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Abstract 9 

Residing at the interface of chemistry and biotechnology, artificial metalloenzymes 10 

offer an attractive technology to combine the versatile reaction repertoire of transition 11 

metal catalysts with the exquisite catalytic features of enzymes. While earlier efforts in 12 

this field predominantly comprised studies in well-defined test-tube environments, a 13 

trend towards exploitation of artificial metalloenzymes in more complex environments 14 

has recently emerged. This includes the integration of these artificial biocatalysts in 15 

enzymatic cascades and reaches out to their utilization in whole cell biotransformations 16 

and in vivo, opening up entirely novel prospects for both preparative chemistry and 17 

synthetic biology. Here we highlight selected recent developments with a particular 18 

focus on challenges and opportunities for the in vivo application of artificial 19 

metalloenzymes. 20 

 21 

<Trends Box> 22 

Artificial metalloenzymes (ArMs) are an emerging form of non-natural biocatalysts, 23 

which allow to create biocatalytic novelty with potential applications in preparative 24 

chemistry and synthetic biology. 25 

Initial engineering efforts for ArM creation have been conducted in well-defined in vitro 26 

systems based on purified protein variants and therefore systematic directed evolution 27 

of ArMs as well as their introduction into cellular pathways has been hitherto largely 28 

limited. 29 

More recently, a trend towards utilization of ArMs in whole-cell systems and in vivo has 30 

emerged, which is associated with a number of critical obstacles yet to be overcome.  31 

This transition shows great promise for the sustainable production of commodity 32 

chemicals and new-to-nature metabolites using ArMs. 33 

<\Trends Box> 34 
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Artificial Metalloenzymes 35 

 36 

Artificial metalloenzymes (ArMs hereafter; see definition in Box 1) are a class of 37 

synthetic biocatalysts, which combine attractive features of enzymatic and transition 38 

metal catalysis. While enzymes are well-known for their exquisite catalytic 39 

performance comprising high reaction rates, turnover numbers (TONs) and selectivity 40 

as well as mild reaction conditions [1, 2], they are limited to the arsenal of reactions 41 

that has emerged during natural evolution [3]. In contrast, transition metal catalysts 42 

offer a broad range of reaction mechanisms, many of which are not found amongst 43 

natural enzymes, providing a valuable toolbox for synthetic chemistry. However, 44 

homogeneous catalysts are often incompatible with natural enzymes and numerous 45 

cellular metabolites. Combining these two seemingly unrelated domains by creating 46 

ArMs, which catalyze new-to-nature reactions and, importantly, are genetically 47 

encoded and hence evolvable, offers great synergistic potential. This was first 48 

demonstrated by Wilson and Whitesides who, by incorporation into avidin, endowed a 49 

biotinylated rhodium catalyst with enantioselectivity for a hydrogenation reaction, while 50 

in the absence of the protein racemic product was formed [4]. The potential of ArMs 51 

has since been demonstrated for several protein scaffolds and target reactions. As this 52 

is the subject of several excellent reviews (e.g. [3, 5-9]) it shall not be comprehensively 53 

discussed here. 54 

Previous work on ArMs predominantly focused on studies of reactions in defined in 55 

vitro systems relying on purified protein variants. Consequently, their genetic 56 

optimization was limited to few target residues. Screening of large numbers of genetic 57 

variants, however, bears great potential for enzyme development, which was recently 58 

demonstrated for a highly efficient artificial aldolase [10]. 59 

In parallel, a trend towards application of ArMs in more complex systems is prevailing, 60 

which includes employing them in cell-free extracts [11, 12], whole-cell 61 

biotransformations [12-16], and in vivo [17, 18], as well as their introduction into multi-62 

enzyme reaction systems including regulation [19-23]. This transition towards 63 

integration of bioorthogonal chemistry into synthetic biological systems might 64 

drastically accelerate directed evolution of ArMs and by far exceeds their 65 

aforementioned potential for preparative chemistry [24, 25]. One can envision the use 66 

of ArMs in novel biochemical pathways to produce previously inaccessible compounds, 67 

which could contribute to the inevitable transition of our petroleum-based economy 68 
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towards sustainable production. While this transition is arguably cumbersome, the field 69 

of ArMs is currently experiencing disruptive change and in vivo application seems well 70 

within reach. This review highlights important recent proceedings in the creation of 71 

novel reactivities using ArMs and emphasizes critical challenges and opportunities for 72 

their utilization in living cells. 73 

 74 

<Box 1> 75 

Definition of Artificial Metalloenzymes (ArMs) 76 

For the purpose of this review, an artificial metalloenzyme (ArM) shall be defined as a 77 

protein (>50 amino acid residues) which contains at least one metal ion playing a 78 

crucial role in catalysis and which can be regarded as “artificial” due to at least one of 79 

the following attributes: 80 

 81 

• it contains a non-canonical catalytic metal (i.e. not found in natural enzymes) 82 

• it catalyzes a non-natural reaction (-mechanism) (incl. repurposing of natural 83 

metalloenzymes!) 84 

• its protein scaffold is designed de novo 85 

 86 

ArMs are composed of two basic components, a protein part or “scaffold”, which in its 87 

apo-form is catalytically inactive, and a metal component or “cofactor”, which includes 88 

a metal ion or a complex thereof. The definition applied in this review excludes metal-89 

containing peptide catalysts, (< 50 amino acid residues) which, while undoubtedly an 90 

important area of research, shall not be reviewed herein but have been discussed 91 

elsewhere [26, 27]. 92 

<\Box 1> 93 

 94 

 95 

 96 

 97 

 98 

 99 

 100 

 101 

 102 
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ArMs for the Creation of Catalytic Novelty 103 

 104 

Engineering of enzymes for new-to-nature reactions bears great potential for industrial 105 

applications providing efficient and ecologically friendly solutions for synthetic 106 

chemistry [7]. Different approaches have been pursued to generate catalytic novelty 107 

using metalloenzymes, which can be roughly divided into i) repurposing of natural 108 

enzymes, ii) enzyme (re-)design, and iii) artificial cofactor approaches (Figure 1). 109 

 110 

 111 

 112 
Figure 1. Strategies for the generation of emerging catalytic activity by creation of artificial 113 
metalloenzymes (ArMs). Natural metalloenzymes can be repurposed to catalyze entirely novel 114 
reactivities provided a promiscuous enzyme candidate can be identified which exhibits at least 115 
rudimentary side reactivity for the desired reaction. In the absence of the latter metalloenzymes with 116 
basic activity can be designed, either from scratch (de novo) or relying on existing proteins into which 117 
active metal centers can be introduced (redesign). Alternatively, artificial cofactors with intrinsic activity 118 
can be introduced to endow the cognate protein with activity. This can be achieved by reconstituting 119 
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natural metalloenzymes with synthetic metal(-cofactors) or by introducing the latter into proteins without 120 
native metal-binding properties (e.g. by covalent or supramolecular anchoring). Once minimal activity is 121 
established by one of the aforementioned methods, directed evolution can be used to evolve the ArMs 122 
for the desired application (for a selection of recent studies applying the different strategies please refer 123 
to Table 1). 124 

 125 

Repurposing relies on inherent promiscuous activity of natural enzymes and directed 126 

evolution of this feature to practically useful extents [9]. In the context of ArMs, this 127 

strategy has been most successfully applied to iron catalysis with heme proteins [5]. 128 

Spearheaded by Arnold and coworkers in 2013, who evolved cytochrome P450 129 

variants to enantio- and diastereoselective enzymes for cyclopropanation of styrene 130 

[13, 16], an array of compelling studies emphasizing the plasticity of these proteins 131 

followed. This comprised development of biocatalysts for cyclopropanation [28] with 132 

complementary stereoselectivity [14] and trifluoromethyl substitution [15], for olefin 133 

aziridination [29], as well as for nitrene insertion to create C-N [30-33] and S-N [34, 35] 134 

bonds and carbene insertion into N-H [36, 37] and S-H [38] bonds, to name but a few. 135 

Probably one of the most progressive recent studies is the repurposing of a cytochrome 136 

c variant from Rhodothermus marinus to form carbon-silicon bonds at high TONs and 137 

enantioselectivities [12].  Beyond the P450 domain other natural metalloenzymes have 138 

been repurposed, such as iron halogenase SyrB2 from Pseudomonas syringae B301D 139 

to catalyze azidation and nitration of non-activated aliphatic C-H bonds [39]. 140 

Unfortunately, for some chemically desirable transformations Nature does not (yet) 141 

provide promiscuous reactivity, which is essential for any directed evolution effort [9]. 142 

In these cases, rational protein design can offer valuable means to introduce entirely 143 

new reactivity into proteins, either by de novo design of synthetic (bottom-up) or based 144 

on existing protein folds (top-down). The group of Pecoraro, for instance, has designed 145 

a synthetic three-stranded coiled coil protein with a catalytically competent Zn(II) and 146 

a stabilizing Hg(II) center [40, 41]. This protein exhibited hydrolytic activity for p-147 

nitrophenyl acetate and CO2 hydration, the latter of which was later highly improved in 148 

another synthetic Zn-binding scaffold [42]. However, successful examples of strict de 149 

novo design of ArMs remain scarce [40], likely due to difficulties in designing stable 150 

folds with catalytic metal-binding sites from scratch. As an alternative, redesign of 151 

natural proteins to endow these with non-inherent catalytic activities was applied [17, 152 

43]. In a seminal study Baker and coworkers applied computational design and 153 

directed evolution to create a highly active organophosphate hydrolase based on a 154 



p. 6 / 19 
 

mononuclear zinc deaminase, emphasizing the synergistic potential of these two 155 

methods [43]. 156 

A widely adopted and arguably pragmatic approach is the introduction of non-canonical 157 

catalytic metal(-complexes) (i.e. artificial cofactors) into proteins using appropriate 158 

anchoring strategies (vide infra). Synthetic heme derivatives have been used in which 159 

either iron is replaced by metals including Mn, Co and Ir [11, 31, 44-46] or the structure 160 

of the porphyrin ligand is altered [44, 47]. Oohora et al. reconstituted myoglobin from 161 

horse heart with a Mn-porphycene cofactor to afford an ArM for the challenging 162 

hydroxylation of C(sp3)-H bonds [44]. The group of Hartwig recently introduced Ir-163 

containing heme into mutants of apo-myoglobin from Physeter macrocephalus creating 164 

ArMs for intramolecular C(sp3)-H insertion of carbenes and intermolecular carbene 165 

addition to olefins, albeit at low activities [45]. This concept was later improved using a 166 

thermophilic protein variant and directed evolution to afford highly active variants for 167 

carbene insertion into C(sp3)-H [46] and later extended to C-H amination [11]. Likewise, 168 

artificial cofactors without natural equivalent have been used. These are fully synthetic 169 

metal complexes with a suitable anchoring moiety for the specific localization in the 170 

corresponding protein. Lewis and colleagues covalently anchored dirhodium 171 

complexes in the �,�-barrel protein tHisF [48] and later in a prolyl oligopeptidase [49], 172 

yielding ArMs for cyclopropanation and Si-H bond insertion reactions. The latter host 173 

protein was evolved by iterative site-directed mutagenesis to a water-tolerant, 174 

enantioselective cyclopropanation enzyme [49]. Following pioneering works of 175 

Whitesides [4] several ArMs have been created relying on biotinylated transition metal 176 

cofactors and (strept-)avidin as the cognate host protein. Important recent reports 177 

exploiting this strategy are the creation of a rhodium ArM for asymmetric C-H activation 178 

by Hyster et al. [50], which exhibited nearly 100-fold rate acceleration compared to the 179 

free rhodium complex, as well as the combination of an iridium-based artificial transfer 180 

hydrogenase with several natural enzymes in one-pot reaction cascades by Köhler et 181 

al. [19]. Albeit in vitro, the latter represents an important step towards ArM application 182 

in complex reaction networks and artificial pathways. In vivo applications in mind, we 183 

have recently reported on the development and directed evolution of artificial 184 

metathases by combining a ruthenium-based cofactor with streptavidin in the 185 

periplasm of E. coli in aqueous medium under aerobic conditions [18]. Relying on the 186 

production of fluorescent umbelliferone by olefin metathesis, this enabled genetic 187 

optimization directly on whole cells without processing or purification of protein 188 
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variants, thereby significantly increasing the throughput. The resulting metathases 189 

exhibited significantly improved activities for the screening substrate, albeit at low 190 

TONs, and for other di-olefin compounds. 191 

Hence, the presented ensemble of recent developments in the ArM field (Table 1), 192 

while not comprehensive and likely subjective, emphasizes their potential for the 193 

creation of catalytic novelty in bio- and transition metal catalysis. 194 

 195 

 196 

Challenges for In Vivo Application of ArMs 197 

 198 

Despite significant recent advances, the in vivo implementation of ArMs imposes 199 

stringent challenges on chemists and metabolic engineers (Figure 2). Important 200 

obstacles include: i) choice of and expression strategy for the scaffold protein, ii) 201 

cellular uptake of metal cofactors, iii) intracellular ArM assembly, and iv) 202 

bioorthogonality of ArM (-reaction) and host cell (i.e. inhibition and cytotoxicity), which 203 

are individually discussed below. 204 

 205 

 206 

 207 
Figure 2. Critical challenges for in vivo implementation of ArMs. A number of obstacles need to be 208 
overcome in order to successfully implement ArMs in living cells. These include: i) the choice of the 209 
respective scaffold protein and appropriate ways for its expression, ii) cellular cofactor uptake and iii) 210 
subsequent assembly of the holoenzyme, as well as iv) considerations regarding the mutual interaction 211 
between the ArM and the host cell (i.e. inhibition and cytotoxicity). M: metal atom/ion, L: Ligand, 212 
GSH/GSSG: reduced/oxidized glutathione (disulfide). 213 
 214 
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Table 1. Key features of selected recent studies on ArM development 215 

Cofactora Proteina Anchoring Reaction Whole Cell 
Application Refs 

Repurposing 

Fe(III), heme 

Cytochrome 
P450/411BM3 

Non-
covalent 

Cyclopropanation of styrene 
derivatives 

No [13] 
Yes [16] 

Aziridination of aryl olefins Yes [29] 

C-H amination (intramolecular) 
Yes [30] 
No [32] 

C-H amination (intermolecular) Yes [33] 

Sulfimidation 
No [34] 
Yes [35] 

Carbene insertion into N-H Yes [36] 
Rhodothermus 
marinus 
cytochrome c  

Carbene insertion into Si-H Yes [12] 

Sperm whale 
myoglobin 

Cyclopropanation of styrene and 
other aryl olefins 

No 
Yes 

[28] 
[14] 

Cyclopropanation of trifluoromethyl 
substituted styrene and aryl olefins Yes [15] 

Carbene insertion into N-H No [37] 
Carbene insertion into S-H No [38] 
C-H amination (intramolecular) No [31] 

Fe(II), 
haloferryl 

Pseudomonas 
syringe B301D 
halogenase SyrB2 

Direct/ 
dative Azidation and nitration of C-H No [39] 

(Re-)design 

Zn(II) + Hg(II) Synthetic triple 
coiled coil 

Direct/ 
dative 

Hydrolysis of p-nitrophenyl acetate 
and CO2 hydration No [40] 

Zn(II) 

Synthetic triple 
coiled coil CO2 hydration No [42] 

Mouse adenosine 
deaminase Organophosphate hydrolysis No [43] 

Cytochrome cb562 β-lactam hydrolysis Yes [17] 
Artificial cofactors 

Mn(III), 
porphycene 

Horse heart 
myoglobin 

Non-
covalent 

Hydroxylation of C-H No [44] 

Ir(III)-(Me), 
heme 

Physeter 
macrocephalus 
myoglobin  

Carbene insertion into C-H and 
carbene olefin addition No [45] 

Sulfolobus 
solfataricus P450 
CYP119 

Carbene insertion into C-H No [46] 

C-H amination (intramolecular) No [11] 

di-Rh(II), tetra-
carboxylate 
complex 

Thermotoga	
maritima	tHisF 

covalent 

Cyclopropanation of styrene 
derivatives and carbene insertion 
into Si-H 

No [48] 

Pyrococcus 
furiosus prolyl 
oligopeptidase 

Cyclopropanation of styrene 
derivatives No [49] 

Rh(III), Cp*-
biotin 

Streptavidin 

Non-
covalent / 
supra-
molecular 

Asymmetric C-H activation No [50] 

Ir(III), Cp*-
biotin 

Artificial transfer hydrogenation 
(incl. cascades) No [19] 

Ru(II), 
Hoveyda-
Grubbs-biotin  

Olefin metathesis Yes [18] 

a in cases with multiple metals or screened proteins the most active or evolved ones are given 216 
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Scaffold Protein and Expression Strategy 217 

In principle, ArMs can be created from any scaffold protein into which the desired 218 

metal(-complex) can be anchored. Accordingly, several proteins from various host 219 

organisms have been used [5, 27]. In addition to practical requirements such as the 220 

ability to synthesize the protein in sufficiently high amounts (e.g. in E. coli), further 221 

considerations for scaffold selection apply for ArMs [6]. 222 

Stability under the required reaction conditions and evolvability are important 223 

requirements [6]. Therefore, proteins from thermophilic organisms are frequently 224 

selected as starting points for directed evolution campaigns because of their highly 225 

stable folds and tolerance to mutation [51, 52]. ArMs have recently been created from 226 

thermostable variants of a synthase from histidine biosynthesis [48, 53], a prolyl 227 

oligopeptidase [49], P450 cytochromes [11, 12, 46], and a cupin-like protein [54]. Other 228 

specifications can restrict the protein repertory further. Repurposing approaches, for 229 

instance, rely on intrinsic side reactivities, which sometimes requires screening to 230 

identify a suitable origin for directed evolution [12, 13]. Likewise, metal cofactor 231 

anchoring (vide infra) can limit the available range of candidate proteins significantly if 232 

inherent metal binding or affinity to supramolecular anchoring moieties is required. 233 

Once selected, the protein can be expressed in a desired host organism, which in the 234 

field of ArMs has thus far largely been performed in E. coli due to ease of cultivation 235 

and availability of versatile methods for genetic engineering. “Traditional” cytosolic 236 

expression is commonly used before purification using standard procedures (e.g. 237 

affinity chromatography). While useful to isolate preparative protein quantities, this 238 

strategy is not necessarily the best choice for whole cell and in vivo applications. In 239 

particular restricted cofactor uptake and inhibition of transition metal catalysis by 240 

cytosolic compounds may speak in favor of alternative production pathways like 241 

periplasmic or extracellular expression (vide infra). The former was successfully used 242 

by Song and Tezcan to create an artificial metallo-β-lactamase [17] and later by us to 243 

implement and evolve ArMs for olefin metathesis in E. coli [18].  244 

Although thus far largely under-appreciated in this specific context, other organisms 245 

may prove valuable, for instance for preparative ArM applications. The methylotrophic 246 

yeast Pichia pastoris, for example, is a potent, well-characterized host for high-yield 247 

secretory protein production, offers high solvent tolerance and access to cheap carbon 248 

and energy sources [55], and has been recently used for the production of a 249 
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streptavidin-based artificial imine reductase [56]. Similarly, other hosts including 250 

mammalian cells could facilitate future ArM development in vivo. 251 

 252 

Cofactor Uptake 253 

Another important aspect is cellular uptake of cofactors as a limitation for ArM usage 254 

in vivo in contrast to in vitro scenarios where the scaffold protein is freely accessible. 255 

In particular artificial cofactors with complex ligands frequently exceed the molecular 256 

weight exclusion cut-off of outer membrane porins (~600 Da) [57] and do not have 257 

access to a specific cellular uptake machinery like natural cofactors such as heme [58]. 258 

During our aforementioned study on artificial metathases, we identified the uptake of 259 

the ruthenium cofactor as a major bottleneck [18]. Although in vivo assembly and 260 

directed evolution was still feasible in spite of prevailing cofactor uptake limitations by 261 

adding surplus cofactor to the cells and subsequently eliminating excess by washing, 262 

a restricted cofactor uptake imposes major limitations for preparative whole cell and in 263 

vivo applications, since it reduces overall yield of the ArM reaction. Similar arguments 264 

may be made for non-permeable reaction substrates. 265 

In principle, uptake limitations can be overcome by different measures on both the 266 

chemical and biological side. They should be considered during initial cofactor design, 267 

and size reduction as well as chemical modification [59] are measures with potential to 268 

improve uptake. On the biological side, the scaffold protein can be expressed in the 269 

periplasm or on the cell surface to avoid requirement for cofactor transit through 270 

membranes (vide supra) [60]. Overexpression of suitable outer membrane transport 271 

proteins was shown to improve uptake of metal-substituted porphyrin derivatives [31, 272 

47, 61] and engineering of pore proteins may help to elevate the cut-off of the outer 273 

membrane [62]. Alternatively, the permeability of the cell envelope can be increased 274 

by chemical treatment. For E. coli we have observed improvement of cofactor uptake 275 

in presence of high salt concentrations, which are known to facilitate uptake of large 276 

compounds [63]. Wallace and Balskus suggested micelles to enhance 277 

cyclopropanation of styrene produced in situ by E. coli and suggest increased 278 

membrane permeability as contributing factor for the observed improvement [64]. 279 

 280 

Cofactor anchoring 281 

Quantitative and precise localization of metal cofactors within protein scaffolds is an 282 

important prerequisite to create functional and evolvable metalloenzymes. To this end, 283 
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several strategies have been pursued, which have been thoroughly reviewed 284 

previously (e.g. [3, 5, 6, 27]). While all of these strategies have successfully been 285 

applied in ArM assembly, they arguably differ significantly in view of their utility for 286 

whole cell and in vivo applications [60]. In this context, two main coupling modes, 287 

reactive covalent and spontaneous noncovalent coupling, can be distinguished. 288 

 289 

Reactive Coupling 290 

Covalent cofactor attachment to amino acid residues ensures stable anchoring and 291 

allows for a high degree of flexibility with respect to scaffold protein choice and metal 292 

positioning [5]. However, natural conjugative residues (lysine, cysteine) lack specificity 293 

in scenarios with multitudes of non-target proteins present in the reaction mixture 294 

where off-target binding is likely. To achieve bioorthogonality site-specific introduction 295 

of non-canonical residues by amber stop codon suppression can be used [65]. The 296 

group of Lewis introduced p-azido-L-phenylalanine within the pore of the �,�-barrel 297 

protein tHisF [48] and later within a prolyl oligopeptidase [49] to conjugate different 298 

artificial cofactors by copper-free click chemistry. An alternative way to achieve higher 299 

specificity is the exploitation of active site residues for bioconjugation [5]. Eppinger 300 

demonstrated the coupling of rhodium and ruthenium half-sandwich complexes to the 301 

nucleophilic active site cysteine of papain relying on inhibitors for this protein to ensure 302 

both efficient bond formation via a reactive epoxide moiety and precise positioning by 303 

non-covalent interaction [66]. This allowed for ArM assembly at substoichiometric 304 

cofactor-to-protein ratios and the creation of an enantioselective hydrogenation 305 

biocatalyst from achiral metal complexes. 306 

However, covalent ArM assembly in complex biological systems remains challenging. 307 

Major obstacles include limitations in biocompatibility (toxicity) and bioorthogonality 308 

(cross-reactivity), inefficiency of non-canonical residue introduction, and poor 309 

efficiency of the coupling reaction. The latter imposes the use of multiple cofactor 310 

equivalents to achieve quantitative protein conjugation [60]. 311 

 312 

Spontaneous Non-Covalent Coupling 313 

A conceptually different approach builds on anchoring of the metal(-complex) via 314 

noncovalent interactions. In analogy to many natural metalloenzymes, efforts for ArM 315 

creation have been reported that rely on the assembly of active sites by direct 316 

interaction of the metal with coordinating residues such as histidine [5, 27]. In this case 317 
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the metal’s first ligand sphere is partially or fully completed by the protein and assembly 318 

occurs spontaneously, rendering complicated and potentially detrimental reactive 319 

steps dispensable. To this end, ArMs can be created by re-purposing of natural metal-320 

binding sites, either building on catalytic promiscuity of the native metal or by 321 

reconstitution with nonnative metals. Particularly noteworthy studies include the 322 

computational redesign and directed evolution of a zinc deaminase to an 323 

organophosphate hydrolase [43] and the reconstitution of a manganese-binding 324 

protein from the cupin family with osmium(VI) resulting in a thermostable artificial 325 

peroxygenase with high TON [54]. Alternatively, metal centers can be created de novo 326 

based on existing or fully synthetic protein folds [17, 40, 42, 67]. Based on earlier works 327 

of Lee and Schultz [68], the group of Roelfes used amber suppression to introduce the 328 

non-canonical amino acid (2,2’-bipyridine-5yl)alanine into the transcription factor LmrR 329 

in vivo thereby creating an ArM for asymmetric Friedel-Crafts alkylation [69]. This 330 

bidentate ligand allows for straightforward site-specific introduction of metal-chelating 331 

capacity simplifying active site creation by dative interaction. 332 

The natural prosthetic group heme as well as synthetic derivatives thereof have been 333 

extensively studied in the context of enzyme re-purposing and ArM creation (for 334 

comprehensive reviews please refer to [3, 7, 27]). Arguably, natural heme proteins and 335 

enzymes exhibit high affinity and specificity for the porphyrin scaffold, which renders 336 

holoenzyme assembly comparably simple. This has been exploited for ArM creation 337 

relying either on catalytic promiscuity of natural iron cofactor [12-16, 28, 29, 31, 33, 38] 338 

or by introducing synthetic derivatives of the latter [11, 31, 44-47]. Moreover, the 339 

available natural transport machinery for heme may be exploited to enhance cofactor 340 

uptake (vide supra) [47]. Importantly, reconstitution of proteins with non-native metals 341 

requires either ability to directly express the apoprotein or to retrieve it by removal of 342 

bound metal ex post (e.g. by dialysis) [5]. This premise, which stems from the lower 343 

affinity of non-native versus native metal, imposes additional challenges on the in vivo 344 

assembly of these ArMs. To overcome this limitation, Brustad and colleagues evolved 345 

a cytochrome P450 variant that selectively binds non-proteinogenic iron 346 

deuteroporphyrin IX in vivo over endogenous heme, thereby creating an orthogonal 347 

enzyme-cofactor pair [47]. 348 

Lastly, introduction of catalytic metals into proteins has been achieved via high-affinity 349 

protein-ligand interaction frequently referred to as supramolecular or “Trojan horse” 350 

strategy [5]. Although this approach limits the scope of target proteins to those that 351 
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exhibit sufficiently strong interaction with suitable anchoring moieties, it has several 352 

compelling assets for in vivo applications [60]: First, assembly occurs spontaneously 353 

upon mixing of scaffold protein and cofactor in solution without reactive coupling or 354 

prior binding site design and optimization. Second, metal anchoring is specific and 355 

essentially quantitative even at equimolar protein-cofactor ratios (provided sufficient 356 

affinity). And third, modular separation of catalytic and anchoring moiety allows for 357 

facile exchange of host proteins for given catalysts and similarly swapping of catalytic 358 

functionality in the same scaffold. Amongst supramolecular approaches the (strept-359 

)avidin-biotin technology is likely the most widespread and versatile one. This may be 360 

traced back to: i) the nearly irreversible biotin binding (KD ~ 10-14 M), which is exploited 361 

in several applications outside the domain of ArMs and ii) high chemical and physical 362 

stability of (strept-)avidin. These properties have led to a diverse array of ArMs with 363 

several catalytic metals and target reactions, which has been reviewed elsewhere (e.g. 364 

[3, 5]). Furthermore, other protein-ligand pairs have been used for ArM construction 365 

including carbonic anhydrase and cognate sulfonamide inhibitors [70, 71], xylanase 366 

with carboxylated porphyrin derivatives [72, 73], and β-lactoglobulin and aliphatic 367 

chains [74]. 368 

 369 

Inhibition and Toxicity 370 

In contrast to defined in vitro scenarios, ArM application in vivo requires consideration 371 

of mutual interactions between the (ideally bio-orthogonal) ArM and the host. This 372 

comprises inhibition of catalysis by cellular components as well as toxicity of the ArM 373 

(reaction) against the host cell. Glutathione has been identified as a major inhibitor of 374 

transition metal reactions in cell lysates [18, 75], likely due to formation of metal-thiolate 375 

complexes, and other cell-derived agents such as proteins, nucleic acids and reactive 376 

or chelating metabolites come to mind as potential poisons. While shielding of the 377 

cofactor by the protein can enhance stability [18, 49]), additional measures are 378 

required to avoid the said limitations. Quenchers can diminish inhibition, which has 379 

been capitalized on using diamide to oxidize thiols in cell lysates in ArM-catalyzed 380 

asymmetric transfer hydrogenation [75] or by application of reducing agents (e.g. 381 

sodium dithionite) and anaerobic conditions for oxygen-sensitive reactions [12, 13, 16, 382 

28, 38]. However, biocompatibility of the quencher has to be taken into account for in 383 

vivo applications. Alternatively, placing the ArM in another compartment, the 384 

periplasm, whose oxidative environment lacks large amounts of free thiols and other 385 
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potentially detrimental agents from the cytosol, has been succesfully used for ArM 386 

development [17, 18, 60]. 387 

Besides catalyst poisoning, cytotoxicity is a major barrier hindering in vivo applicability 388 

of many ArM reactions. It can be caused by the ArM as such, by substrates, 389 

intermediates and products of the corresponding reaction, or by additives. Notably, 390 

some recent works in the ArM field involve biotransformations with whole cells of 391 

E. coli, which has the potential to simplify production and represents a first step 392 

towards in vivo utilization. However, most of these studies apply conditions limiting 393 

their in vivo utility including the presence of significant amounts of cytotoxic agents 394 

such as organic solvents, styrene (derivatives), diazo compounds, and azides as well 395 

as strict anaerobic conditions enforced by oxygen stripping and reductants. 396 

Use of biocompatible solvents such as dimethyl sulfoxide, stepwise substrate addition, 397 

and in situ product removal can help to mitigate toxic effects. To this end, vitamin E-398 

derived micelles were shown to elevate styrene production in E. coli beyond toxicity 399 

limits, which was exploited for iron-catalyzed in situ cyclopropanation (no ArM) under 400 

aerobic conditions [64, 76]. The group of Fasan recently reported on a two-vessel setup 401 

for ex situ generation of highly toxic and volatile 2-diazo-1,1,1-trifluoroethane, which 402 

was used as carbene donor in myoglobin-catalyzed cyclopropanation of styrene 403 

derivatives using E. coli cells [15]. 404 

Importantly, due to a plethora of potential contributors to the global phenomenon of 405 

cytotoxicity, it is arguably difficult to address in a generic manner, and careful 406 

evaluation is necessary for individual ArMs. 407 

 408 

Concluding Remarks and Future Perspectives 409 

 410 

As highlighted in this synopsis, ArMs constitute a promising technology merging crucial 411 

assets of transition metal catalysis and enzymology, which can be exploited to create 412 

new biocatalysts for organic synthesis and to expand Nature’s enzymatic arsenal. 413 

From the chemist’s viewpoint, this concept can be readily applied for transformations 414 

of ever increasing intricacy and with efficiencies approaching economic viability. On 415 

the contrary, the synthetic biology angle has hitherto been largely underappreciated, 416 

very likely due to limitations of ArM applicability in living cells. 417 

Full integration of ArMs into metabolic networks of cells, however, holds great promises 418 

for future applications. Firstly, it will allow to apply the entire potential of laboratory 419 
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evolution to these new biocatalysts, which will dramatically increase pace and 420 

throughput of optimization and enable the development of ArMs with highly improved 421 

and entirely novel catalytic properties. To this end, ArMs could be subjected to high-422 

throughput screening assays without the need for extensive processing procedures 423 

[18]. Moreover, Darwinian selection schemes, in which ArM reactions are causally 424 

coupled to the survival or proliferation of the host organism, could be applied, which 425 

enables retrieval of improved variants from extremely large pools via competitive one-426 

pot growth experiments. Second, in vivo integration of new reactivities by ArMs (and 427 

other artificial enzymes) will eventually allow for implementation of novel metabolic 428 

routes for sustainable production of previously inaccessible chemicals from renewable 429 

feedstocks [77-79]. Lastly, beyond the aforementioned synthetic applications, 430 

transition metal catalysis and consequently ArMs could be used for biochemical and 431 

medical applications, which was not outlined herein but elaborated on elsewhere (e.g. 432 

[24, 25, 80]). 433 

In quintessence, the assimilation of ArMs by living cells is a highly auspicious, yet 434 

challenging, endeavor and may contribute to a future “fourth wave” of biocatalysis 435 

following Bornscheuer’s metaphor [1]. 436 

 437 

<Outstanding Questions Box> 438 

What are the most pressing chemical challenges that ArMs could solve? 439 

Will ArMs be able to make it “out of the niche” by outcompeting small molecule 440 

catalysts in large scales and for wide applications in the near future and can they 441 

contribute to the transition towards a sustainable, bio-based economy? 442 

Can we combine multiple ArMs and natural enzymes with each other to engineer entire 443 

artificial pathways in living organisms, which lead to the production of previously 444 

inaccessible bio-products and what will the latter look like? 445 

Is it possible to systematically install functional ArMs in living organisms that are 446 

propagating in the presence of the ArM reaction or even benefit from it and what is the 447 

potential of bringing non-natural metals (e.g. iridium, ruthenium, rhodium, palladium, 448 

gold, osmium etc.) into synthetic biology? 449 

Will we be able to establish biosynthesis of non-canonical cofactors to render their 450 

addition to the cells obsolete? 451 

What is the potential of in vivo utilization of ArMs beyond bio-production and 452 

preparative chemistry? <\Outstanding Questions Box> 453 
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