was in be-
tween. Given the small difference between attached and detached cells,
we decided to perform all subsequent studies with the mixed phase.

3.2. Optimisation of initial T. congolense density

In order to explore the optimal inoculum for calorimetric studies
with T. congolense, we tested starting densities from 10 to 107 cells/ml
in a volume of 2ml (Fig. 2a). The maximal heat flow (40 μW) was
obtained starting with 107 cells/ml, but the parasites started to die after
only 24 h. The method worked even with the lowest starting density of

only 10 cells/ml, but with this density it took almost 3 days to reach the
detection limit. An inoculum of 105 cells/ml gave strong and robust
heat flow signals that were detectable right from the beginning of the
experiment and peaked after 3 to 4 days of incubation (Fig. 2a).
Moreover, a comparable inoculum is used for the Alamar blue viability
assay, allowing a better comparison between the results. Thus,
105 cells/ml was chosen as the inoculum for all subsequent T. congolense
drug action studies.

3.3. Optimisation of sample volume

Next, we tested different culture volumes from 0.25 to 4ml. As
expected, maximal heat flow and maximal area under curve both in-
creased with sample volume from 0.5 to 2ml (Fig. 2b). However, at
4 ml the heat flow peak decreased again and the heat flow curve was
not smooth showing humps within the first day. Thus, a volume of 2ml
was chosen for all subsequent experiments. This was in agreement with
the fixed inert reference ampoule that has a heat capacity adjusted for a
2ml specimen in our calorimeter.

3.4. Correlation of heat flow with the number of viable cells

We compared the heat flow generated by T. congolense cultures with
the number of viable cells as determined microscopically (Fig. 1b). The
heat flow strongly correlated with parasite density (R2= 0.963, Fig.

Fig. 1. Growth phenotype of initially separated and mixed T. congolense phases and correlation of the heat flow of T. congolense samples with the number of viable cells. (a)
Heat flow signals over time from separated surface attached, detached and mixed T. congolense phases at a parasite density of 105 cells/ml in a 1ml sample volume. Each heat flow curve is
the mean of a single value from two independent experiments. (b) Heat flow measurements of samples with the mixed T. congolense phase and initial density of 105 cells/ml in a 2ml
sample volume and the number of viable cells per ampoules. Each heat flow curve is the mean of triplicates from one experiment.

Fig. 2. Influence of T. congolense density and sample volume on heat flow slopes. (a) Heat flow curves of samples with different parasite densities, ranging from 10 to 107 cells/ml in
a total volume of 2ml. Each heat flow curve is the mean of two independent experiments, each performed in triplicate. (b) Heat flow curves of T. congolense parasites with an initial
parasite density of 105 cells/ml in different sample volumes, ranging from 0.25 to 4ml. Each heat flow curve is the mean of two independent experiments, each performed in triplicate.
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S2). The average heat flow of a single T. congolense cell in the ex-
ponential growth phase was calculated to be 4 pW. The heat flow
maxima were recorded after 3 to 4 days, whereas parasite numbers
tended to peak a few hours later (Fig. 1b). After the stationary growth
phase, the number of viable cells was slightly higher than estimated
from the heat flow data, but then the cells were also slightly less motile
than in the exponential growth phase (0–72 h), which probably corre-
lates with a lower metabolic activity. The average population doubling
time of the trypanosomes as calculated from the heat flow was 15 h
during the exponential growth phase (0–72 h).

3.5. Time of drug action for standard drugs

Drug action was studied with the two reference drugs, diminazene
aceturate and isometamidium chloride. Diminazene had an IC50 of
66 ± 11 ng/ml (n= 7) with a 3 day drug exposure time in the Alamar
blue assay (Gillingwater et al., 2017). In the microcalorimeter, a dose-
dependent growth inhibition was observed from 30 to 3000 ng/ml
(Fig. 3a). At 100 ng/ml, diminazene substantially reduced the growth of
T. congolense, but failed to kill all the cells as indicated by a stable heat
flow signal at 2 μW (Fig. 3a). Microscopic examination of these cultures
confirmed that they still contained viable trypanosomes, at a con-
centration of 7× 104 cells/ml. At concentrations ≥300 ng/ml, dimin-
azene quickly eliminated all parasites. The maximum growth rate μ of
the integrated heat flow proved to be a sensitive parameter to monitor
drug action, since for concentrations ≥100 ng/ml, substantially lower
growth rates μ were obtained in a dose-dependent manner (Table 1).
Growth inhibition was too strong at 1000 and 3000 ng/ml to be cal-
culable in all experiments. Other in vitro pharmacodynamic parameters,
such as onset of action and time to kill, were calculated as well and
showed similar dose-dependent relationships (Table 1).

As with diminazene, a dose-dependent relationship of the in vitro
pharmacodynamic parameters was also observed for isometamidium,
albeit not as pronounced (Fig. 3b). A comparable inhibition spectrum
was covered by a wider concentration range from 0.01 to 10,000 ng/ml
for isometamidium than with only a 100-fold range for diminazene
(Table 1). The stronger activity of isometamidium with a significant
inhibition at ≥ 0.1 ng/ml, is in agreement with the higher activity of
isometamidium in a 3 day Alamar blue assay showing an IC50 of
0.3 ± 0.1 ng/ml (Gillingwater et al., 2017).

4. Discussion

The study shows that isothermal microcalorimetry can be used as a
simple, robust and sensitive technique to study small growth differences

between various Trypanosoma congolense samples. An expedient appli-
cation is the determination of growth inhibition after the addition of
antitrypanosomal drugs. The continuous measurements can provide
valuable drug characterisation information, in particular regarding
time of drug action. Especially, the time to kill is an essential parameter
of potential new drug candidates, which can be visualised and quanti-
fied using the microcalorimetric data in a simple way without much
data handling in Excel or R.

Unlike other human and animal infecting trypanosome species, T.
congolense form in vitro two distinct layers. The first layer, which is
placed at the bottom of the culture well, is formed by surface attached
trypanosomes. This phase is always populated more densely than the
second layer, herein called the detached trypanosome phase, and pre-
sents as a tight cluster of free-swimming trypanosomes. The phenom-
enon has already been described by Hirumi (Hirumi and Hirumi, 1991).
However, no further investigations have been performed. The growth of
both phases was monitored and it was observed that both showed a
similar growth phenotype. Furthermore, the initially separated phases
formed an equilibrium, forming new detached and attached trypano-
some phases. Thus, we considered a pool of the two phases adequate for
time of drug action studies.

Heat flow signals depend on the number of viable cells and their
metabolic activity (Alklint et al., 2005; Braissant et al., 2013). Based on
the assumption that each T. congolense cell has a constant metabolic
activity, at least during the exponential growth phase, we plotted the
heat flow versus the cell number and obtained a high correlation with
an adjusted R2=0.963 and a p-value of< 0.05 confirming our hy-
pothesis (Fig. S2). The heat flow of a single cell in the exponential
growth phase was calculated to be 4 pW. Heat flow rate and most likely
metabolic activity per cell, declined slightly after the stationary phase
as described previously also for mammalian cells by Kemp and Guan
(1999). This demonstrates the high sensitivity of microcalorimetry
measuring growth inhibition already before cell death appears. We used
heat flow data (W) and not heat data (J) to correlate with viable, me-
tabolically active cells because cells lyse and disappear after over-
growth or cell death. All the cells counted in the Neubauer chamber
were viable, which was indicated by their high motility. This is dif-
ferent to bacteria, which accumulate in the sample and do not lyse as
rapidly as trypanosomes after cell death. For bacteria, the total biomass
produced correlates better with heat data (Braissant et al., 2013).

One essential parameter for the kinetics of drug action is the time to
kill, which was determined by measuring the time the heat flow
reached the baseline. The detection limit was around 1.3×103 trypa-
nosomes (based on 4 pW/cell and 0.005 μW limit as defined for the
baseline). Compared to a dense 2ml culture with 2× 107 cells per

Fig. 3. Drug action by diminazene aceturate and isometamidium chloride. (a) Heat flow curves of T. congolense cultures with diminazene aceturate (30–3000 ng/ml) and (b) with
isometamidium chloride (0.01–10,000 ng/ml). Each drug free heat flow curve is the mean of three independent experiments, each performed in triplicate and each drug containing heat
flow curve is the mean of three independent experiments in duplicates.
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ampoule, the detection limit corresponds to< 0.01%.
For the calculation of the maximum growth rate μ, we used heat

data (J), since the slopes from the heat flow curves were similar in the
exponential growth phase and changed only after the drug action had
occurred (Fig. 3). Models based on heat data rely on the assumption
that all cells produced, have a similar energetic turnover and remain
measurable in the sample if one wants to assess correlation with cell
count data (Braissant et al., 2013). As stated previously, T. congolense
lyse rapidly in the declining phase, which would impair the use of the
heat data approach. However, the heat data was used in this context as
it describes how fast and how much cells grew in the presence or ab-
sence of drugs (i.e. the growth rate and the maximum growth or
maximum number of cells produced). This indeed better reflects the
influence of drug action on parasite growth.

Optimisation of the microcalorimetric protocol led to 105 cells/ml in
a 2ml sample volume for T. congolense studies. Under these conditions,
robust and stable signals were observed with good intra- and inter-ex-
perimental reproducibility (Fig. S1). This protocol is ideal for most
research studies. However, since this technique is very robust, para-
meters can also be varied to address various research questions. For
fast-acting drugs, it would be more favourable to use a higher initial cell
density (e.g. 106 cells/ml) in order to get a strong heat flow signal
earlier in the experiment, enabling a read-out of an early onset of drug
action. Slow-acting compounds, on the other hand, would best be stu-
died with a lower inoculum (e.g. 104 cells/ml) to avoid an overlap of
drug action with cell overgrowth. The sample volume is dependent on
the reference ampoule in the machine, which was fixed in our appa-
ratus to 2ml. Nevertheless, if the signal is strong enough, variations
also of the sample volume can be applied.

In addition to the time to peak, growth rate and time to kill, also
onset of drug action was determined. As seen in Table 1, onset of drug
action was difficult to determine within the first 3 h. This was the time
needed to prepare the samples, setting the ampoules into the machine
and for the equilibration to 34 °C in the equilibration position and
measuring position. In order to shorten the equilibration time, a simple
injection system can be used, which offers fewer thermal disturbances
and less data loss (Manneck et al., 2011).

Further expedient applications of the microcalorimetric method are
studies of inoculum effect, reversibility of drug action by monitoring
proliferation after a drug wash-out and drug resistance analysis; or
without drugs, growth characterisation of different parasite isolates
(e.g. Fig. S5) or genetic mutants.

In the present study, we demonstrated that T. congolense growth
phenotype and drug inhibition can be monitored well by heat flow real

time measurements. In principle, this method can also be applied to
other extracellular parasites. One requirement is a stable and con-
tinuous in vitro cultivation of axenic cultures. Next to T. congolense and
T. brucei, cultivation of T. evansi and T. equiperdum has been established
(Baltz et al., 1985). Hence, both of these trypanosome species have the
potential to be studied in the microcalorimeter, as it was possible for T.
congolense and T. brucei (Wenzler et al., 2012).

5. Conclusion

Microcalorimetry is a versatile and simple tool representing a va-
luable supplementation to the tool box in the drug discovery process.
The microcalorimetric method can support phenotypic T. congolense
growth studies and drug discovery programs by providing meaningful
data especially for the time of drug action of new experimental com-
pounds, as presented exemplarily with the two trypanocidal drugs, di-
minazene and isometamidium, used against Nagana disease.
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