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Abstract

Once considered a phenotypically monomorphic bacterium, there is a growing body of work

demonstrating heterogeneity among Mycobacterium tuberculosis (Mtb) strains in clinically

relevant characteristics, including virulence and response to antibiotics. However, the genetic

and molecular basis for most phenotypic differences among Mtb strains remains unknown. To

investigate the basis of strain variation in Mtb, we performed genome-wide transposon muta-

genesis coupled with next-generation sequencing (TnSeq) for a panel of Mtb clinical isolates

and the reference strain H37Rv to compare genetic requirements for in vitro growth across

these strains. We developed an analytic approach to identify quantitative differences in genetic

requirements between these genetically diverse strains, which vary in genomic structure and

gene content. Using this methodology, we found differences between strains in their require-

ments for genes involved in fundamental cellular processes, including redox homeostasis and

central carbon metabolism. Among the genes with differential requirements were katG, which

encodes the activator of the first-line antitubercular agent isoniazid, and glcB, which encodes

malate synthase, the target of a novel small-molecule inhibitor. Differences among strains in

their requirement for katG and glcB predicted differences in their response to these antimicro-

bial agents. Importantly, these strain-specific differences in antibiotic response could not be

predicted by genetic variants identified through whole genome sequencing or by gene expres-

sion analysis. Our results provide novel insight into the basis of variation among Mtb strains

and demonstrate that TnSeq is a scalable method to predict clinically important phenotypic

differences among Mtb strains.
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Author summary

Tuberculosis, caused by the bacterium Mycobacterium tuberculosis (Mtb), remains a seri-

ous global health problem, causing ~1.5 million deaths a year world-wide. Like other bac-

terial pathogens, diversity among strains of Mtb contributes to differences in infection

outcomes, vaccine efficacy, and response to antibiotic treatment. Currently, the important

genetic differences that contribute to variation among Mtb strains remain poorly under-

stood. In this study, we applied a functional genomics technique called TnSeq to a panel

of Mtb clinical strains to investigate the genetic basis of strain diversity. We identified a

number of genes that are differentially required for growth in culture among these strains.

Some of these genes are involved in the response to antibiotics, including the first-line

antitubercular agent isoniazid and a novel antitubercular drug currently in development.

We found that the genetic differences between strains uncovered by TnSeq predicted

responses to these antibiotics. Our results demonstrate the utility of TnSeq for identifying

clinically relevant differences among Mtb strains.

Introduction

A hallmark of infection with Mycobacterium tuberculosis (Mtb) is the high degree of variability

in disease course and response to therapy. This heterogeneity in Mtb infection outcome and

treatment response has traditionally been attributed to variability in host determinants. Yet it

is increasingly apparent that meaningful differences exist among Mtb strains in features that

impact immunogenicity, virulence, and response to antibiotic treatment [1–4]. Despite the

potential consequences of strain variation for the development of new diagnostics, drugs, and

vaccines, predicting and defining the causal genetic determinants of biologically important

phenotypic variation between strains remains a challenge.

Our understanding of strain heterogeneity has been vastly improved through the advent of

affordable next-generation sequencing technologies. This has facilitated the whole genome

sequencing (WGS) of thousands of Mtb clinical strains and uncovered numerous sequence

variants including single nucleotide polymorphisms (SNPs), insertions-deletions (in-dels),

large sequences polymorphisms (LSPs), and insertion element transpositions [5–11]. Sequence

variation is used as a proxy for phenotypic diversity, yet the functional consequences of most

polymorphisms in the Mtb genome are not known. The field’s ability to predict phenotype

from genotype is most well developed for resistances to clinically important first and second

line drugs, where large population-based studies have been successful in identifying genetic

determinants of antibiotic resistance [6,8,11–13]. Yet extending such analyses to predict res-

ponses to new antibiotics or to predicting more complex phenotypes such as virulence remains

difficult. In the setting of antibiotic development, sequence conservation is often used to indi-

cate conservation of gene function, but does not reflect capacity for the emergence of resis-

tance or plasticity in the underlying genetic and cellular networks that may create strain-to-

strain differences in antibiotic efficacy. Thus, there is a need for systematic and high-through-

put methods to predict phenotypic variation among Mtb strains, especially for clinically rele-

vant phenotypes such as antibiotic susceptibility, likelihood of drug resistance, and virulence.

TnSeq, genome-wide transposon mutagenesis coupled with next-generation sequencing,

has emerged as a high-throughput approach to define the contributions of genes and genetic

networks to microbial phenotypes [14–21]. TnSeq experiments reveal the fitness cost of gene

disruption, and thus can identify both global and context-specific genetic requirements. In
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Mtb, TnSeq has been used to identify genes and pathways required across a variety of contexts,

including defining the genes essential for in vitro growth, which has provided a roadmap for

antibiotic development [17–19].

Most TnSeq studies are performed on reference strains, including those in Mtb, which, to

date, have been conducted exclusively with laboratory-adapted reference strains. In the pub-

lished literature, a small number of TnSeq studies in other pathogens have performed pairwise

comparisons between a reference strain and a single clinical isolate to define differences in the

genetic requirements for growth in vitro or under antibiotic stress [14,22,23]. These studies

have identified strain-to-strain differences in requirements for key pathways including aspects

of central metabolism. However, it is unclear how representative these findings are since the

choice of a single clinical isolate is relatively arbitrary. Comparisons across larger panels of

non-reference (clinical) strains have not been performed in part because there has been no sys-

tematic methodology to analyze TnSeq data across multiple genetic backgrounds. Differences

in genome structure and gene content between strains create significant challenges for TnSeq

analysis since existing approaches rely heavily on mapping sequencing reads to a reference

genome. Gene deletions can result in false gene essentiality calls, gene duplications may result

in false gene non-essentiality calls, and sequence variants that alter transposon insertion sites

can create more subtle errors. Thus, an analytic approach that permits rigorous statistical anal-

ysis in the setting of genomic variation is needed.

In this work we developed a pipeline to use TnSeq to comprehensively define genetic require-

ments for in vitro growth across a diverse panel of nine Mtb strains, with the goal of predicting

strain-specific differences in the requirements for genes that are the target of antibiotic develop-

ment. In contrast to sequence data, which has limited phenotypic predictive power without prior

knowledge about causal variants, the genetic requirements identified through TnSeq directly

reflect the cost of gene disruption on microbial growth. Therefore, differences in genetic require-

ments identified from our TnSeq data allowed us to successfully predict differences between

strains in the responses to both a widely used and a novel antibiotic. Importantly, these differ-

ences could not be readily predicted from WGS or gene expression data. Our work demonstrates

the power of high-throughput mapping of genetic requirements via TnSeq to uncover clinically

relevant phenotypic differences between Mtb strains.

Results

High-density transposon libraries of genetically diverse Mtb clinical strains

It has become clear from a growing number of in vitro, animal model, and epidemiological

studies that important phenotypic differences exist among Mtb strains [24]. Yet how to predict

phenotypic variation among strains systematically is unclear. Because TnSeq provides a direct

read out of the genes required for growth under a given condition, we hypothesized that TnSeq

might be a robust method to address this gap. We therefore sought to use TnSeq to define dif-

ferences in the genetic requirements for in vitro growth across a panel of genetically diverse Mtb

clinical strains.

We focused on a panel of 8 Mtb clinical strains (Fig 1A). These strains had previously been

classified by large sequence polymorphisms (LSP), a low-resolution method of genotyping, as

belonging to three of the major Mtb phylogenetic lineages [25], and the most prevalent line-

ages currently in circulation: Euro-American, East Asian, and Indo-Oceanic (Fig 1A). To

define the genetic requirements for in vitro growth for these strains, we performed transposon

mutagenesis using the modified Himar1 transposon [26] and included the reference strain

H37Rv as a control. Transposon libraries were generated in biological duplicate for each
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clinical strain, and in triplicate for the control strain, H37Rv. The libraries were then subjected

to transposon-junction sequencing [27].

Because interpretation of TnSeq data relies on the accurate mapping of transposon-junction

reads to the genome of the mutagenized strain, data analysis can be confounded by sequence

variants. To account for the genetic variation in our panel of clinical strains, we performed

WGS on each strain, followed by reference-based assembly, annotation, and variant calling

(Fig 1B, Materials and Methods). WGS revealed that, excluding repetitive elements, such as

genes in the PE/PPE family and insertion elements (S1 Table) which are difficult to confidently

describe due to the technological limitations of short-read next-generation sequencing, bet-

ween 3 and 24 genes were deleted in each strain (S2 Table). For the most part, these deletions

corresponded to the previously described regions of difference [28]. We also identified large-

scale duplications present in a subset of the clinical strains, encompassing up to 309 genes (S3

Table). Similar duplications have previously been observed in Mtb strains and appear to be the

result of unequal homologous recombination mediated by IS6110 elements [29–31]. In addi-

tion to structural variants, we identified genes disrupted by nonsense and frameshift mutations

and insertion elements (S4 Table). Several hundred SNPs between each strain and the refer-

ence genome, including non-synonymous polymorphisms in the coding regions of a number

of genes, were also identified (S5 Table).

Transposon-junction reads were then mapped to each strain’s genome assembly (Fig 1B),

revealing that the Mtb clinical strains were amenable to transposon mutagenesis, with ~50 to

70% of Himar1 transposon insertion sites (TA dinucleotides) in each library containing one or

more insertions (S6 Table). This is comparable to the saturation of the H37Rv libraries gener-

ated in this study and previously published Mtb transposon libraries [17,19]. Library reproduc-

ibility was also high, as determined by comparing transposon insertion count across each gene

between library replicates (Spearman correlation coefficient = 0.81–0.99, S6 Table). We then

sought to develop a rigorous analytic approach to compare transposon-junction sequencing

data across these genetically diverse strains in order to identify differences in their genetic

requirements for in vitro growth.

Fig 1. A genetically diverse panel of M. tuberculosis clinical strains subjected to TnSeq. (A) Maximum parsimony tree constructed from SNPs

identified through WGS of each clinical strain. The reference strain H37Rv is included. (B) Schematic illustrating the analytic pipeline.

https://doi.org/10.1371/journal.ppat.1006939.g001
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TnSeq reveals differences in the genetic requirements for in vitro growth

among Mtb clinical strains

TnSeq is used to identify essential genes under a given growth condition, defined as genes

unable to tolerate transposon insertions due to the severe fitness cost of disruption. Doing

so involves statistical analyses of transposon insertion location and frequency across a cod-

ing region, ultimately making a qualitative classification (essential v. non-essential) from

quantitative insertion count data. Yet performing discrete comparisons of essential genes

between strains or conditions overlooks quantitative differences in transposon count bet-

ween genes with the same qualitative classification. For example, a gene able to tolerate

transposon insertions in two strains could be classified as non-essential in both strains,

even if the relative abundance of these transposon mutants in their respective library pools

differs significantly. Such differences in transposon mutant abundance reflect differences

in the fitness cost of gene disruption in a particular genetic background, and indicate the

relative dependency of a strain on the gene for growth and survival [16,32,33]. We sought

to identify genes with such differential requirements among our panel of strains, incorpo-

rating the sequence variants identified through our WGS pipeline.

To identify differences in the genetic requirements for growth among strains, we used

a permutation test-based method to identify genes with statistically significant differ-

ences in transposon insertion count between strains [34,35]. Briefly, this method calcu-

lates the difference in transposon insertion count across a gene between two strains and

compares this value to a null distribution of differences generated by randomly reshuffl-

ing the insertion counts among the data sets being compared, identifying genes that have

a difference in insertion count more extreme than would be expected by chance. To ac-

count for the sequence variants identified through WGS and permit comparative analy-

ses between strains, we placed the TA dinucleotides onto a common indexing system

based on coordinates in H37Rv. Deleted genes, genes in the duplicated region, and repet-

itive elements, such as PE/PPE/PGRS genes and insertion elements, were excluded from

subsequent analyses (S1 Fig).

Pairwise comparison of each clinical strain’s transposon libraries to the H37Rv control librar-

ies identified between ~10 and ~50 genes with a statistically significant difference in transposon

insertion count per strain (adjusted P-value<0.05 and magnitude fold-change� 2) (S7 Table).

Many of the genes with differential genetic requirements are involved in fundamental cellular

processes (Fig 2). A number are involved in redox homeostasis, including the catalase-peroxi-

dase (katG, increased genetic requirement in all clinical strains compared to H37Rv), genes in

the mycothiol synthesis pathway (mshA, increased requirement in East Asian 631; mshC, incre-

ased requirement in Euro-American 630, 663, East Asian 621, 631, Indo-Oceanic 641, 667), and

genes involved in sulfur uptake and assimilation (cysW, cysT, subI, cysN, cysA1, increased

requirement in Euro-American 630, 663), processes that support synthesis of mycothiol and

other biomolecules involved in redox homeostasis such as thioredoxins (Fig 2, S7 Table). There

were also numerous differences among strains in the requirements for genes whose products

mediate central metabolism (Fig 3, S7 Table). The genes in this group included genes in the

pyruvate dehydrogenase complex (dlaT, increased genetic requirement in Euro-American 630,

East Asian 631; lpdC, increased requirement in Euro-American 663, East Asian 621, 631) and

malate synthase (glcB, decreased genetic requirement in East Asian 621, 662). Some of the

enzymes encoded by these genes are key regulators of entry into the tricarboxylic acid (TCA)

cycle (dlaT, lpdC), and may indicate differences in metabolic flux in these strains.

Mycobacterium tuberculosis clinical strain TnSeq
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Fig 2. Comprehensive identification of differential genetic requirements for in vitro growth by TnSeq. Graphic representation of selected genes with differential

requirements for in vitro growth across 8 Mtb clinical strains. Diagram was generated using Cytoscape [60]; gene nodes are connected to central nodes representing a

functional category; functional category was assigned based on Gene Ontology classification [61,62] and review of the literature. The size of each gene node scales with
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Differential genetic requirements are not predicted by sequence variants or

gene expression

Our results demonstrate that TnSeq is a scalable approach to identify functional genetic differ-

ences among Mtb strains. Yet TnSeq is more technically challenging than WGS or gene expres-

sion methodologies. Therefore, we sought to determine whether the differences in genetic

requirements identified by TnSeq could have been predicted from WGS or expression data.

We first assessed whether any of the differential genetic requirements could have been pre-

dicted by sequence variants identified through our WGS pipeline. A differential genetic require-

ment could be attributed to a specific polymorphism in only one case. Euro-American strain

630 had an ~12-fold decrease in transposon insertion count across ndh, the type II NADH

dehydrogenase, relative to H37Rv, indicating an increased genetic requirement for this gene

(Fig 4A). Our WGS pipeline revealed that strain 630 has a nonsense mutation in ndhA, a para-

log of ndh [36], suggesting that a loss of functional redundancy created a relative requirement

for the remaining NADH dehydrogenase (Fig 4A, S4 Table). In another instance of apparent

loss of redundancy, icl2, encoding one of two isocitrate lyase enzymes in the TCA cycle [37], is

disrupted by a frameshift mutation in the reference strain H37Rv and Euro-American strain

630, but is intact in the other clinical strains in our panel (S4 Table). In the strains with an intact

icl2, there was a non-significant increase in transposon insertion count across the paralog, icl1,

compared to H37Rv (Fig 4A).

In many other instances the genetic basis for differences in genetic requirements between

strains was not clear. For example, our WGS pipeline identified large-scale duplications in a

subset of the clinical strains encompassing the TCA cycle gene icd1, which encodes one of two

isocitrate dehydrogenases (S3 Table) [38]. The functional redundancy created by this duplica-

tion might decrease the genetic requirement for the other isocitrate dehydrogenase isoform,

encoded by icd2, for strains with two copies of icd1. However, we observed a decreased genetic

requirement for icd2 across all clinical strains, even those without the duplication (Fig 4A).

Thus, in most cases the relationship between genetic requirements and sequence variants are

not readily apparent, likely reflecting the complexity of genetic networks.

Transcriptomic studies have identified differences in gene expression between Mtb clinical

strains [39,40], therefore, we next assessed whether genes with differential requirements for

growth display corresponding differences in expression. We selected a set of 10 genes identi-

fied as differentially required between strains by TnSeq, prioritizing genes of known function,

and determined expression by NanoString (see Materials and Methods). For all but one gene,

the sigma factor sigB, there was no correlation between transposon insertion count across a

gene and gene expression relative to the reference strain H37Rv (Fig 4B). These findings sug-

gest that differences in genetic requirements between strains cannot be predicted by expres-

sion data, consistent with comparisons of gene expression and gene essentiality within a strain

[41].

Genetic requirement for katG predicts isoniazid resistance rate

We then sought to validate some of the functional differences among strains predicted by our

TnSeq data. Because strain diversity has the potential to impact the efficacy of drugs, we

focused on genes whose products are the targets of antibiotics. Our TnSeq data indicated that

the number of clinical strains with a statistically significant change in transposon insertion count across that gene as compared to H37Rv (Benjamini-Hochberg adjusted

P< 0.05, fold-change� 2 or�-2). Each edge represents a strain with a significant difference in transposon insertion count; edge width is inversely scaled to the adjusted

P-value as indicated in the legend, and edge color is scaled to the log2 fold-change values as indicated by the color scale.

https://doi.org/10.1371/journal.ppat.1006939.g002
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Fig 3. TnSeq reveals differences among strains in requirements for genes in central carbon metabolism pathways. Schematic of central carbon metabolism in Mtb

highlighting genes with statistically significant differences in transposon insertion count between clinical strains and the reference strain H37Rv. Metabolites are

represented by dots; enzymes are represented by diamonds and gene abbreviations are shown next to the reactions they catalyze. Diamonds with blue fill indicates at
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all of the clinical strains have an increased requirement for several genes implicated in redox

homeostasis including the gene encoding the catalase-peroxidase, KatG, as compared to

H37Rv (Fig 2, S7 Table). KatG is the activator of isoniazid (INH), a key first-line anti-tubercu-

lar agent that is converted to its active form by the bacterial catalase-peroxidase in a redox sen-

sitive fashion. We sought to determine whether the differences in genetic requirement for

katG would predict differences in response to INH. We first determined minimum inhibitory

concentration (MIC) for H37Rv and the panel of clinical strains (see Materials and Methods).

The MICs for all strains were within 2-fold that of H37Rv, with the exception of Indo-Oceanic

least one clinical strain has significantly more transposon insertions across the corresponding gene(s) as compared to H37Rv; red fill indicates at least one clinical strain

has significantly fewer transposon insertions across the gene(s) as compared to H37Rv. Heatmaps show log2 fold-change in transposon insertion count for this set of

genes across all strains as indicated by the color scale; asterisk indicates statistical significance (Benjamini-Hochberg adjusted P< 0.05, fold-change� 2 or�-2).

Metabolite abbreviations: ACCOA, acetyl-CoA; ASP, aspartate; CIT, citrate; DHP, dihydroxyacetone phosphate; F6P, fructose-6-phosphate; FBP, fructose

1,6-bisphosphate; FUM, fumarate; G3P, glycerol 3-phosphate; G6P, glucose-6-phosphate; GA3P, glyceraldehyde 3-phosphate; GLUC, glucose; GLX, glyoxylate; GLYC,

glycerol; ICIT, isocitrate/citrate; MAL, malate; OAA, oxaloacetate; OXG, 2-oxoglutarate; PEP, phosphoenolpyruvate; PYR, pyruvate; SUC, succinate; SUCCOA,

succinyl-CoA. The metabolic pathway schematic was generated with Omix [63].

https://doi.org/10.1371/journal.ppat.1006939.g003

Fig 4. Strain-specific genetic requirements are not predicted by sequence variants or gene expression. (A) Genetic variants identified by WGS generally do not

correspond to differences in genetic requirements. Heatmaps show log2 fold-change in transposon insertion count across ndh, icl1, or icd2 relative to H37Rv as

indicated by the color scale; asterisks indicate a statistically significant difference (Benjamini-Hochberg adjusted P< 0.05, fold-change� 2 or�-2). Below the

heatmap, an intact open reading frame for ndhA or icl2 is indicated by “+” while a disrupted open reading frame is indicated by “-”; strains with a duplication

involving icd1 are indicated by ‘++’ while no duplication is indicated by ‘+’. (B) Correlation between genetic requirements predicted by TnSeq and gene expression.

Y-axis is log2 fold-change in transposon insertion count relative to H37Rv (triangles) or mean log2 fold-change in gene expression relative to H37Rv as measured by

NanoString assay (circles). Spearman rank correlation coefficient between log2 fold change in transposon count and expression and associated P-values are shown

for each gene.

https://doi.org/10.1371/journal.ppat.1006939.g004
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strain 667, which had an MIC 4-fold lower than H37Rv (S8 Table). Thus, the differential

genetic requirement for katG did not correspond to differences in INH susceptibility.

A major mechanism of acquired resistance to INH is through katG mutation. In laboratory

studies, INH resistance occurs at a high rate, primarily through mutations that result in a loss

of KatG function, including complete and partial deletions of the gene [42,43]. However, in

clinical studies, a relatively small number of katG mutations account for most INH resistance.

A single SNP (S315T), which preserves some catalase-peroxidase activity, accounts for over

two-thirds of INH resistance in some studies, and katG deletions are rare [44,45]. The inc-

reased genetic requirement for katG among clinical strains identified by TnSeq might explain

these observations.

We reasoned that the increased genetic requirement for katG among clinical isolates might

reduce the number of viable mutations that confer INH resistance (target size), resulting in a

lower INH resistance rate [42]. To test this hypothesis, we measured the rate at which INH resis-

tance is acquired by performing Luria-Delbruck fluctuation analysis on three clinical strains

from our panel, one from each lineage, and H37Rv. Consistent with the prediction from our

TnSeq data, all three clinical strains acquired resistance to INH (1 μg/mL) at a significantly

lower rate than H37Rv (Fig 5A). Lineage-based differences in basal mutation rate that impact

the likelihood of drug resistance have previously been described [3], and additional work has

found sub-lineage and strain-specific differences in mutation rate (personal communication,

Sarah Fortune and Nathan Hicks). Therefore, to confirm that the decreased rate of resistance to

INH among the clinical strains was not due to a lower basal mutation rate, we also determined

the rate of resistance to an antibiotic that targets a different cellular process, rifampicin. The

rifampicin resistance rates were not different between H37Rv and any of the clinical strains

tested (S2 Fig). Together, these findings suggest that the fitness costs of disrupting genes that

encode antibiotic activators or targets can also contribute to the frequency of emergence of drug

resistance, consistent with findings from population-based studies [6,9].

Genetic requirement for glcB predicts susceptibility to a small-molecule

inhibitor of malate synthase

We identified a number of central carbon metabolism genes with differential genetic require-

ments from our TnSeq data (Fig 3). Bacterial metabolism has emerged as a promising target

for antibiotic development [46,47] but our data suggests that molecules targeting these path-

ways may have variable efficacy across clinical strains. For example, the clinical strains varied

in their requirement for glcB, which encodes malate synthase (GlcB), the second enzyme in the

glyoxylate shunt (Fig 3, S7 Table). The glyoxylate shunt is an anaplerotic pathway important

for central carbon and fatty acid metabolism and the enzymes in this pathway, malate synthase

and isocitrate lyase, play multiple, essential roles in establishing and maintaining in vivo infec-

tion [48–51]. It is also a pathway present only in prokaryotes, plants, and fungi. These features

make the glyoxylate shunt an attractive drug target.

Indeed, a novel GlcB inhibitor has recently been developed that is effective in reducing the

burden of H37Rv in a mouse model of infection [52]. This inhibitor was developed through a

structure-guided optimization of phenyl-diketo acids [52]. The inhibitors of this series bind to

the active site of GlcB by coordinating the catalytic Mg2+ ion with the ketoacid moiety, making

hydrogen bonds with the catalytic acid, arginine, through both keto groups, and engaging in

anion-π interactions with the catalytic base, asparagine, through the phenyl group. These

amino acid moieties are conserved at the sequence level across the clinical strains (the only

SNPs in glcB are G104S in the four East Asian strains, and T191A in Indo-Oceanic strain 641,
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S5 Table), but our TnSeq data suggested that the genetic requirement for glcB varied between

strains, potentially altering sensitivity to the inhibitor.

We hypothesized that strains with a decreased genetic requirement for glcB during in vitro
growth would be less sensitive to GlcB inhibition in culture. To test this hypothesis, we used

the 2-Cl-6-F-3-Me-Phenyl diketo acid member of the inhibitor series, which was developed

for the favorable pharmacological qualities needed to chemically evaluate GlcB as a target in

Mtb infection [52]. The acid form inhibits purified GlcB with an IC50 of 5.5 μM, and the esteri-

fied form, which has improved cellular uptake, kills H37Rv grown on acetate with an MIC99 of

2 μM and kills H37Rv grown on dextrose in the presence of fatty acids with an MIC99 of 8 μM.

We determined MIC for the esterified form of the GlcB inhibitor by Alamar Blue assay for

bacteria grown on acetate with dextrose (see Materials and Methods) for all strains (Fig 5B).

Strains differed in their MIC90 up to 30-fold, from 7 μM (H37Rv) to 212 μM (East Asian 621).

The strains with a significant increase in transposon insertion count across glcB (East Asian 631,

Fig 5. Differential genetic requirements identified by TnSeq predict antibiotic phenotypes. (A) Fluctuation analysis was used to measure the rates at which clinical

strains and the reference strain H37Rv acquired resistance to isoniazid (1 μg/mL). Circles represent mutant frequency (number of resistant mutants per cell plated for a

single culture). Red squares represent the estimated mutation rates, calculated as described in [3], with error bars representing the 95% confidence intervals. Significant

differences in mutation rate were defined by non-overlapping 95% confidence intervals and significance was determined by comparing each clinical strain’s mutation

rate to the H37Rv mutation rate using the Wilcoxon rank-sum test (Mann-Whitney U test); �� P< 0.005, ���� P< 0.0001. (B) The microplate Alamar Blue assay was

used to determine MIC90 for H37Rv and 8 clinical strains for a novel small-molecule GlcB inhibitor. Shown is the normalized inhibition of Alamar Blue conversion at

each concentration from a representative experiment. (C) Change in CFU/mL for each strain after incubating for 8 days at the indicated concentration of GlcB

inhibitor. (D) Plot of MIC90 v. log2 fold-change in transposon insertion count across the glcB gene relative to H37Rv. (E) Strains do not differ in their susceptibility to

ofloxacin. Normalized inhibition of Alamar Blue conversion at each concentration of ofloxacin from a representative experiment. (F) Genetic variants in the glyoxylate

shunt do not predict susceptibility to the GlcB inhibitor. For each strain, the log2 fold-change in transposon insertion count across glcB relative to H37Rv is shown in the

heatmap; to the right of the heatmap, an intact icl2 open reading frame is indicated by “+”, while a disrupted open reading frame is indicated by “-”; to the far right,

MIC90 for the GlcB inhibitor is indicated. Color and symbol to the left of each strain is maintained in (B-F).

https://doi.org/10.1371/journal.ppat.1006939.g005
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662) had MIC90s ~25- and ~24-fold higher than H37Rv, respectively. The increase in MIC90

corresponded with reduced bacterial killing (Fig 5C). Across all strains, the log2 fold-change

in transposon insertion count across glcB correlated with MIC90 (R = 0.692, P = 0.0388) (Fig

5D). We also determined the MICs for ofloxacin and streptomycin, which did not differ by

more than 2-fold among strains (Fig 5E, S3 Fig, S8 Table). Thus, the differences in sensitivity to

the GlcB inhibitor are specific to this pathway and do not reflect general differences in drug sus-

ceptibility among strains.

Finally, we assessed whether differences in sensitivity to the GlcB inhibitor could have been

predicted by genetic variants identified through WGS or by gene expression. The first step in

the glyoxylate shunt, hydrolysis of isocitrate into glyoxylate and succinate, is catalyzed by isoci-

trate lyases encoded by two paralogous genes: icl1 and icl2 (Fig 3). As described above, icl2 is

disrupted by a frameshift mutation in H37Rv, yet many strains retain an intact open reading

frame and express a second, functional isocitrate lyase [37]. The icl2 frameshift was present in

only one of our clinical strains (Euro-American strain 630) while the other strains in the panel

possessed an intact icl2 (Fig 5F, S4 Table). Thus, icl2 status could not be used to predict suscep-

tibility to the GlcB inhibitor among these strains. Expression of glcB was not significantly dif-

ferent between H37Rv and any of the clinical strains (Fig 4B, ANOVA with Tukey’s post test).

Taken together, these results indicate that our TnSeq data can predict susceptibility to a novel

antibiotic that could not be readily derived from sequence or expression data alone.

Discussion

Despite the relatively conserved genomic content of Mtb, strains can vary dramatically in fea-

tures that impact clinical outcomes, including capacity to acquire antibiotic resistance [3,6].

To investigate the basis of strain variation, we used TnSeq to define differences in the genetic

requirements for in vitro growth across a panel of 9 genetically diverse Mtb strains. To date,

this represents the largest comparative TnSeq study of a microorganism and provides an ana-

lytic framework for multi-strain TnSeq comparisons in bacteria.

We identified as many as ~50 differentially required genes in each strain relative to the ref-

erence strain, H37Rv, for in vitro growth. These included differences in the requirements for

genes involved in fundamental cellular processes, such as central carbon metabolism. Some of

these differences occurred in all strains in the panel, perhaps reflecting adaptation of the refer-

ence strain to laboratory culture. These findings underscore the potential pitfalls of relying on

reference strains to infer the common biology of a species. Other genes were differentially re-

quired in only a subset of strains or were strain-specific. Mtb has a geographically determined

phylogenetic structure that divides into seven major lineages, yet we did not find that differ-

ences in genetic requirements tracked strictly with lineage. While it is tempting to think of

Mtb strains within a lineage as having collective behavior, our data is consistent with other

studies showing substantial genomic and phenotypic diversity within lineages [24,53].

As with any screening technique, not all biologically important differences can be captured

by TnSeq. Two limitations of TnSeq are polar effects and the possibility for trans complemen-

tation. Polar effects, whereby transposon insertion disrupts not only the function of the gene

containing the insertion, but also downstream genes in an operon, are mitigated by the design

of the transposon, which contains a strong, outward facing promoter [54]. An earlier study

found no insertion bias toward the 5’ end of operons, suggesting polar effects are negligible

in this system. Complementation in trans, whereby a transposon mutant’s phenotype is sup-

pressed by bacteria wild-type for the locus present in the transposon library, has been reported

in some TnSeq studies [55]. Such effects are expected to be limited to secreted products, and

could be identified in future studies by phenotypic screening of arrayed transposon libraries.
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A key advantage of TnSeq is that it uses the cell as a sensor to directly report on the genes

and pathways required for microbial growth. This stands in contrast to WGS, where the selec-

tive pressures generating sequence variants may not be known. This feature of TnSeq allowed

us to use differences in genetic requirements between strains to predict differences in antibi-

otic responses. Because many antibiotics target processes essential for growth, we reasoned

that a change in genetic requirement for an antibiotic target could predict differences in antibi-

otic sensitivity. Our glcB data validate this approach, which could be used to prioritize targets

for drug development, since antibiotics should ideally be effective against all strains of a patho-

gen. Another important consideration in antibiotic development is the likelihood that resis-

tance will emerge [56]. Some mechanisms of antibiotic resistance, such as the acquisition of

inactivating enzymes, activation of efflux pumps, or decrease in antibiotic uptake, may not be

detected by TnSeq. Yet our katG data indicate that the likelihood of loss of function mutations

in antibiotic activators, an important resistance mechanism, can be predicted by TnSeq.

Our findings that TnSeq identifies biologically important differences among strains that

are not readily predicted by WGS data highlights a challenge for the field. We are rapidly de-

veloping catalogues of bacterial sequence variants but largely lack data to link genotypes

and phenotypes. For Mtb, such analyses are confounded by this pathogen’s clonal population

structure. Studies in which Mtb genotype has been successfully linked to antibiotic phenotype

have required WGS data from hundreds of strains [6,8,11–13]. With TnSeq, we were able to

use a much smaller set of strains to predict antibiotic phenotypes. Yet our analyses suggest that

attributing differences in genetic requirements to specific sequence variants will require much

larger data sets to achieve the statistical power to dissect such interactions.

Here we demonstrate that TnSeq is a scalable method to help close the gap between geno-

type and phenotype. Importantly, TnSeq can be used to predict strain-specific phenotypes that

are not readily predicted from sequence or expression data alone. Given the potential conse-

quences of strain variation for the efficacy of antibiotics and vaccines, this approach could be

utilized under other in vitro and in vivo conditions to assess the generalizability of new thera-

peutic approaches. Moving forward, integrating TnSeq data with orthogonal approaches, such

as proteomics, metabolomics, and transcriptomics, will doubtless provide further insight into

the basis of Mtb’s phenotypic heterogeneity. This work provides a foundation for these future

studies and highlights the cellular pathways that may be subject to the most variation in Mtb.

Materials and methods

Bacterial strains

Clinical strains were identified as previously described and cultured from single colonies [25].

Strains were grown at 37˚C and cultured in Middlebrook 7H9 salts supplemented with 10%

OADC, 0.5% glycerol and 0.05% Tween-80 or plated on 7H10 agar supplemented with 10%

OADC, 0.5% glycerol and 0.05% Tween-80 unless otherwise noted. Clinical strains were han-

dled to minimize in vitro passaging.

Whole genome sequencing

Genomic DNA was isolated from a 10-mL culture of each clinical strain using standard phe-

nol-chloroform techniques. Libraries were prepared with the Illumina Nextera XT kit and

sequenced on an Illumina MiSeq Desktop Sequencer with MiSeq Reagent Kit v2. Paired-end

sequencing with read lengths of 151 bases was performed for an average coverage of 150x

(range 62-240x).
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Genome assemblies and variant calling

Genome sequences of the clinical strains were assembled with a custom comparative-assembly

pipeline [57] using M. tuberculosis H37Rv (GenBank accession number NC_000962.2) as the

reference genome. Contig-building was used to define large-scale insertions and deletions (up

to 40kb), as well as to infer changes in genomic locations of IS6110 transposons.

Variants including SNPs, insertions, and deletions, were identified by alignment with the refer-

ence sequence, except in repetitive elements, such as transposases and PE/PPE/PE-PGRS genes,

due to the technological limitations of Illumina sequencing (S1 Table, S1 Fig). Genes with dis-

rupted open reading frames due to small insertions and deletions and nonsense mutations were

identified (S4 Table) as were genes with at least 10% of their open reading frame deleted (S2 Table).

Transposon mutagenesis

The H37Rv and clinical strain Himar1 transposon libraries were generated as previously described

[26,27]. Libraries were selected for 21 days on 7H10 agar supplemented with 10% OADC, 0.5%

glycerol, 0.05% Tween-80 and 0.2% Cas-amino acids (Difco) with 20 μg/mL kanamycin. Two

independent libraries of ~100,000 mutants each were generated for each clinical strain and three

independent libraries of ~100,000 mutants each were generated for H37Rv.

Transposon junction sequencing and analysis

Genomic DNA was extracted from each transposon library using standard phenol-chloro-

form techniques and prepared for transposon-junction sequencing essentially as described

[27]. Libraries were sequenced on an Illumina HiSeq. Raw reads were mapped to TA sites

in each strain’s genome assembly and read counts were reduced to unique template counts

using Transit [35]. Statistical comparisons of insertion counts across open reading frames

were performed using a permutation test-based method ("resampling" method in Transit),

after placing TA sites on a common indexing system and normalizing for library read-

depth [34,35]. Insertions in the central 90% of each gene were considered and a LOESS

correction for genome positional bias was performed. P-values were adjusted for multiple

comparisons by the Benjamini-Hochberg procedure to control the false-discovery rate

at � 5% [35]. Deleted genes, repetitive genes, and genes in the duplicated region were

excluded prior to performing comparisons of insertion counts between strains (S1 Table,

S2 Table, S3 Table, S1 Fig).

RNA isolation and gene expression

RNA was isolated from triplicate mid-log cultures for each strain using standard techniques.

Briefly, cells from each culture were harvested by centrifugation, resuspended in 1 mL of TRI-

zol (Thermo Fisher), and disrupted by bead-beating. Chloroform was added to 25% of the

total volume and total RNA was isolated using the Direct-zol RNA MiniPrep kit (Zymo Re-

search). Samples were then treated with TURBO DNase (Ambion) for 1 hour to remove resid-

ual contaminating genomic DNA, followed by clean-up with RNA Clean & Concentrator

columns (Zymo Research). RNA was quantified by Qubit RNA Assay (Thermo Fisher) and 25

ng of RNA was used as input in the NanoString nCounter assay (NanoString Technologies)

with custom-designed probes to quantify gene expression. Target sequences are listed in S9

Table. Data were analyzed with nSolver version 4 (NanoString Technologies); raw NanoString

counts were normalized to internal positive controls to correct for technical variation between

assays, and normalized to a housekeeping gene (sigA) to correct for variation in RNA input

amount. Background counts from no-input samples were subtracted.
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Fluctuation analysis

Fluctuation analysis and statistical analyses of the data were performed essentially as described

previously, with 24 independent cultures per isolate [3].

Minimum inhibitory concentration determination

Isoniazid MICs were determined by the microplate Alamar Blue assay [58] and the agar pro-

portion method [59]. For the Alamar Blue assay, strains were grown in 7H9 supplemented

with OADC, glycerol, and Tween-80 to an OD600 of ~1, filtered with a 5 μM filter to obtain

a single-cell suspension, then diluted in 7H9 with supplements to an OD600 of 0.003 and pi-

petted in replicate into 96-well plates in the presence or absence of serially diluted isoniazid

as described [58]. Plates were incubated at 37˚C with shaking for four days before adding Ala-

mar Blue (Bio-Rad), then incubated for an additional two days before visually scoring for color

change. MIC was defined as the lowest concentration of antibiotic that prevented color change

from blue or purple to pink. For the agar proportion method, 7H10 media supplemented with

10% OADC, 0.5% glycerol and 0.05% Tween-80 was prepared and isoniazid added to attain

the following concentrations: 0.8, 0.4, 0.2, 0.1, 0.05, 0.025, and 0.0125 μg/mL. Serial dilutions

of duplicate mid-log cultures for each strain were prepared and plated on isoniazid-containing

or control plates without antibiotic. Three weeks after plating, CFU were enumerated, and the

reported MIC is the isoniazid concentration which reduced CFU by an average of 99% com-

pared to the control.

To determine the MICs for the GlcB inhibitor and control antibiotics streptomycin and

ofloxacin, strains were grown in 7H9 supplemented with OADC, glycerol, and Tween-80 to an

OD600 of ~1, filtered with a 5 μM filter to obtain a single-cell suspension, then diluted into test-

ing media to an OD600 of 0.01 and pipetted into 96-well plates in the presence or absence of

serially diluted drug as described above. Testing media consisted of 7H9 media supplemented

with 0.5% dextrose, 0.1% sodium acetate, 0.085% NaCl, and 0.05% Tyloxapol. Plates were

incubated at 37˚C with shaking for six days before adding Alamar Blue, then incubated for an

additional two days before reading OD570 (resorufin) and OD600 (resazurin). The difference

between these two OD values was used as a viability reporter. The MIC90 was derived from

curve fit plots generated in Prism and the reported value is the average of two independent

experiments. On the day that plates were read, an aliquot from each well was used to make

serial dilutions and plate for CFU. MIC experiments were performed in technical replicate at

least twice. Plating for CFU was performed in technical replicate once.

Supporting information

S1 Fig. Flowchart illustrating the gene sets included in variant calling and TnSeq analysis.

(TIF)

S2 Fig. Rifampicin fluctuation analysis. Fluctuation analysis was used to measure the rates at

which clinical strains and H37Rv acquired resistance to rifampicin (2 μg/mL). Circles repre-

sent mutant frequency. Red squares represent the estimated mutation rates, calculated as de-

scribed in [3], with error bars representing the 95% confidence intervals. No statistically

significant differences in mutation rate, as defined by non-overlapping 95% confidence inter-

vals, were found among these strains.

(TIF)

S3 Fig. Streptomycin MICs. Normalized inhibition of Alamar Blue conversion at each con-

centration of streptomycin from a representative experiment.

(TIF)
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S1 Table. Repetitive elements. Repetitive genes excluded from variant calling and TnSeq anal-

ysis. Annotation is based on the reference genome H37Rv.

(XLSX)

S2 Table. Deleted genes. Genes identified through our variant-calling pipeline as having

more than 10% of the open reading frame deleted. Genes in repetitive regions (S1 Table) are

excluded from this analysis. If the deleted genes correspond to a region of difference, this is

noted, with nomenclature according to Tsolaki et al.
(XLSX)

S3 Table. Description of large-scale duplications. Boundaries of large-scale duplications

identified in a subset of the clinical strains. Boundaries were determined by contig-building,

that is, a contiguous sequence of overlapping reads spanning the boundary that show the pre-

cise nucleotides where an in-del starts or ends.

(TIF)

S4 Table. Disrupted genes. Genes with nonsense mutations, small in-dels, or insertion ele-

ments that disrupt the open reading frame. Variants in the repetitive gene list (S1 Table) were

not called. Note that icl2 is annotated as aceAa/Rv1915 and aceAb/Rv1916, consistent with the

H37Rv annotation.

(XLSX)

S5 Table. Single nucleotide polymorphisms. Coding region SNPs identified in each clinical

strain with H37Rv as the reference genome. SNPs in the repetitive gene list (S1 Table) were

not called.

(XLSX)

S6 Table. Transposon library saturation and correlation between library replicates. Percent

of TA dinucleotides with at least one transposon-junction read in each transposon library.

Spearman correlation coefficient was determined by comparing the normalized insertion tem-

plate count across each gene between library replicates.

(TIF)

S7 Table. Transit resampling output. N is number of TA sites across the open reading frame;

TAs hit is the number of TA sites with at least one insertion; Sum Rd 1 is the normalized sum

of unique template read counts in the control (H37Rv) libraries; Sum Rd 2 is the normalized

sum of read counts in the clinical strain libraries; Delta Rd is the difference in the normalized

sum of read counts; p-value is the P-value calculated by the permutation test; p-adj is the Ben-

jamini-Hochberg adjusted P-value.

(XLSX)

S8 Table. Isoniazid, ofloxacin, and streptomycin MICs. MICs determined by Alamar Blue

assay or agar proportion method as described in Materials and Methods.

(TIF)

S9 Table. NanoString target sequences. Target sequences for gene expression.

(XLSX)
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