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Abstract

Background

Schistosomiasis is a water-related neglected tropical disease. In many endemic low- and

middle-income countries, insufficient surveillance and reporting lead to poor characteriza-

tion of the demographic and geographic distribution of schistosomiasis cases. Hence,

modeling is relied upon to predict areas of high transmission and to inform control strategies.

We hypothesized that utilizing remotely sensed (RS) environmental data in combination

with water, sanitation, and hygiene (WASH) variables could improve on the current predic-

tive modeling approaches.

Methodology

Schistosoma haematobium prevalence data, collected from 73 rural Ghanaian schools,

were used in a random forest model to investigate the predictive capacity of 15 environmen-

tal variables derived from RS data (Landsat 8, Sentinel-2, and Global Digital Elevation

Model) with fine spatial resolution (10–30 m). Five methods of variable extraction were

tested to determine the spatial linkage between school-based prevalence and the environ-

mental conditions of potential transmission sites, including applying the models to known

human water contact locations. Lastly, measures of local water access and groundwater

quality were incorporated into RS-based models to assess the relative importance of envi-

ronmental and WASH variables.

Principal findings

Predictive models based on environmental characterization of specific locations where peo-

ple contact surface water bodies offered some improvement as compared to the traditional
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approach based on environmental characterization of locations where prevalence is mea-

sured. A water index (MNDWI) and topographic variables (elevation and slope) were impor-

tant environmental risk factors, while overall, groundwater iron concentration predominated

in the combined model that included WASH variables.

Conclusions/Significance

The study helps to understand localized drivers of schistosomiasis transmission. Specifi-

cally, unsatisfactory water quality in boreholes perpetuates reliance on surface water bod-

ies, indirectly increasing schistosomiasis risk and resulting in rapid reinfection (up to 40%

prevalence six months following preventive chemotherapy). Considering WASH-related risk

factors in schistosomiasis prediction can help shift the focus of control strategies from treat-

ing symptoms to reducing exposure.

Author summary

Schistosomiasis is a water-related neglected tropical disease that disproportionately affects

school-aged children in poor communities of low- and middle-income countries. Schisto-

somiasis transmission risk is affected by environmental, socioeconomic, and behavioral

factors, including water, sanitation, and hygiene (WASH) conditions. We used fine spatial

resolution (10–30 m) remotely sensed data, in combination with measures of local water

access and groundwater quality, to predict schistosomiasis risk in 73 rural Ghanaian com-

munities. We found that applying environmental models to specific locations where peo-

ple contact surface water bodies (i.e., potential transmission locations), rather than to

locations where prevalence is measured, improved model performance. A remotely sensed

water index and topographic variables (elevation and slope) were important environmen-

tal risk factors, while overall, groundwater iron concentration predominated. In the study

area, unsatisfactory water quality in boreholes perpetuates reliance of surface water bodies,

indirectly increasing schistosomiasis risk and resulting in rapid reinfection (up to 40%

prevalence six months following deworming). Considering WASH-related risk factors

in schistosomiasis prediction can help shift the focus of control strategies from treating

symptoms to reducing exposure.

Introduction

Schistosomiasis is an important parasitic disease that affects more than 250 million people [1].

Expressed in years lived with disability (YLDs), the impact of schistosomiasis is comparable

to that of malaria (2.9 versus 3.2 million YLDs) [2]. Schistosomiasis is a disease of poverty,

with 97% of all infections and 85% of the global at-risk population concentrated in Africa [3].

Ghana has an estimated country-wide prevalence of 23.3%, with focal, or localized, prevalence

levels >50% [4].

Schistosomiasis is caused by infection with the trematode parasite of the genus Schistosoma
[5]. Of the three species that commonly infect humans (S. haematobium, S. mansoni, and S.

japonicum), the former two are prevalent in Africa [6]. S. haematobium is the predominant

species in Ghana [4] and is the focus of the present study. Schistosomiasis has a complex life

cycle that involves the parasite, intermediate host snails, and definitive human host (and
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sometimes animal reservoir hosts). Transmission occurs in fresh surface water bodies that are

contaminated with human waste, provide favorable ecologic conditions for intermediate host

snails (Bulinus species for S. haematobium), and sustain human water contact [6]. Human

transmission occurs when parasite larvae (cercariae) penetrate intact skin during water-based

activities and has historically been most common in rural areas with natural slow flowing

streams, ponds, and lakes [3,6].

To develop and implement effective control strategies against schistosomiasis, accurate data

on the geographic and demographic distribution of infections are necessary. Surveillance in

endemic low- and middle-income countries is inhibited by limited health infrastructure and

cases evading clinical detection due to lower parasite burden and lessened symptoms that

result from preventive chemotherapy with the anthelmintic drug praziquantel. Passive health

facility-based surveillance and reporting systems are known to severely underestimate the

number of infections [7,8]. For example, a total of ~25,000 schistosomiasis cases were reported

into the Ghanaian District Health Information Management System (DHIMS) in 2010 (data

received from GHS, 2016). If only ~5 million children�15 years of age residing in rural areas

(i.e., high-risk population) [9] are considered at the estimated 23.3% infection rate [4], ~1.15

million cases would be expected. The reported cases represent only 2.2% of this expected num-

ber. Some correction for underreporting can be accomplished by predictive modeling, aiming

to complement data from surveillance systems and field-based prevalence surveys.

Many schistosomiasis predictive modeling studies have been published and reviewed

[10,11]. Most studies utilized remote sensing (RS) and geographic information system (GIS)

approaches at large spatial extents (i.e., national, regional or continental) [12–14], with fewer

applications of these methods to sub-national mapping [15–17]. Because snail populations,

cercarial densities, human water contact patterns, and subsequent schistosomiasis infections

exhibit strong spatial heterogeneity [10,18,19], further investigation of localized transmission

drivers at smaller spatial extents is needed [10,11]. Furthermore, most studies included rela-

tively few RS environmental predictors, mainly normalized difference vegetation index

(NDVI), land surface temperature (LST), and elevation, whereas many other vegetation- and

moisture-related indices and topographic variables are available and should be considered

[11,20,21].

Another important limitation is that most studies utilized point-prevalence data of human

infections (outcome) typically measured at schools, whereas RS-based environmental data

(predictors) pertain to water bodies that serve as snail habitats and potential transmission loca-

tions. Most models do not account for this spatial mismatch between exposure and outcome

measures [11]. A recent study used a more ecologically relevant approach, in which RS vari-

ables were extracted from geographically delineated water bodies within a buffer radius around

the point-prevalence location [22]. An even more promising approach would be to apply the

models to the specific locations along water bodies where human water contacts occur.

Further complicating the modeling approach at small spatial extents are socioeconomic

and behavioral factors, including water, sanitation, and hygiene (WASH) conditions, known

to affect individual schistosomiasis risk [23–25]. These factors may have an even greater bear-

ing on the focal nature of disease distribution than the environment [26,27], and should be

considered as predictors. While the inclusion of socioeconomic status and metrics of clean

water and sanitation access have been advocated [10,11], to our knowledge, WASH variables

have not yet been explicitly incorporated into spatial schistosomiasis predictive models.

The goal of the present study was to build upon existing predictive modeling approaches

using S. haematobium prevalence data from 73 rural communities in the Eastern region of

Ghana. We utilized fine resolution RS data (Landsat 8 and Sentinel-2), expanded the number

of predictors (15 environmental and four WASH-related variables), and explored alternatives

Spatial prediction of schistosomiasis using new remote sensors and water access profiles
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for addressing the spatial mismatch between exposure and outcome measures. In this study,

primary innovations include the use of a new RS data source (Sentinel-2), incorporation of

field-mapped surface water contact sites into the RS-based environmental modeling approach,

and exploration of WASH variables as additional schistosomiasis risk factors.

Methods

Ethics statement

The study was approved by the Institutional Review Board (IRB) at Tufts University in Boston,

United States of America (protocol #11688) and Noguchi Memorial Institute for Medical

Research in Accra, Ghana (protocol #1133). Letters of approval were obtained from national

and regional offices of Ghana Health Service (GHS) and Ghana Education Service (GES). Writ-

ten informed consent was obtained from the acting head teacher of each school that partici-

pated in the schistosomiasis prevalence survey. Verbal assent was sought from the participating

children, an accepted ethical and practical approach used in similar low-risk studies [28].

Study area

The study was conducted in the tropical Eastern region (Fig 1), characterized by major and

minor peak rainfall periods in June and October, respectively, with dry season lasting from

November to February. Four major perennial rivers (Pra, Birim, Ayensu, and Densu) drain

the region, with an abundance of smaller streams and ponds. Most of these water bodies are

used extensively for domestic and recreational purposes (e.g., fetching, washing, swimming,

and fishing). The Pra and Birim rivers, and some of their tributaries, however, are heavily pol-

luted by alluvial gold mining and are no longer used due to high turbidity and presence of

toxic compounds [29]. The region is relatively flat with some hilly areas and low mountains

(Atiwa Mountain Range) reaching an elevation of approximately 750 m above sea level. The

study area, spanning 10 administrative districts, was purposely selected outside of a 20-km

buffer radius of Lake Volta [29]. Communities situated on its shores are historically known

to be endemic for schistosomiasis [30]. However, little information is available about pockets

of high transmission along minor rivers and streams that are not easily detected with RS

technologies.

Community as a unit of analysis

Prior modeling studies mainly used point-prevalence as outcome data. Prevalence of S. haema-
tobium eggs in urine samples (or hematuria as a proxy of infection) is typically measured at

schools, while transmission may occur within some distance of this point-prevalence location.

With extensive local knowledge from prior community-based studies [29,31–33], the present

analysis was conducted at the “community” level. The spatial boundaries of communities were

defined by Open Street Map (OSM) polygons (Fig 2) abstracted using QGIS software (version

2.12.3), an approach validated in a case study [29]. Subsequently, a buffer radius of 1 km was

applied to each polygon. The buffer distance was chosen because nearly all known contact

with water bodies occurred within 1 km of community boundaries. Throughout the manu-

script, the term “community” refers to the OSM polygon + 1 km buffer area (Fig 2) and is used

as a unit of analysis, also referred to as grain or support [21,34].

Data sources

Data for this study were obtained primarily from satellite RS sources and field studies, with

some additional geographic features digitized from satellite imagery. Surface reflectance,

Spatial prediction of schistosomiasis using new remote sensors and water access profiles
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thermal, and elevation data were obtained from RS sources. From these, vegetation and water

indices, LST, and topographic variables were derived. WASH variables were obtained from

field data available from past studies, namely global positioning system (GPS) coordinates of

public water sources [29] and data about groundwater quality [32]. The outcome variable, S.

haematobium prevalence (%) was measured in one school in each of the 73 study communi-

ties. Measures of improved and unimproved [35] water access and groundwater quality

(WASH variables) were combined with RS-based variables to predict schistosomiasis preva-

lence across the study area. Data processing and analysis steps are described below and out-

lined in S1 and S2 Figs in Supporting Information.

Remotely sensed data. Surface reflectance data were obtained from two RS data sources:

Landsat 8 Operational Land Imager (OLI) and Sentinel-2. Landsat 8 data were obtained from

USGS Earth Explorer (http://earthexplorer.usgs.gov/) and included two cloud-free scenes

that were mosaicked to cover the extent of the study area (Table 1). OLI data (bands 2–6 in

Table 1) were downloaded as raw digital number (DN) values with a spatial resolution of 30 m

and radiometrically and atmospherically corrected to obtain surface reflectance. This two-

step procedure consisted of converting DN values to top-of-atmosphere (TOA) radiance, fol-

lowed by an atmospheric correction using the Fast Line-of-sight Atmospheric Analysis of

Fig 1. Map of the study area and spatial distribution of microhematuria (typical symptom of S. haematobium in school-aged children) prevalence created using

the following data sources: Major rivers and town locations were obtained from CERSGIS, Accra, Ghana; hillshade relief surface was created from elevation

data obtained from ASTER Global Digital Elevation Model (v2); mining locations were digitized from Sentinel-2 satellite imagery; microhematuria prevalence

data were collected by A. Kulinkina.

https://doi.org/10.1371/journal.pntd.0006517.g001

Spatial prediction of schistosomiasis using new remote sensors and water access profiles

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006517 June 4, 2018 5 / 22

http://earthexplorer.usgs.gov/
https://doi.org/10.1371/journal.pntd.0006517.g001
https://doi.org/10.1371/journal.pntd.0006517


Hypercubes (FLAASH) module in ENVI 5.4 (Exelis Visual Information Solutions, Boulder,

United States of America). Thermal data (bands 10 and 11 in Table 1) were downloaded from

Landsat 8 Thermal InfraRed Sensor (TIRS) as level 1 (L1B) products with a spatial resolution

of 100 m.

Fig 2. Spatial definitions associated with the analysis conducted at the “community” level.

https://doi.org/10.1371/journal.pntd.0006517.g002

Table 1. Summary of surface reflectance data used in the study.

Landsat 8 Sentinel-2

Scenes (acquisition

dates)

Path 193 Row 56 (December 22, 2015)

Path 194 Row 56 (December 29, 2015)

T30NXM (December 24, 2015)

T30NXN (December 24, 2015)

T30NYM (December 24, 2015)

T30NYN (December 24, 2015)

Bands (wavelengths) Blue–B2 (0.450–0.515 μm)

Green–B3 (0.525–0.600 μm)

Red–B4 (0.630–0.680 μm)

Near infrared–B5 (0.845–0.885 μm)

Short wavelength infrared–B6 (1.560–

1.660 μm)

Long wavelength infrared–B10 (10.30–

11.30 μm)

Long wavelength infrared–B11 (11.50–

12.50 μm)

Blue–B2 (0.490 μm)

Green–B3 (0.560 μm)

Red–B4 (0.665 μm)

Near infrared–B8 (0.842 μm)

Short wavelength infrared–B11

(1.610 μm)

https://doi.org/10.1371/journal.pntd.0006517.t001

Spatial prediction of schistosomiasis using new remote sensors and water access profiles

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006517 June 4, 2018 6 / 22

https://doi.org/10.1371/journal.pntd.0006517.g002
https://doi.org/10.1371/journal.pntd.0006517.t001
https://doi.org/10.1371/journal.pntd.0006517


Sentinel-2 surface reflectance data (bands 2, 3, 4, 8, and 11 in Table 1) were obtained from

Copernicus Data Hub (https://scihub.copernicus.eu/). Four cloud-free scenes were mosaicked

to cover the extent of the study area (Table 1). TOA radiance (level 1C) products were down-

loaded with a spatial resolution of 10 or 20 m and converted to level 2A surface reflectance

by applying the atmospheric correction using the Sen2Cor processor in open-source Sentinel

Application Platform (SNAP) software (version 5.0).

ASTER Global Digital Elevation Model (GDEM v2) data were obtained from USGS Global

Data Explorer (gdex.cr.usgs.gov) with a spatial resolution of 30 m. A moving window (3x3)

majority filter was applied to the elevation data to eliminate image artefacts [36,37] using the

Spatial Analyst extension in ArcGIS 10.2.2.

Settlement data were obtained from the German Aerospace Center (http://www.dlr.de) as a

new Global Urban Footprint (GUF) product. GUF is a binary raster data product of populated

and unpopulated pixels produced from 2011–2012 TerraSAR-X and TanDEM-X radar images

[38]. GUF was chosen as a source of settlement data due to its 0.4 arcsec geometric resolution,

or 12 m spatial resolution, which most closely matched the resolution of the other spatial data

used in the study.

Field data. A cross-sectional S. haematobium prevalence survey was conducted in May

and June 2016 in the largest primary school in each of the 73 study communities (population

range 500–5,000). The most recent round of national school-based preventive chemotherapy

had been conducted in January 2016 (six months prior to the survey); all study schools had

participated, with an average treatment coverage of 78% (data provided by GHS, 2016). All

children in grades 3 and 4 (age range 8–13 years) who expressed verbal assent were enrolled

into the study. Upon detailed demonstrations of the specimen collection procedure, children

were invited to provide a urine sample between 10:00 and 14:00 hours that was tested for

microhematuria using a semi-quantitative reagent strip on-site. Samples with any blood pres-

ence, including “trace”, were categorized as positive readings [28]. Infected children were

offered praziquantel according to their weight by a local nurse or community health worker

in a private location. No identifying information about study subjects was recorded besides

school/community name, sex, and grade.

A total of 5,220 children (2,802 boys and 2,418 girls) were registered in grades 3 and 4 in

the 73 study schools. Of these, 3,746 children (72%) were present on the day of screening.

Attendance in some of the schools was as low as 46%. A total of 3,628 children (97%) were

enrolled into the study, and 3,612 (>99%) provided urine samples for analysis. Prevalence

of microhematuria in the study population was 14%; school-level prevalence values ranged

between 0 and 40% (Fig 1; S1 Table, Supporting Information).

Data processing

Six environmental indices were calculated from Landsat 8 (OLI) and Sentinel-2 surface reflec-

tance data (Table 2) in R software (version 3.3.1). In the enhanced vegetation index (EVI)

equation, L value adjusts for canopy background and C values are coefficients for atmospheric

resistance. These enhancements allow for index calculation as a ratio between the red and the

near infrared (nir) band values, while reducing the background and atmospheric noise and sat-

uration [39]. The values of C1 = 6, C2 = 7.5, and L = 1 were obtained from the Landsat 8 prod-

uct guide [40]. In the soil adjusted vegetation index (SAVI) equation, L is the soil calibration

factor that minimizes soil background conditions that affect partial canopy spectra. The L
value of 0.5 minimizes soil brightness variation and eliminates the need for additional calibra-

tion for different soils [41]. Landsat 8 (TIRS) thermal data were processed using ATCOR [42]

Spatial prediction of schistosomiasis using new remote sensors and water access profiles
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with a standard emissivity of 0.985 to detect water surface temperature, and converted from

Kelvin (K) to degrees Celsius (˚C) to represent LST.

Elevation data were used to derive stream order and slope. Topographic drainage lines were

delineated from the digital elevation model (DEM) based on the potential flow direction from

higher to lower elevation and accumulation of surface runoff according to topographic condi-

tions using Arc Hydro Tools in ArcGIS (version 10.2.2). The resulting stream network was

ordered according to Strahler [47]. Slope of the terrain was derived from the DEM as a proxy

indicator for potential flow velocity of surface runoff with inclination calculated in degrees.

GPS coordinates of public water sources (standpipes (SPs), boreholes (BHs), protected and

unprotected hand-dug wells (HDWs), and surface water access points (SWAPs)) were avail-

able from a prior study [29]. SPs, BHs, and protected HDWs that were functional at the time

of the study constituted functional improved water sources (FIWS) that are not capable of

transmitting schistosomiasis. SWAPs constituted unimproved water sources that are capable

of transmitting schistosomiasis. Two categorical raster layers were derived from the GPS data

using a buffer analysis conducted in ArcGIS 10.2.2, which represented improved water access

(within 100–500 m of FIWS) and surface water access (within 100–500 m of SWAP), to test

the hypothesis that locations closer to FIWSs have a lower risk of schistosomiasis transmission

and locations closer to SWAPs have higher risk of schistosomiasis transmission [29].

Two additional raster layers of interpolated groundwater iron and total dissolved solids

(TDS) concentrations (mg/l) were also obtained from a prior study [32]. Groundwater quality

variables were included because prior studies [29,32,33] suggested that elevated iron and TDS

concentrations in BHs may increase reliance on contaminated surface water bodies, thereby

potentially serving as indirect risk factors for schistosomiasis transmission.

Lastly, S. haematobium prevalence (% positive samples) was calculated from survey data.

Prevalence was determined separately for boys and girls in each grade and then adjusted to

a gender- and grade- balanced population using direct standardization [48]. Standardized

school-level point-prevalence values (S1 Table, Supporting Information) were taken to repre-

sent community-level prevalence based on the following validated [49] assumptions: (i) micro-

hematuria prevalence measured by reagent strip is a reasonable proxy of S. haematobium
prevalence in a presumably lightly infected population due to recent preventive chemotherapy;

(ii) 3rd and 4th grade school children are a representative study population; and (iii) where a

child lives and attends school are not spatially dependent, inferring that prevalence value at

one school is representative of community-level prevalence.

Variable extraction and aggregation

A total of 15 environmental and four WASH predictor variables (Table 3; S3–S21 Figs, Sup-

porting Information) were derived and resampled to a matching spatial resolution of 10 m.

Table 2. Six environmental indices computed with Landsat 8 (OLI) and Sentinel-2 data.

Index Equation Reference

Normalized difference vegetation index (NDVI) ðnir� redÞ
ðnirþredÞ

[43]

Enhanced vegetation index (EVI) ðnir� redÞ
ðnirþC1� red� C2 � blueþLÞ

[39]

Soil adjusted vegetation index (SAVI) ðnir� redÞ
ðnirþredþLÞ 1þ Lð Þ [41]

Modified soil adjusted vegetation index (MSAVI) ½2 � nirþ1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 � nirþ1Þ2 � 8ðnir� redÞ�
p

2

[44]

Normalized difference water index (NDWI) ðgreen� nirÞ
ðgreenþnirÞ

[45]

Modified normalized difference water index (MNDWI) ðgreen� swirÞ
ðgreenþswirÞ

[46]

https://doi.org/10.1371/journal.pntd.0006517.t002
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While S. haematobium infection prevalence was represented by point data, predictors were

represented by continuous raster data (Fig 3). Therefore, extraction and aggregation of the ras-

ter data within the “community” polygons were necessary.

A total of six methods of variable extraction (masks) were used (Fig 3): none {1}–all pixels

within the “community” polygon were extracted; unpopulated {2}–data were extracted only

for unpopulated pixels as defined by the GUF data; populated {3}–data were extracted only for

populated pixels as defined by the GUF data; all water bodies {4}–mask was derived by com-

bining the topographic drainage lines from the DEM, supplemented with ponds, lakes, and

gold mining pits that were digitized from satellite imagery; unmined water bodies {5}–mask

was derived by removing water bodies that are known to be affected by mining from “all water

bodies”; SWAPs {6}–defined as the single pixel GPS points of known surface water contact

sites.

To understand the spatial linkage between school-based prevalence and the environmen-

tal conditions, almost all environmental variables were extracted using masks {1, 2, 4, 5, and

6} (Table 3), listed in the order of increasing ecologic relevance. For example, the most eco-

logically relevant method is to match school-based schistosomiasis prevalence with environ-

mental variables extracted from points within the “community” where known contact with

water bodies occurs (m6). Method 3 (populated areas) was not relevant for environmental

variable extraction because these locations are not representative of schistosomiasis trans-

mission. Conversely, measures of safe (FIWS) and unsafe (SWAP) water access apply only

to populated areas; hence only method 3 was used to extract these two WASH variables.

Unmasked data (m1) were used to extract stream order, iron, and TDS concentrations

(Table 3). For aggregation of environmental variables, primarily the median pixel values

were used, except for stream order, where maximum value was used. For aggregation of

WASH variables, either median (iron and TDS) or mode (FIWS and SWAP access) were

used (Table 3).

Table 3. Environmental (top) and WASH (bottom) predictor variables.

Data source Variable Scale [range] Resolution [m] Mask Aggregation

OLI/Sentinel Blue band Continuous [0–1] 30 / 10 1, 2, 4, 5, 6 Median

OLI/Sentinel Green band Continuous [0–1] 30 / 10 1, 2, 4, 5, 6 Median

OLI/Sentinel Red band Continuous [0–1] 30 / 10 1, 2, 4, 5, 6 Median

OLI/Sentinel nir band Continuous [0–1] 30 / 10 1, 2, 4, 5, 6 Median

OLI/Sentinel swir band Continuous [0–1] 30 / 20 1, 2, 4, 5, 6 Median

OLI/Sentinel NDVI Continuous [-1-1] 30 / 10 1, 2, 4, 5, 6 Median

OLI/Sentinel EVI Continuous [-1-1] 30 / 10 1, 2, 4, 5, 6 Median

OLI/Sentinel SAVI Continuous [-1-1] 30 / 10 1, 2, 4, 5, 6 Median

OLI/Sentinel MSAVI Continuous [-1-1] 30 / 10 1, 2, 4, 5, 6 Median

OLI/Sentinel NDWI Continuous [-1-1] 30 / 10 1, 2, 4, 5, 6 Median

OLI/Sentinel MNDWI Continuous [-1-1] 30 / 10 1, 2, 4, 5, 6 Median

TIRS LST [˚C] Continuous [13–47] 100 1, 2, 4, 5, 6 Median

DEM Elevation [m] Continuous [1–870] 30 1, 2, 4, 5, 6 Median

DEM Slope [˚] Continuous [0–85] 30 1, 2, 4, 5, 6 Median

DEM Stream order Categorical [0–5] 30 1 Max

Field data FIWS access Categorical [0–5] - - 3 Mode

Field data SWAP access Categorical [0–5] - - 3 Mode

Field data Iron [mg/l] Continuous [0.1–0.7] - - 1 Median

Field data TDS [mg/l] Continuous [83–616] - - 1 Median

https://doi.org/10.1371/journal.pntd.0006517.t003
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Data analysis

Exploratory analyses included variable summaries and correlations, followed by random forest

models. The random forest approach was chosen because it can deal with continuous outcome

data, multicollinear predictor variables, and low numbers of training samples, it is the recom-

mended machine learning method for generating predictions [50], and it has been successfully

applied in similar studies [22].

Five non-parametric random forest models were conducted with 15 environmental predic-

tor variables (Table 3) to determine which of the five masks presented the best method of vari-

able extraction. Two versions of the analyses were conducted in parallel (with Landsat 8 and

Sentinel-2 surface reflectance values and environmental indices) to test consistency of predic-

tive performance of RS data obtained from these two satellites with similar acquisition dates.

Explanatory power of random forest models was compared using root-mean-square error

(RMSE) and R2 values [51], and relative importance of predictor variables was assessed using

the increasing node purity (“IncNodePurity”) metric [52,53].

All models were applied back to the raster stack of predictor variables to derive continuous

predicted S. haematobium prevalence surfaces. Although predicted values were available for all

Fig 3. Modeling approach explaining raster data extraction methods to be matched to each point-prevalence location.

https://doi.org/10.1371/journal.pntd.0006517.g003
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pixels, the same masks used to extract the explanatory variables were applied to the respective

predicted prevalence surfaces. After applying the masks, the median predicted values within

each “community” were plotted against observed prevalence values. The quality of prediction

was assessed using Spearman’s rank correlation between model predicted and observed values,

and their fit was compared to the line of equality. Lastly, environmental data extracted using

the best performing mask were combined with the WASH variables in a final model to assess

the relative importance of the two groups of variables.

Results

Comparison of five environmental variable extraction methods

As an exploratory analysis, Spearman’s rank correlations were computed between pairs of

environmental indices (S2 Table, Supporting Information). The correlation values were con-

sistent across extraction masks and across RS data sources. As expected, correlations among

the vegetation indices derived using both Landsat 8 and Sentinel-2 data were generally very

high (0.90–0.99). Lower correlation values were observed between the two water indices

NDWI and MNDWI (~0.70). Consequently, negative correlation values between NDWI and

the vegetation indices were much higher than those between MNDWI and the vegetation indi-

ces (0.91 versus 0.50).

To explore the potential reason for this, NDWI and MNDWI were visually compared

against a map (Fig 4). In the first row (A1 and B1), schematic maps of study communities are

shown with populated areas indicated in gray and water bodies, comprised of rivers/streams

and dug mining pits, indicated in blue. It appears that the NDWI computed with Landsat 8

data (A2 and B2) results in false detection of water bodies (i.e., misclassification of developed

surfaces such as settlements and roads), essentially serving as an inverse of a vegetation index,

which explains the strong negative correlation with vegetation indices. On the other hand, the

MNDWI (A3 and B3) more precisely detects water bodies, particularly mining pits. Same con-

clusions apply to NDWI and MNDWI values derived from Sentinel-2 data (S13 and S14 Figs,

Supporting Information). Neither index performed adequately at detecting the SWAPs, shown

as + symbols in Fig 4.

Random forest models were first run for each extraction method using environmental vari-

ables only (Table 4). Two versions of the environmental models were run in parallel with

Landsat 8 and Sentinel-2 surface reflectance and environmental indices (in addition to LST

and topographic variables derived from a single source). The R2 values for all models were rela-

tively low (<0.20), indicating that environmental variables alone were not able to describe

more than 15–20% of the variability in S. haematobium prevalence, regardless of RS data

source or extraction mask. The predicted prevalence at the pixel level ranged from approxi-

mately 5% to 28% (Fig 4). Aggregated predicted community-level prevalence ranged between

7% and 22%, as compared to the observed prevalence range of 0–40%.

Correlations between observed and predicted prevalence values were higher on average for

models produced using Landsat 8 environmental data as compared to Sentinel-2 data (both in

combination with LST and topographic variables). Models derived using the SWAP mask pro-

duced the highest correlation values using both Landsat 8 (r = 0.76, p < 0.01) and Sentinel-2

data (r = 0.67, p< 0.01) (Table 4). However, scatter plots of observed versus predicted values

still deviated substantially from the line of equality (S22 and S23 Figs, Supporting Information)

due to the overall low R2 values. From a visual assessment of the predicted prevalence surfaces

produced using environmental variables (Fig 5; S24–S33 Figs, Supporting Information), it

appears that the SWAP mask resulted in more precise prediction, including correct delineation

of water bodies as high-risk locations (Fig 5, panel A6).
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Variable importance was also explored using the IncNodePurity measure from random

forest models (S22 and S23 Figs, Supporting Information). MNDWI was an important water

index, particularly when environmental data were extracted without knowledge of water con-

tact sites (masks 1, 2, 4, and 5). Vegetation indices were not commonly observed among the

Fig 4. Schematic images of study communities showing settlements and water bodies (A1 and B1), NDWI values

(A2 and B2), and MNDWI values (A3 and B3) generated using Landsat 8 data.

https://doi.org/10.1371/journal.pntd.0006517.g004

Table 4. Results of environmental models for various extraction masks showing the R2 value and Spearman’s rank correlation value (r) between model predicted

and observed prevalence values.

Mask� R2 (RMSE) r (p-value) R2 (RMSE) r (p-value)

Landsat 8 data Sentinel-2 data

None {1} 0.14 (9.36) 0.49 (< 0.01) 0.14 (9.65) 0.33 (< 0.01)

Unpopulated {2} 0.17 (9.07) 0.46 (< 0.01) 0.14 (9.80) 0.28 (< 0.01)

All WBs {4} 0.15 (9.62) 0.48 (< 0.01) 0.14 (9.70) 0.40 (< 0.01)

Unmined WBs {5} 0.12 (9.68) 0.51 (< 0.01) 0.12 (9.71) 0.34 (< 0.01)

SWAPs {6} 0.15 (9.47) 0.76 (< 0.01) 0.13 (9.43) 0.67 (< 0.01)

� The number in brackets refers to the mask in Fig 3

https://doi.org/10.1371/journal.pntd.0006517.t004
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Fig 5. Predicted prevalence from Landsat 8 data (A) and Sentinel-2 data (B) for five extraction masks {1, 2, 4, 5,

and 6}. Surface water access points are shown as + symbols. The scale and extent of the image match Fig 4(B).

https://doi.org/10.1371/journal.pntd.0006517.g005
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top five important variables in the Landsat 8 models; EVI and NDVI were the most important

vegetation indices in the Sentinel-2 models. Slope and elevation were important in many mod-

els, whereas stream order was always the least important variable.

Contribution of WASH variables

The final model consisted of environmental variables derived from Landsat 8 data using the

SWAP mask in combination with WASH variables. The addition of WASH variables only

slightly increased the R2 value from 0.15 to 0.17 and decreased the RMSE from 9.47 to 9.03.

However, iron concentration became by far the most important variable. The importance

of iron concentration was also evident in the predicted prevalence surfaces, with high values on

the western side of the Atiwa Mountain Range (Fig 6) coinciding with high groundwater iron

content (S21 Fig, Supporting Information). FIWS and SWAP access indicators were not impor-

tant in the final model. Of the environmental variables, elevation remained important and

stream order remained unimportant (Fig 6). The correlations between predicted and observed

values were not extracted for the final model because multiple masks were used in the model.

Discussion

In this study, we utilized publicly available environmental data from two multispectral optical

sensors in combination with topographic variables and field-collected WASH variables to

Fig 6. Predicted prevalence for the entire study area; for two smaller zoom windows (A and B); and variable importance values for the final model conducted

with Landsat 8 environmental, topographic, and WASH variables. The scales and extents of A and B match Figs 4 and 5. Surface water access points are shown as

+ symbols.

https://doi.org/10.1371/journal.pntd.0006517.g006
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assess their performance in predicting S. haematobium prevalence at a sub-national spatial

extent. Furthermore, we tested five methods of environmental data extraction with varying

degrees of ecologic relevance. In epidemiologic literature, schistosomiasis is known as a

focal disease, meaning that neighboring villages with seemingly similar conditions can have

drastically different transmission profiles and disease prevalence levels [10,18,19]. This study

attempted to characterize some of the sources of spatial heterogeneity at small spatial extents

using fine resolution RS data and WASH-related risk factors.

We found that knowledge of water contact sites shows promise in schistosomiasis risk pre-

diction at small spatial extents. According to a visual assessment, environmental data extracted

using the SWAP mask more precisely delineated water bodies as high-risk locations within

communities (Fig 5). This mask also produced the highest correlation between model pre-

dicted and observed prevalence values, depicting heterogeneity in transmission risk among

communities (Table 4).

Of the two water indices we explored, MNDWI was the preferred index due to more accu-

rate detection of water bodies. NDWI values were equally high for water and developed pix-

els (roads and settled areas), indicating false detection of water bodies. Generally, higher

values of MNDWI correlated with higher schistosomiasis risk. However, even MNDWI

could not detect small streams that sustained most of surface water use (i.e., SWAPs). Fur-

ther investigation of these two indices and their utility in water-related disease modeling is

recommended. Vegetation indices did not play a major role in prediction. This is not sur-

prising, especially in the SWAP mask models, as these indices are likely characterizing land

vegetation cover, rather than aquatic vegetation that affects intermediate host snail abun-

dance [11].

LST did not exhibit a strong influence on schistosomiasis risk, most probably due to the

lack of variability in LST values (25–32 ˚C), all of which were well within the favorable temper-

ature range for snail and cercariae survival [54,55]. Furthermore, because the water bodies in

the study area are very small, the spatial resolution of the temperature data (100 m) was likely

too coarse to detect water temperature.

Slope and elevation were important in prediction. Higher elevation correlated with higher

schistosomiasis risk, counter to the literature, likely because the Atiwa Mountain Range is

still quite low in elevation, far below the 2,000-m above sea level threshold for S. haematobium
transmission [18]. Higher slope correlated with lower schistosomiasis risk, potentially due to

faster stream flows. At water velocities > 0.3 m/s, snails can become dislodged and swept away

[55]. Surprisingly, stream order was consistently the least important variable in all models,

while it demonstrated a significant positive association with schistosomiasis risk in other stud-

ies [17,22]. A potential explanation for this is the abundance of small streams throughout the

study communities, widespread preference of people for surface water over groundwater, and

hence their uniform extensive use.

In our study, variables of improved and unimproved water access were not predictive of

schistosomiasis risk, consistently with the findings of Lai et al. [4]. However, high iron concen-

tration in groundwater was associated with increased schistosomiasis risk. Our prior studies

have provided qualitative support for the hypothesis that unfavorable groundwater quality in

improved water sources (i.e., boreholes and piped water systems) for drinking and laundry is a

significant driver of increased surface water use, serving as an indirect risk factor for schistoso-

miasis transmission. The final model results confirmed this hypothesis, with groundwater iron

content being the predominant schistosomiasis risk factor with a much higher IncNodePurity

value as compared to any of the environmental variables (Fig 6). Indeed, in Fig 6, the area with

high predicted schistosomiasis prevalence in the center of the image corresponds to the high

iron concentration cluster (S21 Fig, Supporting Information).
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Overall, the models had relatively low predictive power and predicted prevalence values

deviated substantially from the observed values, indicating overprediction in the low-preva-

lence range and underprediction in the high-prevalence range. This is most likely due to the

effects of preventive chemotherapy on prevalence measures. With increased treatment fre-

quency, it becomes difficult to detect the effects of environmental conditions on transmission

risk [4,22]. It would be valuable to apply these approaches in similar geographic extents with a

wider prevalence range. Exploring different methods of defining “communities” over which

risk factor variables are aggregated (e.g., varying the buffer radius within which transmission

occurs) in other geographic, demographic, and cultural contexts is also recommended.

We also found that Landsat 8 and Sentinel-2 sensors with similar radiometric resolutions

(12-bit) and acquisition dates (all images were acquired within one week), on average, had

similar predictive capacities. Cloud cover presented a substantial challenge in RS data acquisi-

tion from both data sources, with few cloud-free images available only in the dry season

(December and January). Additionally, Landsat 8 data were more affected by haze and ocean

spray, as compared to Sentinel-2 data. As RS data algorithms improve, future studies should

consider repeating the same environmental models using RS data representative of both dry

and rainy seasons to analyze the impact of water stability and dynamics. Synthetic Aperture

Radar (SAR) data (e.g., from Sentinel-1A) could provide additional information in this and

similar cloud-affected regions.

Apart from technical challenges associated with using RS data, several logistic challenges

may have affected the quality of this study. First, low attendance in some of the study schools

(range 46–95%) associated with sporting events and market days may have affected the preva-

lence measures. For example, children from agrarian families who were absent on market days

are likely different in terms of socioeconomic status and schistosomiasis exposure profile from

those who were present and participated in the study. In a smaller study, it would have been

possible to go back and screen absentees; in the present study, this was not possible due to

time and scheduling limitations and absence of identifying information about participants.

Additional challenges arose from working across 10 administrative districts, especially with

securing local GHS personnel to administer praziquantel. Scheduling and coordination efforts

were further complicated by the community health workers being on strike in some of the dis-

tricts during the study.

Despite the challenges and limitations, our study makes important contributions to the

modeling approaches of schistosomiasis transmission at small spatial extents. First, knowl-

edge of human water contact sites bridges the gap between where prevalence is measured

and where transmission may have occurred. This is a critical gap in models that utilize envi-

ronmental data as predictors of human infection. Second, the impact of groundwater iron

concentration on schistosomiasis risk. With prevalence rates up to 40% only six months

after preventive chemotherapy and very high rates of fetching surface water (up to 100%)

and swimming (up to 90%) [49], reinfection is a major concern in the study area. Ground-

water quality in improved water sources, more so than improved water access in general,

plays a major role in reinfection patterns and can impede schistosomiasis control. While it

is well-established that preventive chemotherapy reduces prevalence and worm burden in

the short term, with rapid reinfection, it cannot have more than a temporary effect on trans-

mission without complementary improvements in WASH [23,24,56]. Our extensive experi-

ence in the Eastern region of Ghana suggests that it is not only increasing access to WASH

resources that matters, but rather increasing utilization of these resources in accordance

with local perceptions and preferences. Considering WASH-related risk factors in schistoso-

miasis prediction can help shift the focus of control strategies from treating symptoms to

reducing exposure [56].
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Supporting information

S1 Table. Microhematuria prevalence survey results.

(XLSX)

S2 Table. Spearman’s rank correlations among six environmental indices (all are statisti-

cally significant; p < 0.05); Sentinel-2 values are shown in top and Landsat 8 in bottom of

the matrix.

(XLSX)

S1 Fig. Data processing steps.

(TIF)

S2 Fig. Data analysis steps.

(TIF)

S3 Fig. Sentinel-2 blue band reflectance values.

(TIF)

S4 Fig. Sentinel-2 green band reflectance values.

(TIF)

S5 Fig. Sentinel-2 red band reflectance values.

(TIF)

S6 Fig. Sentinel-2 near infrared band reflectance values.

(TIF)

S7 Fig. Sentinel-2 short wavelength infrared band reflectance values.

(TIF)

S8 Fig. Landsat 8 land surface temperature values.

(TIF)

S9 Fig. Sentinel-2 NDVI values.

(TIF)

S10 Fig. Sentinel-2 EVI values.

(TIF)

S11 Fig. Sentinel-2 SAVI values.

(TIF)

S12 Fig. Sentinel-2 MSAVI values.

(TIF)

S13 Fig. Sentinel-2 NDWI values.

(TIF)

S14 Fig. Sentinel-2 MNDWI values.

(TIF)

S15 Fig. Elevation values (in meters) derived from GDEM.

(TIF)

S16 Fig. Slope values (in degrees) derived from GDEM.

(TIF)
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S17 Fig. Slope values derived from GDEM.

(TIF)

S18 Fig. Functional improved water source (FIWS) access values derived in ArcGIS from

field data.

(TIF)

S19 Fig. Perennial surface water source (SWAP) access values derived in ArcGIS from field

data.

(TIF)

S20 Fig. Interpolated total dissolved solids (TDS) concentration values (in mg/L) derived

in ArcGIS from field data.

(TIF)

S21 Fig. Interpolated iron concentration values (in mg/l) derived in ArcGIS from field data.

(TIF)

S22 Fig. Scatter plots of model predicted (x-axis) vs. observed (y-axis) prevalence values as

compared to the line of equality [left]; variable importance values [right] for random for-

est models conducted with environmental variables from Landsat 8 and topographic vari-

ables from GDEM.

(TIF)

S23 Fig. Scatter plots of model predicted (x-axis) vs. observed (y-axis) prevalence values as

compared to the line of equality [left]; variable importance values [right] for random for-

est models conducted with environmental variables from Sentinel-2 and topographic vari-

ables from GDEM.

(TIF)

S24 Fig. Predicted prevalence values using Landsat 8 data (mask 1).

(TIF)

S25 Fig. Predicted prevalence values using Sentinel-2 data (mask 1).

(TIF)

S26 Fig. Predicted prevalence values using Landsat 8 data (mask 2).

(TIF)

S27 Fig. Predicted prevalence values using Sentinel-2 data (mask 2).

(TIF)

S28 Fig. Predicted prevalence values using Landsat 8 data (mask 4).

(TIF)

S29 Fig. Predicted prevalence values using Sentinel-2 data (mask 4).

(TIF)

S30 Fig. Predicted prevalence values using Landsat 8 data (mask 5).

(TIF)

S31 Fig. Predicted prevalence values using Sentinel-2 data (mask 5).

(TIF)

S32 Fig. Predicted prevalence values using Landsat 8 data (mask 6).

(TIF)
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S33 Fig. Predicted prevalence values using Sentinel-2 data (mask 6).

(TIF)
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1. Hotez PJ, Alvarado M, Basáñez MG, Bolliger I, Bourne R, Boussinesq M, et al. (2014). The Global Bur-

den of Disease Study 2010: interpretation and implications for the neglected tropical diseases. PLoS

Negl Trop Dis 8: e2865. https://doi.org/10.1371/journal.pntd.0002865 PMID: 25058013

2. Vos T, Barber RM, Bell B, Bertozzi-Villa A, Biryukov S, Bolliger I, et al. (2015). Global, regional, and

national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and

injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study

2013. Lancet 386: 743–800. https://doi.org/10.1016/S0140-6736(15)60692-4 PMID: 26063472

3. Steinmann P, Keiser J, Bos R, Tanner M, Utzinger J (2006). Schistosomiasis and water resources

development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect Dis 6:

411–425. https://doi.org/10.1016/S1473-3099(06)70521-7 PMID: 16790382

4. Lai Y, Biedermann P, Ekpo UF, Garba A, Mathieu E, Midzi N, et al. (2015). Spatial distribution of schis-

tosomiasis and treatment needs in sub-Saharan Africa: a systematic review and geostatistical analysis.

Lancet Infect Dis 15: 927–940. https://doi.org/10.1016/S1473-3099(15)00066-3 PMID: 26004859

5. Colley DG, Bustinduy AL, Secor WE, King CH (2014). Human schistosomiasis. Lancet 383: 2253–

2264. https://doi.org/10.1016/S0140-6736(13)61949-2 PMID: 24698483

Spatial prediction of schistosomiasis using new remote sensors and water access profiles

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006517 June 4, 2018 19 / 22

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0006517.s035
https://doi.org/10.1371/journal.pntd.0002865
http://www.ncbi.nlm.nih.gov/pubmed/25058013
https://doi.org/10.1016/S0140-6736(15)60692-4
http://www.ncbi.nlm.nih.gov/pubmed/26063472
https://doi.org/10.1016/S1473-3099(06)70521-7
http://www.ncbi.nlm.nih.gov/pubmed/16790382
https://doi.org/10.1016/S1473-3099(15)00066-3
http://www.ncbi.nlm.nih.gov/pubmed/26004859
https://doi.org/10.1016/S0140-6736(13)61949-2
http://www.ncbi.nlm.nih.gov/pubmed/24698483
https://doi.org/10.1371/journal.pntd.0006517


6. Gryseels B, Polman K, Clerinx J, Kestens L (2006). Human schistosomiasis. Lancet 368: 1106–1118.

https://doi.org/10.1016/S0140-6736(06)69440-3 PMID: 16997665

7. Liang S, Yang C, Zhong B, Guo J, Li H, Carlton EJ, et al. (2014). Surveillance systems for neglected

tropical diseases: global lessons from China’s evolving schistosomiasis reporting systems, 1949–2014.

Emerg Themes Epidemiol 11: 19. https://doi.org/10.1186/1742-7622-11-19 PMID: 26265928

8. Wrable M, Kulinkina AV, Liss A, Koch M, Cruz M, Biritwum NK, et al. (2017). The use of remotely

sensed environmental parameters for schistosomiasis prediction across climate zones in Ghana. Envi-

ron Monit Assess (in press).

9. Ghana Statistical Service. 2010 Population & Housing Census [Internet] 2013 [cited 2018 Apr 05].

http://www.statsghana.gov.gh/docfiles/publications/2010_PHC_National_Analytical_Report.pdf

10. Simoonga C, Utzinger J, Brooker S, Vounatsou P, Appleton CC, Stensgaard AS, et al. (2009). Remote

sensing, geographical information system and spatial analysis for schistosomiasis epidemiology and

ecology in Africa. Parasitology 136: 1683–1693. https://doi.org/10.1017/S0031182009006222 PMID:

19627627

11. Walz Y, Wegmann M, Dech S, Raso G, Utzinger J (2015). Risk profiling of schistosomiasis using

remote sensing: approaches, challenges and outlook. Parasit Vectors 8: 163. https://doi.org/10.1186/

s13071-015-0732-6 PMID: 25890278

12. Ekpo UF, Hürlimann E, Schur N, Oluwole AS, Abe EM, Mafe MA, et al. (2013). Mapping and prediction

of schistosomiasis in Nigeria using compiled survey data and Bayesian geospatial modelling. Geospat

Health 7: 355–366. https://doi.org/10.4081/gh.2013.92 PMID: 23733296

13. Soares Magalhães RJ, Biritwum NK, Gyapong JO, Brooker S, Zhang Y, Blair L, et al. (2011). Mapping

helminth co-infection and co-intensity: geostatistical prediction in Ghana. PLoS Negl Trop Dis 5: e1200.

https://doi.org/10.1371/journal.pntd.0001200 PMID: 21666800

14. Schur N, Hürlimann E, Garba A, Traore MS, Ndir O, Ratard RC, et al. (2011). Geostatistical model-

based estimates of schistosomiasis prevalence among individuals aged�20 years in West Africa.

PLoS Negl Trop Dis 5: e1194. https://doi.org/10.1371/journal.pntd.0001194 PMID: 21695107

15. Walz Y, Wegmann M, Dech S, Vounatsou P, Poda JN, N’Goran EK, et al. (2015). Modeling and valida-

tion of environmental suitability for schistosomiasis transmission using remote sensing. PLoS Negl Trop

Dis 9: e0004217. https://doi.org/10.1371/journal.pntd.0004217 PMID: 26587839

16. Brooker S, Hay SI, Issae W, Hall A, Kihamia CM, Lwambo NJS, et al. (2001). Predicting the distribution

of urinary schistosomiasis in Tanzania using satellite sensor data. Trop Med Int Heal 6: 998–1007.

17. Beck-Wörner C, Raso G, Vounatsou P, N’Goran EK, Rigo G, Parlow E, et al. (2007). Bayesian spatial

risk prediction of Schistosoma mansoni infection in western Côte d’Ivoire using a remotely-sensed digi-
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