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Abstract. The present article is devoted to the study of two well-known inverse problems, that
is the data completion problem and the inverse obstacle problem. The general idea is to reconstruct
some boundary conditions and/or to identify an obstacle or void of different conductivity which is
contained in a domain, from measurements of voltage and currents on the outer boundary of the
domain. We focus here on Laplace’s equation.

Firstly, we use a penalized Kohn-Vogelius functional in order to numerically solve the data
completion problem, which consists in recovering some boundary conditions from partial Cauchy
data. The functional to be minimized is quadratic, hence we compute its minimum by solving the
linearized equation. Secondly, we propose to build an iterative method for the inverse obstacle
problem based on the combination of the previously mentioned data completion subproblem and
the so-called trial method. The underlying boundary value problems are efficiently computed by
means of boundary integral equations and several numerical simulations show the applicability and
feasibility of our new approach. For the numerical simulations, we focus on star-shaped domains in
the two dimensional case.
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equation, Kohn-Vogelius functional.
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1. Introduction. We deal in this article with the inverse obstacle problem
which is defined as follows. Let Ω be a bounded connected Lipschitz open set
of Rd, where d = 2 or d = 3, with a boundary ∂Ω. For some nontrivial Cauchy
data (fm, gm) ∈ H1/2(∂Ω)×H−1/2(∂Ω) on the outer boundary, which corresponds to
a pair of current/voltage measurements, we consider the following inverse problem:

(1.1)

Find a set ω∗ ∈ D and a solution u ∈ H1
(
Ω\ω∗

)
of the following overdetermined boundary value problem:

∆u = 0 in Ω\ω∗,
u = fm on ∂Ω,

∂nu = gm on ∂Ω,
u = 0 on ∂ω∗,

where D = {ω b Ω, ∂ω is Lipschitz and Ω\ω is connected} and n is the outer unit
normal to Ω\ω̄. In other words, we want to detect an inclusion ω∗ characterized by a
homogeneous Dirichlet boundary condition from the knowledge of the Dirichlet and
Neumann boundary conditions on the exterior boundary ∂Ω. Notice that a only a
single pair of Cauchy data is used.

Then the problem under consideration is a special case (assuming a constant
conductivity with a void of connected complement) of the general conductivity recon-
struction problem also called Electrical Impedance Tomography (EIT). EIT is used
in medical imaging to reconstruct the electric conductivity of a part of the body from
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measurements of currents and voltages at the surface (see, e.g., [37]). The same tech-
nique is also used in geophysical explorations. An important special case consists in
reconstructing the shape of an unknown inclusion or void assuming a constant con-
ductivity. Notice that the continuum model is not a realistic model for EIT and more
realistic electrode models exist (see [28, 29, 25, 36]). However we focus in this paper
on this continuum model.

It is known that problem (1.1) admits at most one solution, as claimed by the
following identifiability result (see, e.g., [10, Theorem 1.1] or [19, Theorem 5.1]).

Theorem 1.1. The domain ω and the function u which is assumed to be con-
tinuous up to the boundaries that satisfy (1.1) are uniquely defined by the nontrivial
Cauchy data (fm, gm).

It is also well-known that problem (1.1) is severely ill-posed: the problem may fail
to have a solution and, even when a solution exists, the problem is highly unstable
(see, e.g., [4, 20]).

This inverse problem has been intensively investigated by numerous methods. We
can cite for example sampling methods [38], methods based on conformal mappings [2,
27], on integral equations [35, 40], methods using the full Dirichlet-to-Neumann map
at the outer boundary [11, 12], or level-set methods coupled with quasi-reversibility
in the exterior approach [10]. We also refer for example to [17, 31] for numerical
algorithms and to [5, 23] for particular results concerning uniqueness.

In [39], the problem under consideration has been reformulated as a shape opti-
mization problem for the Kohn-Vogelius functional. Then, seeking the unknown in-
clusion is equivalent to seeking the minimizer of an energy functional. Much attention
has been spent on the analysis of this approach (see, e.g., [3, 21]) and its comparison
with a least-squares tracking type functionals. These kind of methods have some
advantages such as being adaptable for several partial differential equations, such as
the Stokes system (see, e.g., [13, 15, 26]), and for obstacles characterized by differ-
ent boundary conditions, such as Neumann or generalized boundary conditions (see,
e.g., [6, 14]).

In this article, we propose a new point of view to numerically solve this model
inverse obstacle problem. We focus on the two-dimensional case and assume that
the inclusion is star-shaped and perfectly conducting. Then, we build an iterative
sequence of domains using the combination of a data completion subproblem and
the so-called trial method which is used to control the evolution of the inclusion
boundary. This means that, given an inclusion ω, we compute an harmonic function
u ∈ H1(Ω\ω) which admits the Cauchy data (fm, gm) at the outer boundary ∂Ω.
With the help of the Cauchy data at the interior boundary ∂ω, we aim at updating
the interior boundary such that the desired Dirichlet condition u = 0 holds at the
new interior boundary. The data completion problem is solved by minimizing a Kohn-
Vogelius functional thanks to the resolution of a regularized linearized equation, which
is efficient since the functional is quadratic.

Organization of the article. The rest of the article is organized as follows.
In Section 2, we introduce the data completion problem which we intend to solve
by means of the minimization of a Kohn-Vogelius functional, also introduced in this
section. We additionally provide all the general notations and assumptions used
throughout the article. In Section 3, we provide some properties concerning the con-
sidered boundary value problems and compute the gradient and the Hessian of the
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Kohn-Vogelius functional. Then, in Section 4, we introduce the Tikhonov regulariza-
tion term needed to numerically minimize the functional. The minimization of this
regularized functional is considered by means of a Newton scheme. Especially, nu-
merical results are presented, which demonstrate that our approach yields an efficient
solution of the data completion problem. In Section 5, we focus on the numerical
resolution of the inverse obstacle problem. To this end, we present the so-called trial
method, used to update an approximated inclusion’s boundary from the information
obtained from the previous data completion step. Numerical results validate that the
proposed approach is feasible to reconstruct inclusions in the inverse obstacle problem
at least on a model case a single star-shapes inclusion. Finally, in Section 6, we state
concluding remarks.

2. Introduction of general notations and of the considered problems.

2.1. Introduction of the general notations. For a bounded open set Ω of Rd
(d ∈ N \ {0}) with a (piecewise) Lipschitz boundary ∂Ω, we precise that the notation∫

Ω

u means

∫
Ω

u(x)dx which is the classical Lebesgue integral. Moreover we use the

notation

∫
∂Ω

u to denote the boundary integral

∫
∂Ω

u(x)ds(x), where ds represents

the surface Lebesgue measure on the boundary. We also introduce the exterior unit
normal n of the domain Ω and ∂nu will denote the normal derivative of u.

We denote by L2(Ω), L2(∂Ω), H1(Ω), H1(∂Ω), the usual Lebesgue and Sobolev
spaces of scalar functions in Ω or on ∂Ω. The classical norm and semi-norm on H1(Ω)
are respectively denoted by ‖·‖H1 and |·|H1 . Moreover 〈·, ·〉 denotes the following
product, for all u, v ∈ H1(Ω),

〈u, v〉 :=

∫
Ω

∇u · ∇v so that |u|2H1(Ω) = 〈u, u〉 .

2.2. Introduction of the data completion problem. We recall that we con-
sider in this article a bounded connected Lipschitz open set Ω of Rd (d = 2 or d = 3)
and an inclusion ω ∈ D, with D = {ω b Ω, ∂ω is Lipschitz and Ω\ω is connected}.
Let us consider some nontrivial Cauchy data (fm, gm) ∈ H1/2(∂Ω)×H−1/2(∂Ω).

The data completion problem consists in recovering data on ∂ω, from the overde-
termined data (fm, gm) on ∂Ω, that is:

(2.1)

Find u ∈ H1(Ω\ω) such that ∆u = 0 in Ω\ω,
u = fm on ∂Ω,

∂nu = gm on ∂Ω.

Of course, the previous problem is not standard. In general, it admits only a local
solution (that is defined in the neighborhood of ∂Ω under regularity assumptions) by
the Cauchy-Kowalevskaya theorem. Since we are interested in global solutions, this
result is not satisfactory and we have to define the notion of compatible data.

Definition 2.1. A pair (fm, gm) ∈ H1/2(∂Ω)×H−1/2(∂Ω) is said compatible if
the Cauchy problem (2.1) has a (necessarily unique) solution.

When data is compatible, the unknown u is uniquely determined by either its
Dirichlet trace or its Neumann trace on the inner boundary ∂ω. The property
of being compatible is not open: indeed the set of compatible couples is dense in
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H1/2(∂Ω) × H−1/2(∂Ω). Hence, if a given pair (fm, gm) is not compatible, we may
approximate it by a sequence of compatible data. Typical density results have been
stated by Andrieux et al. in [1, Lemma 2.1] or Fursikov in [24], where the following
result is given.

Lemma 2.2. We have the two following density results.
1. For a fixed fm ∈ H1/2(∂Ω), the set of compatible data g is dense in H−1/2(∂Ω).
2. For a fixed gm ∈ H−1/2(∂Ω), the set of compatible f is dense in H1/2(∂Ω).

Therefore, any numerical scheme should incorporate a regularization step. Several
approaches have been considered to solve the data completion problem. Among oth-
ers, we mention the works of Kozlov et al. [33], Cimetière et al. [18], Ben Belgacem
et al. [7, 8].

We shall follow the energy based strategy introduced by Andrieux et al. in [1]
by the minimization of the Kohn-Vogelius like functional which admits the solution
of problem (2.1) as minimizer, if such a solution exists. Notice that such a functional
turns to be quadratic and convex. Surprisingly, to the best of our knowledge, only
gradient based numerical schemes have been studied for the resolution of this problem.
We will describe in this article the Newton method that is completely suited for
quadratic objectives.

In order to deal with the ill-posedness previously mentioned, we consider a Tikho-
nov regularization of the functional which ensures the existence of a minimizer even
for not compatible data thanks to the gained of coerciveness and, in case of compatible
data, the convergence towards the exact solution (see, e.g., [16, Proposition 2.5 and
Theorem 2.6]).

2.3. The Kohn-Vogelius functional. As previously mentioned, the data com-
pletion problem (2.1) can be studied through the minimization of a Kohn-Vogelius
cost functional (see [32]). To this end, we introduce the two maps uDN and uND

defined as follows

(2.2)
uDN : H1/2(∂Ω) × H−1/2(∂ω) −→ H1(Ω\ω),
uND : H−1/2(∂Ω) × H1/2(∂ω) −→ H1(Ω\ω),

where uDN(f, ψ) ∈ H1(Ω\ω) solves the boundary values problem

(2.3)

 ∆u = 0 in Ω\ω,
u = f on ∂Ω,

∂nu = ψ on ∂ω,

and where uND(g, φ) ∈ H1(Ω\ω) solves the boundary values problem

(2.4)

 ∆u = 0 in Ω\ω,
∂nu = g on ∂Ω,
u = φ on ∂ω.

Notice that the indices mean the type of boundary condition, where the first one
indicates the outer boundary and the second one the inner boundary.

To tackle the inverse problem, one tries to solve the problem:

Find (φ, ψ) ∈ H1/2(∂ω)×H−1/2(∂ω) such that
uDN(fm, ψ) = uND(gm, φ).
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Thanks to the linearity of the maps uND and uDN, this is equivalent to:

Find (φ, ψ) ∈ H1/2(∂ω)×H−1/2(∂ω) such that
uDN(0, ψ)− uND(0, φ) = −

(
uDN(fm, 0)− uND(gm, 0)

)
.

Notice that this is a standard linear inverse problem associated to the linear operator

A : H1/2(∂ω)×H−1/2(∂ω) −→ H1(Ω\ω̄)

(φ, ψ) 7−→ uDN(0, ψ)− uND(0, φ).

Of course, the right hand side b := −
(
uDN(fm, 0)− uND(gm, 0)

)
may belong or may

not belong to the range R(A) of A, depending on the fact that data are compatible
or not.

We try to solve the previous linear equation in a least squares meaning. We focus
on the following optimization problem

(φ∗, ψ∗) ∈ argmin
(φ,ψ)∈H

1/2
� (∂ω)×H−1/2(∂ω)

K(φ, ψ),

where K : H1/2(∂ω)× H−1/2(∂ω)→ R is the non-negative Kohn-Vogelius cost func-
tional defined by

K(φ, ψ) :=
1

2
|A(φ, ψ)− b|2H1(Ω\ω).

Notice that this criterion is quadratic as the square of a affine map and also writes

(2.5)

K(φ, ψ) =
1

2
|uDN(fm, ψ)− uND(gm, φ)|2H1(Ω\ω)

=
1

2

∫
Ω\ω
|∇uDN(fm, ψ)−∇uND(gm, φ)|2.

The connection between the original inverse problem and the minimization is given
by next lemma.

Lemma 2.3. The inverse problem (2.1) has a solution if and only if the func-
tional K has a minimizer (φ, ψ) and K(φ, ψ) = 0. Notice that the minimizer is unique
up to an additive constant: if K(φ1, ψ1) = 0 = K(φ2, ψ2) then there is a constant c
such that φ1 = φ2 + c and ψ1 = ψ2.

Proof. For a given and known inclusion ω, if the inverse problem (2.1) has a solution,
then uDN(fm, ψ) = uND(gm, φ) and K(φ, ψ) = 0. Conversely, if we assume that
K(φ, ψ) = 0 then ∇uDN(fm, ψ) = ∇uND(gm, φ) and there is a constant c such that
uDN(fm, ψ) = uND(gm, φ) + c = uND(gm, φ+ c). �

The usual theory of linear inverse problems should be applied. That is, we
solve the normal equation A>A(φ, ψ) = A>b or its regularized version (A>A +
εB>B)(φ, ψ) = A>b, where B is a regularization operator and where ε > 0. However
it involves the adjoint A> of A and hence to manipulate the scalar product in the
space H1/2(∂ω)×H−1/2(∂ω).

The main difficulty of this approach is that the scalar product in the spaces
H1/2(∂ω) and H−1/2(∂ω) is not tractable with from a practical point of view when one
uses the optimize then discretize approach. On the converse, if one first discretizes the
equations, and then computes the discrete adjoint, the usual theory can be applied. In
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the following, we want to remain at the continuous level and reduce the minimization
of the Kohn-Vogelius objective to such a linear inverse problem in a simple way thanks
to the Newton point of view. Since the objective K is quadratic, its hessian is constant
and its minimizer can be computed by a single step in Newton method.

Remark 2.4. Note that the two problems (2.3) and (2.4) are well-posed for any
given boundary conditions (φ, ψ) ∈ H1/2(∂ω) × H−1/2(∂ω), without additional com-
patibility conditions between fm and ψ for the first problem and between gm and φ
for the second. This is of particular interest for numerical implementations, as the
considered setting allows to consider the classical Sobolev spaces and, therefore, the
implementations can be done with classical finite element method softwares without
any additional adjustments.

3. Some properties concerning the data completion problem.

3.1. Properties of the maps uDN ant uND. Let us first emphasize some
properties of the maps defined in (2.2) we should use.

Proposition 3.1 (Properties of the boundary values problems). We have the
following statements.

1. The maps uDN and uND are linear: for all (f1, ψ1), (f2, ψ2) ∈ H1/2(∂Ω) ×
H−1/2(∂ω), there holds

uDN(f1 + f2, ψ1 + ψ2) = uDN(f1, ψ1) + uDN(f2, ψ2)
= uDN(f2, ψ1) + uDN(f1, ψ2)

and

uND(g1 + g2, φ1 + φ2) = uND(g1, φ1) + uND(g2, φ2)
= uND(g2, φ1) + uND(g1, φ2).

2. There are positive constants C1 and C2 such that

(3.1)
C1‖φ‖H1/2(∂ω) 6 ‖uND(0, φ)‖H1(Ω\ω) 6 C2‖φ‖H1/2(∂ω),
C1‖ψ‖H−1/2(∂ω) 6 ‖uDN(0, ψ)‖H1(Ω\ω) 6 C2‖ψ‖H−1/2(∂ω),

for all (φ, ψ) ∈ H1/2(∂ω)×H−1/2(∂ω).
3. There holds

〈uDN(f1, ψ1),uDN(f2, ψ2)〉 =

∫
∂Ω

f1∂nuDN(f2, ψ2) +

∫
∂ω

uDN(f1, ψ1)ψ2

=

∫
∂Ω

f2∂nuDN(f1, ψ1) +

∫
∂ω

uDN(f2, ψ2)ψ1,

〈uDN(f1, ψ1),uND(g1, φ1)〉 =

∫
∂Ω

f1g1 +

∫
∂ω

uDN(f1, ψ1)∂nuND(g1, φ1)

=

∫
∂Ω

uND(g1, φ1)∂nuDN(f1, ψ1) +

∫
∂ω

φ1ψ1,

〈uND(g1, φ1),uND(g2, φ2)〉 =

∫
∂Ω

uND(g1, φ1)g2 +

∫
∂ω

φ1∂nuND(g2, φ2)

=

∫
∂Ω

uND(g2, φ2)g1 +

∫
∂ω

φ2∂nuND(g1, φ1),

for all (f1, ψ1), (f2, ψ2) ∈ H1/2(∂Ω) × H−1/2(∂ω) and all (g1, φ1), (g2, φ2) ∈
H−1/2(∂Ω)×H1/2(∂ω).
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Proof. The first assertion is a trivial consequence of the superposition principle.
Let us prove the point C1‖ψ‖H−1/2(∂ω) 6 ‖uDN(0, ψ)‖H1(Ω\ω). By definition of the
dual norm,

‖ψ‖H−1/2(∂ω) = sup
‖φ‖

H1/2(∂ω)
=1

〈φ, ψ〉H1/2(∂ω)×H−1/2(∂ω)

=

∫
∂ω

∂nuDN(0, ψ)Φ =

∫
Ω\ω̄
∇uDN(0, ψ) · ∇Φ,

where Φ ∈ H1(Ω\ω̄) is the harmonic extension of φ so that it holds

‖Φ‖H1(Ω\ω̄) = ‖φ‖H1/2(∂ω) = 1.

We conclude that

‖ψ‖H−1/2(∂ω) 6 ‖uDN(0, ψ)‖H1(Ω\ω̄)‖Φ‖H1(Ω\ω̄) = ‖uDN(0, ψ)‖H1(Ω\ω̄).

The others inequalities of the second second assertion comes from usual a priori elliptic
estimate. The third assertion is a consequence of the Green formulae. �

Let us remark that the third assertion of Proposition 3.1 implies in particular the
following formulae which is useful to transform an integral over the outer boundary
into an integral over the inner boundary:

〈uDN(0, ψ),uDN(f, 0)〉 = 0 =

∫
∂Ω

f∂nuDN(0, ψ) +

∫
∂ω

uDN(f, 0)ψ,∫
∂Ω

uND(0, φ)∂nuDN(f, 0) =

∫
∂ω

uDN(f, 0)∂nuND(0, φ),

〈uND(g, 0),uND(0, φ)〉 = 0 =

∫
∂Ω

uND(0, φ)g +

∫
∂ω

φ∂nuND(g, 0).

Another consequence of these integration by parts formulae is the following alter-
native expression of the Kohn-Vogelius objective:

(3.2) K(φ, ψ) =

∫
∂Ω

(
fm − uND(gm, φ)

)(
∂nuDN(fm, ψ)− gm

)
+

∫
∂ω

(
uDN(fm, ψ)− φ

)(
ψ − ∂nuND(gm, φ)

)
.

Remark 3.2. Let us emphasize that we use the usual abusive notation since the
boundary integrals are to be understood as duality product between a Dirichlet trace
in H1/2 and a Neumann trace in H−1/2.

3.2. Properties of the Kohn-Vogelius objective K. The main properties of
the functional defined by (2.5) can be summarized as follow.

Proposition 3.3 (Properties of the Kohn-Vogelius objective). We have the
following statements.

1. The functional K is convex, positive and

inf
{
K(φ, ψ) ; (φ, ψ) ∈ H1/2(∂ω)×H−1/2(∂ω)

}
= 0.
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2. The functional K is quadratic with gradient

DK(φ, ψ) · [δφ, δψ] =

∫
∂ω

[∂nuND(∂nuDN(fm, ψ), φ)− ψ] δφ

+
[
uDN

(
uND(gm, φ), ψ

)
− φ

]
δψ,

and constant Hessian

D2K(φ, ψ) · ([δφ1, δψ1], [δφ2, δψ2])

= 〈uDN(0, δψ1)− uND(0, δφ1),uDN(0, δψ2)− uND(0, δφ2)〉.

The first point of this statement is proved in [16, Proposition 2.2] but we recall
the proof for reader’s convenience.

Proof. We prove each statement.
1. Convexity and positiveness are obvious. To prove that inf(φ,ψ)K(φ, ψ) = 0,

we have to consider two cases. If the pair (fm, gm) is compatible, we consider
the solution uex of the Cauchy problem (2.1) and we define φ∗ := uex|∂ω
and ψ∗ := ∂nuex|∂ω and then obtain K(φ∗, ψ∗) = 0. Let us now focus on
the non-compatible case. Thanks to the density lemma 2.2, we can ap-
proximate fm by a sequence (fnm)n in a way that the pairs (fnm, gm)n are
compatibles for all n ∈ N. For each n, consider (φ∗n, ψ

∗
n) to be the mini-

mizer of the Kohn-Vogelius function for the data (fnm, gm) which implies that
∇uDN(fnm, ψ

∗
n) = ∇uND(gm, φ

∗
n). Then, we have

K(φ∗n, ψ
∗
n) =

1

2
|uDN(fm, ψ

∗
n)− uDN(gm, φ

∗
n)|2H1(Ω\ω)

=
1

2
|uDN(fm, ψ

∗
n)− uDN(fnm, ψ

∗
n)|2H1(Ω\ω)

=
1

2
|uDN(fm − fnm, 0)|2H1(Ω\ω)

6 C‖fm − fnm‖2H1/2(∂Ω)
−→
n→∞

0,

which concludes the proof.
2. An elementary computation shows that

K(φ+ δφ, ψ + δψ)

=
1

2
|uDN(fm, ψ)− uND(gm, φ) + uDN(0, δψ)− uND(0, δφ)|2H1(Ω\ω)

= K(φ, ψ) + 〈uDN(fm, ψ)− uND(gm, φ),uDN(0, δψ)− uND(0, δφ)〉

+
1

2
|uDN(0, δψ)− uND(0, δφ)|2H1(Ω\ω)

We identify the linear and quadratic terms in this expression (that are con-
tinuous thanks to (3.1)) and obtain a first expression of its derivatives

DK(φ, ψ) · [δφ, δψ]

= 〈uDN(fm, ψ)− uND(gm, φ),uDN(0, δψ)− uND(0, δφ)〉

and the quadratic form

D2K(φ, ψ) · ([δφ, δψ], [δφ, δψ]) = |uDN(0, δψ)− uND(0, δφ)|2H1(Ω\ω) ,
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and finally by polarity

D2K(φ, ψ) · ([δφ1, δψ1], [δφ2, δψ2])

= 〈uDN(0, δψ1)− uND(0, δφ1),uDN(0, δψ2)− uND(0, δφ2)〉.

However, this writing is not directly useful since the dependency in (δφ, δψ)
is not completely explicit. We therefore expand the expression of the gradient

DK(φ, ψ) · [δφ, δψ] = 〈uDN(fm, ψ),uDN(0, δψ)〉 − 〈uDN(fm, ψ),uND(0, δφ)〉
− 〈uND(gm, φ),uDN(0, δψ)〉+ 〈uND(gm, φ),uND(0, δφ)〉,

and use the properties of the maps uDN and uDN given in Proposition 3.1 to
express each of the previous expressions as integrals over the inner boundary.
We first consider products of the same map. One the one hand, we have

〈uDN(fm, ψ),uDN(0, δψ)〉 =

∫
∂Ω

fm∂nuDN(0, δψ) +

∫
∂ω

uDN(fm, ψ)δψ

= −
∫
∂ω

uDN(fm, 0)δψ +

∫
∂ω

uDN(fm, ψ)δψ

=

∫
∂ω

[uDN(fm, ψ)− uDN(fm, 0)] δψ

=

∫
∂ω

uDN(0, ψ)δψ.

On the other hand, we get in a similar manner

〈uND(gm, φ),uND(0, δφ)〉 =

∫
∂Ω

uND(0, δφ)gm +

∫
∂ω

δφ ∂nuND(gm, φ)

= −
∫
∂Ω

δφ ∂nuND(gm, 0) +

∫
∂ω

δφ ∂nuND(gm, φ)

=

∫
∂Ω

δφ ∂n [uND(gm, φ)− uND(gm, 0)]

=

∫
∂Ω

δφ ∂nuND(0, φ).

Then, we consider the mixed products

〈uDN(fm, ψ),uND(0, δφ)〉 =

∫
∂Ω

uND(0, δφ)∂nuDN(fm, ψ) +

∫
∂ω

ψδφ

= −
∫
∂ω

∂nuND(∂nuDN(fm, ψ), 0)δφ+

∫
∂ω

ψδφ

=

∫
∂ω

[ψ − ∂nuND(∂nuDN(fm, ψ), 0)] δφ,

and in the very same manner

〈uND(gm, φ),uDN(0, δψ)〉 =

∫
∂Ω

uND(gm, φ)∂nuDN(0, δψ)

∫
∂ω

φδψ

=

∫
∂ω

[φ− uDN(uND(gm, φ), 0)] δψ.

Gathering the terms, we obtain the announced expression of the gradient.
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�

Remark 3.4. As seen from the previous proof, we have

D2K(φ, ψ) · ([δφ1, δψ1], [δφ2, δψ2]) = DK(δφ1, δψ1).([δφ2, δψ2])

= DK(δφ2, δψ2).([δφ1, δψ1]).

Thus, the Hessian does not depend on (φ, ψ). Especially, it holds

D2K(φ, ψ) · ([δφ1, δψ1], [δφ2, δψ2]) =

∫
∂ω

[∂nuND(∂nuDN(0, δψ1), δφ1)− δψ1] δφ1

+
[
uDN

(
uND(0, δφ2), δψ2

)
− δφ2

]
δψ2.

4. Numerical resolution of the data completion problem.

4.1. Newton scheme. As mentioned previously, a regularization process is
needed for such a severely ill-posed inverse problem. We use here the standard
Tikhonov regularization as studied, e.g., in [16]. Therefore, we consider a non-
negative real number ε and introduce the regularized Kohn-Vogelius cost functional
Kε : H1/2(∂ω)×H−1/2(∂ω)→ R defined by

(4.1) Kε(φ, ψ) = K(φ, ψ) + εT (φ, ψ),

where the regularizing term T (φ, ψ) is defined by

T (φ, ψ) :=
1

2

(
|uND(0, φ)|2H1(Ω\ω) + |uDN(0, ψ)|2H1(Ω\ω) +

∫
∂ω

φ2

)
=

1

2

∫
∂ω

(
φ+ ∂nuND(0, φ)

)
φ+ uDN(0, ψ)ψ.

Lemma 4.1. The regularizing functional T is non-negative with the unique mini-
mizer (0, 0).

Proof. Assume that (φ, ψ) is such that

|uND(0, φ)|2H1(Ω\ω) + |uDN(0, ψ)|2H1(Ω\ω) = 0.

Then, uND(0, φ) and uDN(0, ψ) are constant functions. By exploiting the boundary
conditions on ∂ω, we check that φ is constant and ψ = 0 on ∂ω. Hence φ = ψ = 0 is
a minimizer and the proof is complete. �

Remark 4.2. This regularization permits to obtain the existence of a unique min-
imizer, for all ε > 0, even for not compatible data thanks to the gained of coerciveness
and, in case of compatible data, the convergence of these minimizers towards the exact
solution when ε goes to 0 (see, e.g., [16, Proposition 2.5 and Theorem 2.6]).

Remark 4.3. Notice that the usual regularizing term would have been the term
‖(φ, ψ)‖2

H1/2(∂ω)×H−1/2(∂ω)
, but the two quantities are equivalent as claimed in the

following lemma.

Lemma 4.4. There exist two non-negative constants C1 and C2 such that

C1‖ψ‖2H−1/2(∂ω) 6 |uDN(0, ψ)|2H1(Ω\ω) 6 C2‖ψ‖2H−1/2(∂ω)
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and

C1‖φ‖2H1/2(∂ω) 6 |uND(0, φ)|2H1(Ω\ω) +

∫
∂ω

φ2 6 C2‖φ‖2H1/2(∂ω),

for all (φ, ψ) ∈ H1/2(∂ω)×H−1/2(∂ω).

Proof. Firstly, thanks to the continuity of the trace operator and thanks to Proposi-
tion 3.1 (see equation (3.1)), there exists two non-negative constants C1 and C2 such
that

C1‖ψ‖2H−1/2(∂ω) 6 ‖uDN(0, ψ)‖2 6 C2‖ψ‖2H−1/2(∂ω),

for all ψ ∈ H−1/2(∂ω). Since uDN(0, ψ) = 0 on ∂Ω, Poincaré’s inequality ensures
that the semi-norm is equivalent to the H1-norm. Hence, we obtain the following
inequalities (for others constants still denoted by C1 and C2)

C1‖ψ‖2H−1/2(∂ω) 6 |uDN(0, ψ)|2H1(Ω\ω) 6 C2‖ψ‖2H−1/2(∂ω).

Secondly, using again (3.1) and the continuous embedding H1/2(∂ω) ↪→ L2(∂ω),
there exists a non-negative constant C3 such that

|uND(0, φ)|2H1(Ω\ω) +

∫
∂ω

φ2 6 C3‖φ‖2H1/2(∂ω),

for all φ ∈ H1/2(∂ω).
Let us now show that there exists a non-negative constant C4 such that

C4 ‖uND(0, φ)‖2H1(Ω\ω) 6 |uND(0, φ)|2H1(Ω\ω) +

∫
∂ω

φ2,

for all φ ∈ H1/2(∂ω), which will complete the proof by using the continuity of the
trace operator. To this end, let us proceed by contradiction assuming that, for all
n ∈ N, there exists φn ∈ H1/2(∂ω) such that

‖vn‖H1(Ω\ω) = 1 and
1

n
> |vn|2H1(Ω\ω) +

∫
∂ω

v2
n,

where we have set vn :=
uND(0, φ)

‖uND(0, φ)‖H1(Ω\ω)

. Hence, ‖∇vn‖H1(Ω\ω) −→
n→+∞

0 and∫
∂ω

v2
n −→

n→+∞
0. Furthermore, (vn)n is bounded in H1(Ω\ω) which is compactly

embedded in L2(Ω\ω) and then, up to a subsequence, there exists v ∈ H1(Ω\ω) such
that

vn ⇀ v in H1(Ω\ω) and vn → v in L2(Ω\ω).

Since ∇vn → 0 in L2(Ω\ω), we conclude that vn → v in H1(Ω\ω) and ∇v = 0.
Therefore, v is constant and∫

∂ω

v2
n −→ 0 =

∫
∂ω

v2 = v2 |∂ω| .

Thus, v = 0 which contradicts the fact that ‖vn‖ = 1 −→ ‖v‖ = 1. �

We now compute the gradient of the objectives with respect to (φ, ψ).
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Proposition 4.5. The derivatives of T with respect to (φ, ψ) are

DT (φ, ψ) · [δφ, δψ] =

∫
∂ω

δφ
(
φ+ ∂nuND(0, φ)

)
+ uDN(0, ψ)δψ

and

D2T (φ, ψ) · [(δφ1, δψ1), (δφ2, δψ2)]

=

∫
∂ω

δφ1

(
δφ2 + ∂nuND(0, δφ2)

)
+ uND(0, δψ2)δψ1.

Proof. We expand the quadratic quantity T and follow the proof of Proposition 3.3
to get the announced result. �

Remark 4.6. The first idea to build a numerical scheme for minimizing the ob-
jective is to use a descent method. This leads to a sequence (φn, ψn) by the update
rule (

φn+1

ψn+1

)
=

(
φn
ψn

)
+ τn+1dn,

where τn+1 is a descent step and where the descent direction dn is naturally chosen
as the formal anti-gradient:

dn = −
(
∂nuND

(
∂nuDN(fm, ψn), φn

)
− ψn

uDN

(
uND(gm, ψn), ψn

)
− φn

)
+ ε

(
φn + ∂nuND(0, φn)

uDN(0, ψn)

)
.

In fact, dn is not the gradient of K. Indeed, the true gradient should be computed
with respect to the scalar product on H1/2(∂ω) × H−1/2(∂ω) and not with respect to
L2(∂ω)×L2(∂ω). A nice way to see that is that this updates is not in the right spaces:
while (φn, ψn) ∈ H1/2(∂ω)×H−1/2(∂ω), the update dn lies in H−1/2(∂ω)×H1/2(∂ω).

The true gradient is much more complex to compute at least at the continuous
level. Therefore, we will not consider the gradient method here and directly solve the
linearized equation. This is the idea of Newton method.

Proposition 4.7. The Newton update (δφ, δψ) ∈ H1/2(∂ω)× H−1/2(∂ω) for the
regularized Kohn-Vogelius objective Kε(φn, ψn) is given by the linear system

∂nuND

(
∂nuDN(0, δψ), δφ

)
− δψ + ε

(
δφ+ ∂nuND(0, δφ)

)
= ψn − ∂nuND

(
∂nuDN(fm, ψn), φn

)
− ε
(
φn + ∂nuND(0, φn)

)
,

uDN

(
uND(0, δφ), δψ

)
− δφ+ εuDN(0, δψ)

= φn − uDN

(
uND(gm, ψn), ψn

)
− εuDN(0, ψn).

Proof. The Newton scheme leads to the sequence (φn, ψn) such that the increment

(δφ, δψ) = (φn+1, ψn+1)− (φn, ψn)

satisfies the weak problem

(D2K + εD2T )(φn, ψn) · ([δφ, δψ], [h, `]) = −(DK + εDT )(φn, ψn) · [h, `]

for all [h, `] ∈ H1/2(∂ω)×H−1/2(∂ω).
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To solve this equation in the unknowns (δφ, δψ), we need to rewrite the left hand
side in order to make explicit the dependency on [h, `]. We proceed as for the gradient:
we first expand

〈uDN(0, δψ)− uND(0, δφ),uDN(0, `)− uND(0, h)〉
= 〈uDN(0, δψ),uDN(0, `)〉+ 〈uND(0, δφ),uND(0, h)〉

− 〈uND(0, δφ),uDN(0, `)〉 − 〈uDN(0, δψ),uND(0, h)〉

and then compute each term:

〈uDN(0, δψ),uDN(0, `)〉 =

∫
∂ω

uDN(0, δψ)`,

〈uND(0, δφ),uND(0, h)〉 =

∫
∂ω

∂nuND(0, δφ)h,

〈uND(0, δφ),uDN(0, `)〉‘ =

∫
∂ω

[
δφ− uDN

(
uND(0, δφ), 0

)]
`,

〈uDN(0, δψ),uND(0, h)〉 =

∫
∂ω

[
δψ − ∂nuND

(
∂nuDN(0, δψ), 0

)]
h.

The weak problem reads: find (δφ, δψ) ∈ H1/2(∂ω)×H−1/2(∂ω) such that∫
∂ω

[
uDN

(
uND(0, δφ), δψ

)
− δφ+ εuDN(0, δψ)

]
`

+
[
∂nuND

(
∂nuDN(0, δψ), δφ

)
− δψ + ε

(
δφ+ ∂nuND(0, δφ)

)]
h

= −
∫
∂ω

[
∂nuND

(
∂nuDN(fm, ψn), φn

)
− ψn + ε

(
φn + ∂nuND(0, φn)

)]
h

−
∫
∂ω

[
uDN

(
uND(gm, ψn), ψn

)
− φn + εuDN(0, ψn)

]
`

for all (h, `) ∈ H1/2(∂ω)×H−1/2(∂ω). This implies the assertion. �

4.2. Implementation. Our approach to determine the Cauchy data of the func-
tions uDN(fm, ψ) and uND(gm, φ) relies on a system of boundary integral equations
arising from the direct formulation based on Green’s fundamental solution.

In this section, in order to simplify the formulae, we use the following notation:
Σ := ∂Ω and Γ := ∂ω.

Assuming that u ∈ H1(Ω\ω) solves Laplace’s equation, then Green’s representa-
tion formula implies the relation

u(x) =

∫
Σ∪Γ

{
G(x,y)

∂u

∂n
(y)− ∂G(x,y)

∂ny
u(y)

}
dσy, x ∈ Ω\ω,

where the Green function G is given by

G(x,y) =


− 1

2π
log |x− y|, if d = 2,

1

4π|x− y|
, if d = 3.
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Using the jump properties of the layer potentials, we obtain the direct boundary
integral formulation of the problem

(4.2) u(x) =

∫
Γ∪Σ

G(x,y)
∂u

∂n
(y)dσy+

1

2
u(x)−

∫
Γ∪Σ

∂G(x,y)

∂ny
u(y)dσy, x ∈ Γ∪Σ.

We restrict ourselves to the two-dimensional situation d = 2.

Let A,B ∈ {Γ,Σ} which represent the boundaries. Then the expression (4.2)
includes the single layer operator defined by

(4.3) S : C(A)→ C(B),
(
SAB

)
(ρ)(x) = − 1

2π

∫
A

log |x− y| ρ(y)dσy,

and the double layer operator defined by

(4.4) D : C(A)→ C(B),
(
DAB

)
(ρ)(x) =

1

2π

∫
A

〈x− y,ny〉
|x− y|2

ρ(y)dσy,

with the densities ρ being the Cauchy data of u at the boundary A. The equation (4.2)
in combination with (4.3) and (4.4) amounts to the Dirichlet-to-Neumann map, which
is given by the following system of integral equations[

SΓΓ SΣΓ

SΓΣ SΣΣ

] [
∂nu|Γ
∂nu|Σ

]
=

[
1
2 I +DΓΓ DΣΓ

DΓΣ
1
2 I +DΣΣ

] [
u|Γ
u|Σ

]
.

Reordering this system of boundary integral equations yields the missing Cauchy data
of the solution uDN(fm, ψ) ∈ H1(Ω\ω) of problem (2.3) by

(4.5)

[
1
2 I +DΓΓ −SΣΓ

−DΓΣ SΣΣ

] [
u|Γ
∂nu|Σ

]
=

[
SΓΓ −DΣΓ

−SΓΣ
1
2 I +DΣΣ

] [
ψ
fm

]
and of the solution uND(gm, φ) ∈ H1(Ω\ω) of Problem (2.4) by

(4.6)

[
SΓΓ −DΣΓ

−SΓΣ
1
2 I +DΣΣ

] [
∂nu|Γ
u|Σ

]
=

[
1
2 I +DΓΓ −SΣΓ

−DΓΣ SΣΣ

] [
φ
gm

]
.

The boundary integral operators on the left hand side of the systems (4.5) and
(4.6) of boundary integral equations are continuous and satisfy a G̊arding inequality
with respect to L2(Γ)×H−1/2(Σ) and H−1/2(Γ)× L2(Σ), respectively, provided that
diam(Ω) < 1. Since injectivity follows from potential theory, these systems of integral
equations are uniquely solvable according to the Riesz-Schauder theory. With the
help of the solutions given by (4.5) and (4.6), we can compute the Kohn-Vogelius
functional (3.2) and its gradient and Hessian. The same holds true for the regularized
functional Kε.

The next step towards the solution of the boundary value problem is the numer-
ical approximation of the integral operators included in (4.5) and (4.6), respectively,
which first requires the parametrization of the integral equations. To that end, we in-
sert parameterizations γ : [0, 2π]→ Γ and σ : [0, 2π]→ Σ of the boundaries. For the
approximation of the unknown Cauchy data, we use the collocation method based on
trigonometric polynomials. Applying the trapezoidal rule for the numerical quadra-
ture and the regularization technique along the lines of [34] to deal with the singular
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integrals, we arrive at an exponentially convergent boundary element method provided
that the data and the boundaries and thus the solution are arbitrarily smooth.

Since the Hessian of the functional Kε(φ, ψ) does not depend on the argument
(φ, ψ), the Newton scheme converges in one iteration. Especially, the Hessian is
positive definite since the functional under consideration is convex. We can thus use
the conjugate gradient method [30] to compute the Newton update. Therefore, we
can efficiently determine the functions (φ, ψ) ∈ H1/2(Γ)×H−1/2(Γ) such that it holds
uND(gm, φ) = uDN(fm, ψ) for the current boundary Γ = ∂ω.

4.3. Numerical validation. We shall validate the data completion approach by
some numerical test examples. We choose Ω as the ball of radius 0.4, which is centered
in 0. If we take the Cauchy data of a known harmonic function u at the outer boundary
∂Ω as data (fm, gm), the desired Cauchy data (φ, ψ) ∈ H1/2(∂ω)× H−1/2(∂ω) at the
inclusion’s boundary ∂ω are just (u|∂ω, ∂nu|∂ω).

The settings for the data completion algorithm are as follows. The regularization
parameter ε for the data completion functional (4.1) is set to ε = 0.1, ε = 0.01, or
ε = 0.001. We use N = 200 boundary elements per boundary for the discretization of
the boundary integral equations in (4.5) and (4.6), respectively. Hence, the computed
Cauchy data (φN , ψN ) at the inclusion’s boundary ∂ω are represented by N = 200
boundary elements each.

Fig. 4.1. The ball with ellipse inclusion (left-hand side) and with potato inclusion (right-hand
side).

In our first example, we consider the ellipse with semi-axis hx = 0.25 and hy =
0.15 as inclusion ω, compare the left plot of Figure 4.1. In the second example, we
have a potato shaped inclusion ω, compare the right plot of Figure 4.1. We moreover
prescribe the Cauchy data (fm, gm) of the harmonic function u(x, y) = x2 − y2. The
approximation errors for the different geometries and regularization parameters are
found in Table 4.1, where the respective Sobolev norms are computed by means of
appropriately weighted Fourier series. In particular, we observe that the best choice
for the regularization parameter is ε = 0.01 since therefore the approximation errors
are the smallest ones. We like to stress that an increase of the number N of boundary
elements does not increase accuracy, which reflects the severe ill-posedness of the
problem under consideration. We like to mention that, adding noise to the Neumann
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data gm as described in the next section, does not significantly change the results
found in Table 4.1.

regularization
ε = 0.1 ε = 0.05 ε = 0.01 ε = 0.005 ε = 0.001

parameter

e
ll
ip

se

‖φ−φN‖H1/2(Γ)
‖φ‖

H1/2(Γ)

1.7256 · 10−1 1.5610 · 10−1 1.4621 · 10−1 2.3244 · 10−1 2.3302 · 10−1

‖ψ−ψN‖H−1/2(Γ)
‖ψ‖

H−1/2(Γ)

1.3689 · 10−2 1.3586 · 10−2 7.7903 · 10−3 1.2139 · 10−1 1.2085 · 10−1

p
o
ta

to

‖φ−φN‖H1/2(Γ)
‖φ‖

H1/2(Γ)

8.0964 · 10−2 5.0993 · 10−2 8.1978 · 10−2 8.4939 · 10−2 8.7713 · 10−2

‖ψ−ψN‖H−1/2(Γ)
‖ψ‖

H−1/2(Γ)

4.2829 · 10−2 2.6365 · 10−2 3.5529 · 10−2 3.6279 · 10−2 3.7131 · 10−2

Table 4.1
The approximation errors for the data completion approach in dependence of the regularization

parameter.

5. Resolution of the inverse obstacle problem with the trial method.
We now aim to numerically solve the inverse obstacle problem (1.1). The general idea
is to use the previous data completion step in order to reconstruct u|∂ω and ∂nu|∂ω on
an approximation ∂ω of the real inclusion and then to use the so-called trial method
in order to update the shape of the inclusion.

We first present the trial method and then illustrate the efficiency of our method
with some numerical simulations.

5.1. Background and motivation. The trial method is a fixed-point type
iterative method, which is well-known from the solution of free boundary problems
(see, e.g., [9, 22, 42] and the references therein). In the context of inverse problems,
it has been used for example in [41].

We shall assume in the following that the domain ω is starlike. Hence, we can
represent the inclusion’s boundary ∂ω by a parametrization γ : [0, 2π]→ R2 in polar
coordinates, that is

∂ω =
{
γ(s) = r(s)er(s) ; s ∈ [0, 2π]

}
,

where er(s) =
(

cos(s), sin(s)
)>

denotes the unit vector in the radial direction. The
radial function r(s) is supposed to be a positive function in Cper([0, 2π]), where

Cper([0, 2π]) =
{
r ∈ C([0, 2π]) ; r(0) = r(2π)

}
,

such that dist(∂Ω, ∂ω) > 0.

The trial method to solve the conductivity problem problem (1.1) requires an up-
date rule. Suppose that the actual void’s boundary is ∂ωk. Then the data completion
problem yields a state uk which satisfies ∆uk = 0 in Ω\ωk,

uk = fm on ∂Ω,
∂nuk = gm on ∂Ω.

The new boundary ∂ωk+1 is now determined by moving the old boundary into the
radial direction, which is expressed by the update rule

(5.1) γk+1 = γk + δrk er.

The computation of the update function δrk is the topic of the next section.
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5.2. Update rule. The update function δrk ∈ Cper([0, 2π]) should be con-
structed in such a way that the desired homogeneous Dirichlet boundary condition
will be (approximately) satisfied at the new boundary ∂ωk+1, i.e.,

uk ◦ γk+1
!
= 0 on [0, 2π],

where uk is assumed to be smoothly extended into the exterior of Ω\ωk if required.
The traditional update rule is obtained by linearizing uk ◦ (γk + δrk er) with

respect to the update function δr. This yields the equation

uk ◦ γk+1 ≈ uk ◦ γk +

(
∂uk
∂er
◦ γk

)
δrk.

We decompose the derivative of uk in the direction er into its normal and tangential
components:

∂uk
∂er

=
∂uk
∂n
〈er,n〉+

∂uk
∂t
〈er, t〉 on ∂ωk.

Hence, defining F (δrk) = uk ◦γk +

(
∂uk
∂er
◦γk

)
δrk, we arrive at the update equation

(5.2) F (δrk) = uk ◦ γk +

[(
∂uk
∂n
◦ γk

)
〈er,n〉+

(
∂uk
∂t
◦ γk

)
〈er, t〉

]
δrk

!
= 0.

Remark 5.1. We mention that the solution of the data completion problem ac-
cording to Section 4 immediately yields the quantities uk|∂ωk and ∂nuk|∂ωk . Since
uk|∂ωk is expressed in terms of trigonometric polynomials, it is also straightforward
to compute (

∂uk
∂t
◦ γk

)
(s) =

1

|γ′k(s)|
∂uk
∂s

(s).

Consequently, all terms required in (5.2) are available.

Since the trial method is fixed-point type iterative method, its convergence is only
ensured if it is a contraction. We refer the reader to [42] for sufficient conditions on
its convergence.

5.3. Discretization of the sought boundary. For the numerical computa-
tions, we discretize the radial function rnk associated with the boundary ∂ωk by a
finite Fourier series according to

(5.3) rnk (s) = a0 +

n−1∑
`=1

{
a` cos(`s) + b` sin(`s)

}
+ an cos(ns).

This obviously ensures that rnk is always an element of Cper([0, 2π]). To determine
the update function δrnk , represented likewise by a finite Fourier series, we insert the
N > 2n equidistantly distributed points s` = 2π`/N into the update equations (5.2):

F (δrnk )
!
= 0 in all the points s1, . . . , sN .

This is a discrete least-squares problem which can simply be solved by the normal
equations.
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5.4. Numerical results. We shall illustrate our approach by some numerical
test examples. We choose Ω as the ball of radius 0.4, which is centered in 0. Knowing
the inclusion ω, we can compute the current measurements gm from a given voltage
distribution fm. For the specific voltage distribution fm(x, y) = y|∂Ω, we try to
reconstruct the inclusion ω in the following by using the synthetic data (fm, gm).

The settings for the data completion algorithm are as in Subsection 4.3, i.e., the
regularization parameter ε for the data completion functional (4.1) is set to 0.01, which
turned out to be the best choice. We use 200 boundary elements per boundary for
the discretization of the boundary integral equations in (4.5) and (4.6), respectively.

The reconstruction is performed by the trial method detailed previously. Pre-
cisely, the sought inclusion is represented by a Fourier series with 10 terms, i.e., we
have n = 5 in (5.3). The initial guess is always a ball of radius 0.3 (always indi-
cated via the red boundary in the subsequent figures) and we stop the trial method
after 20 iterations, where the damping factor h = 0.2 is used. This means that the
update from (5.2) is multiplied with h before computing the new iterate in accordance
with (5.1).

In our first example, we consider again the ellipse with semi-axis hx = 0.25
and hy = 0.15 as inclusion ω, compare the left plot of Figure 4.1. In the second
example, we have again the potato shaped inclusion ω, compare the right plot of
Figure 4.1. We add 1% and 5% noise, respectively, to the respective synthetic cur-
rent measurement gm, where noise gnoise is generated as a random vector with on
[−1, 1]/

√
n uniformly distributed random variables, such that

gδm := gm + δ ‖gm‖L2(Ω) gnoise.

Fig. 5.1. Iterates (in blue) and the final reconstructions (in green) for the ellipse inclusion with
1% noise (left-hand side) and with 5% noise (right-hand side).

The final reconstructions, indicated via the green boundary, can be found in
Figure 5.1 for the first example and in Figure 5.2 for the second example; on the
left-hand side the reconstructions for the noise level 1% are shown and on the right-
hand side the reconstructions for the noise level level 5% are shown. The intermediate
iterates are indicated by the blue boundaries.

In order to better understand the reconstruction algorithm, we draw 25 realiza-
tions with noise level 5 % for both obstacles. They can be found in Figure 5.3 for the
ellipse inclusion on the left-hand side and for the potato inclusion on the right-hand
side. Since we are dealing with starshaped domains, we can compute the mean of
the realizations by taking the mean of the respective Fourier coefficients. The mean
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Fig. 5.2. Iterates (in blue) and the final reconstructions(in green) for the potato inclusion with
1% noise (left-hand side) and with 5% noise (right-hand side).

shape is plotted in green. As one readily infers, the reconstructions vary around the
mean shapes which basically coincides with the sought inclusions.

Fig. 5.3. 25 reconstructions and mean shape (in green) in case of the ellipse inclusion (left-hand
side) and in case of the potato inclusion (right-hand side).

We shall finally explore the hard case of a non-convex, small obstacle. The results
are presented in Figure 5.4. It underlines the fact that the reconstruction is less per-
formant: the right concavity is not perfectly recovered. Moreover, the reconstruction
becomes worse when the void becomes smaller.

Fig. 5.4. Iterates (in blue) and the final reconstructions (in gree) for different scalings of a kite
shaped void with 1% noise.

6. Conclusion. In the present article, we solved the data completion problem
for Laplace’s equation by the minimization of the Kohn-Vogelius functional, which has
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been regularized with respect to the associated energy norm. The minimization of the
regularized Kohn-Vogelius functional has been performed by a Newton scheme, which
results in a direct solver. By employing a collocation method based on trigonometric
polynomials, we arrive at a very efficient numerical method for the data completion
problem. We then combined this data completion algorithm with the trial method
in order to solve an inverse obstacle problem. It updates a given inclusion such that
the desired inclusion’s homogeneous Dirichlet boundary condition is approximately
satisfied. This yields an iterative method for the detection of inclusions in electric
impedance tomography.
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