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ABSTRACT 

Background: Traffic noise has been associated with an increased risk for several non-auditory 

health effects, which may be explained by a noise-induced release of stress hormones (e.g. 

glucocorticoids). Although several studies in children and adults have indicated an increased 

secretion of glucocorticoids after exposure to noise, information regarding newborns is scarce. 

Objectives: To investigate the association between residential exposure to road traffic noise and 

postnatal stress response, as assessed by the concentration of glucocorticoids at five weeks of age. 

Methods: Residential noise exposure was estimated for each infant based on spatially detailed 

modeled data. Adjusted multivariable linear regression models were used to estimate the association 

between noise exposure and the concentration of nine glucocorticoid metabolites measured in urine 

of 165 infants from a prospective birth cohort in Bern, Switzerland. Noise exposure (Lden, dB) was 

categorized into tertiles: low (reference), medium and high. 

Results: Indications of a positive association were found between high road traffic noise and cortisol 

(% change relative to the reference: 12.1% [95% confidence interval: -10.3, 40.1%]) and cortisone 

(22.6% [-1.8, 53.0%]), but just the latter was borderline significant. Borderline significant 

associations were also found between downstream metabolites and higher road traffic noise levels; 

associations were found to be both positive (i.e. for β-cortolone (51.5% [-0.9, 131.5%])) and 

negative (i.e. for α-cortolone (-18.3% [-33.6, 0.6%]) and tetrahydrocortisol (-23.7% [-42.8, 1.9%])). 

Conclusions: Our findings suggest a potential association between exposure to higher road traffic 

noise levels and changes in glucocorticoid metabolism in early postnatal life. A possible 

physiological relevance and associations with short- and long-term adverse health effects in a larger 

study population need to be further investigated. 

 

Keywords: Road traffic; Noise; Glucocorticoids; Cortisol; Postnatal stress; Environmental stressors  
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1. Introduction  

In the past few decades, there has been a growing concern about possible health impacts of 

environmental noise from different sources, such as industry, neighbors and transportation. As one of 

the most widespread sources of environmental stress (i.e. adverse stimulus caused by environmental 

conditions which require adaptation or coping measurements (Campbell 1983)), noise from 

transportation is considered a major threat for public health. Transportation noise has been identified 

as a major contributor to the environmental burden of disease in Europe (Hänninen et al. 2014; WHO 

2011), and a recent evaluation in Switzerland found that the burden of transportation noise (when 

quantified in monetary terms) was equal to that of air pollution (Vienneau et al. 2015b).  

Studies have demonstrated an association between exposure to transportation noise and an increased 

risk for several non-auditory health effects in adults, including reduced quality of life (Dratva et al. 

2010; Héritier et al. 2014), hypertension (Haralabidis et al. 2008; Paunović et al. 2014; van Kempen 

and Babisch 2012), ischemic heart disease (Babisch 2014; Héritier et al. 2017; Seidler et al. 2016; 

Sørensen et al. 2012; Vienneau et al. 2015a), respiratory health (Recio et al. 2016b), and diabetes 

(Eze et al. 2017; Sørensen et al. 2013). In relation to studies in children, most are focused on blood 

pressure (Babisch et al. 2009; Belojevic et al. 2008), cognitive function (Haines et al. 2001; Stansfeld 

et al. 2017) and respiratory outcomes (Ising et al. 2003, 2004a, 2004b).  

Noise induced health effects are postulated to occur through the activation of either a direct or 

indirect pathway (Münzel et al. 2016). In the direct pathway, noise may directly trigger an 

instantaneous activation of the central nervous system; in the indirect pathway stress markers may be 

activated through annoyance (Babisch 2002). Regardless of the pathway, it is suggested that noise 

exposure may be associated with stress responses, characterized by activation of the neuroendocrine 

system (i.e. hypothalamus-pituitary-adrenal (HPA) axis and sympathetic-adrenal-medulla axis), and 

a subsequent release of stress hormones, e.g. glucocorticoids.  
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The stimulation of glucocorticoid production results in several regulatory effects on physiological 

functions in the human body. The secretion of glucocorticoids induces immune responses, and might 

act on both the production of cytokines and lymphocyte proliferation (Dobbs et al. 1996). 

Overproduction of glucocorticoids also affects blood glucose levels by inhibiting insulin secretion 

and increases the concentration of lipids and lipoproteins (e.g. cholesterol and triglycerides) (Aich et 

al. 2009; Qureshi et al. 2009; Recio et al. 2016a).  

A number of studies have empirically demonstrated associations between exposure to transportation 

noise and stress-induced secretion of glucocorticoids, mostly cortisol. For instance, Ising et al. 

(2004b) and Wagner et al. (2010) showed an association between elevated salivary cortisol levels 

and traffic noise in children and adults, respectively. Furthermore, an association between morning 

saliva cortisol levels in women and aircraft noise exposure above 60 dB was reported by Selander et 

al. (2009). Lefèvre et al. (2017), on the other hand, only found an association between noise and 

elevated evening cortisol levels, but not morning cortisol levels, in adults living in the vicinity of 

three large airports in France. While the association is well reported in children and adults, this has 

never been investigated in newborn infants who are particularly vulnerable to environmental 

exposures and likely to experience long term effects.  

We aimed to investigate the association between residential exposure to road traffic noise (during 

and shortly after pregnancy) and postnatal stress responses, as assessed by the concentration of 

glucocorticoid metabolites measured in urine from infants at five weeks of age.  

2. Materials and Methods 

2.1 Study design and subjects 

This study included a subgroup of 205 healthy infants from the prospective Basel-Bern Infant Lung 

Development (BILD) birth cohort, recruited antenatally between 2005 and 2011 in the region of 



6 
 

Bern, Switzerland. We determined the residential history during pregnancy and after birth, and 

assessed pre- and early postnatal risk factors (e.g. tobacco smoke exposure, socio-economic status, 

delivery mode) (Bradley and Corwyn 2002; Floyd et al. 1993; Latimer et al. 2012; Rice et al. 2007) 

via standardized questionnaires (Fuchs et al. 2012). Addresses were geocoded using a reference file 

from the Swiss Federal Statistical Office (Neuchâtel). Exclusion criteria for the study were delivery 

< 35 weeks gestational age and problems during the extraction of urine samples and/or analysis. The 

study was approved by the Ethics Committee of Bern, Switzerland. Written informed consent was 

obtained from parents before enrollment. 

2.2 Exposure assessment 

Noise exposure assessment in this study was based on detailed noise modeling for the year of 2011 

from the SiRENE (Short and Long Term Effects of Traffic Noise Exposure) study. The SiRENE 

noise modeling and database is fully described elsewhere (Karipidis et al. 2014). In brief, emissions 

and propagation for road traffic noise were respectively calculated using sonROAD (Heutschi 2004) 

and the propagation model of StL-86 (OFPE 1987). The SiRENE database includes road traffic noise 

estimates in decibels (dB) for façade points for each dwelling in every building in Switzerland. Data 

(VECTOR25) from the Swiss Federal Office of Topography (Swisstopo 2007) were used to 

characterize the buildings and dwelling units from the period of 1998 to 2006, with height and 

number of floors for each building estimated by a digital surface model, combined with a digital 

terrain model for Switzerland. Road traffic noise was calculated at a maximum of 3 façade points per 

building façade and floor, with a minimum spacing distance of 5 meters.  

The noise exposure metrics used in our study included: Lden, i.e., the average sound level over all 

24h periods of a year, with a 5 dB penalty for the evening (19:00 – 23:00) and a 10 dB penalty for 

the night (23:00 – 07:00) hours; and LeqD and LeqN, which respectively represent the average 

sound level over all day (07:00 – 23:00) and night (23:00 – 07:00) periods of a year. While the 
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SiRENE database gives exposure estimates by floor, no residential floor information was available 

for the BILD study participants. We therefore assigned exposure from the middle floor of the 

relevant residential building (i.e. based on residential geocode only). Specifically, noise levels from 

the façade point with the maximum Lden for each participant were assigned, i.e. selected the most 

exposed façade point for the residential unit based on the Lden. Exposure variables were censored at 

35 dB (Lden, LeqD) or 25 dB (LeqN) to account for background noise from diffuse sources.  

Since traffic-related air pollution was shown to affect glucocorticoid metabolism (Rüedi et al. 2013), 

we also assessed residential nitrogen dioxide (NO2 in µg/m3) exposure averaged for the in-utero 

period of each infant. We estimated NO2 exposure using a time-space hybrid model specifically 

developed for the BILD study based on ~29,000 measurements at 146 locations (during the period of 

1998-2009). Predictor data included annual NO2 from dispersion models, traffic, land use and 

meteorological variables. The model was validated using passive measurements at participant’s 

homes, with validation R2s ranging from 0.54 in rural areas to 0.67 in urban areas (Proietti et al. 

2016).  

2.3 Outcome assessment 

To assess urinary glucocorticoid levels, parents presented to University Hospital of Bern, 

Switzerland, with their infant at five weeks of age (hereby referred as “newborns”) for a routine 

clinical visit (Fuchs et al. 2012). A cotton pad was placed into the regular diaper from which the 

urine spot was extracted by study nurses. Within 24 hours, the urine was centrifuged out from the 

cotton pad at 4378 rpm for 8 minutes at room temperature (Multifuge 3SR+, Thermo Fisher 

Scientific) and immediately stored at −20 °C. After sample processing (i.e. pre-extraction, enzymatic 

hydrolysis, extraction from the hydrolysis mixture, derivatization, gel filtration), gas 

chromatography-mass spectrometry was carried out to quantitate the different stress hormones as 

previously described (Dhayat et al. 2015; Garde et al. 2004; Shackleton 1986). This work was 
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conducted at the Department of Nephrology, Hypertension and Clinical Pharmacology, University 

Hospital of Bern, Switzerland, using a gas chromatograph 7890A from Agilent Technologies (La 

Jolla, California, USA) coupled to a mass selective detector (Hewlett-Packard 5975C). Measured 

steroids were then standardized to urinary creatinine concentration (QuantiChrom Creatinine Assay, 

DICT-500; BioAssay Systems, Hayward, CA, USA) and expressed in μg/mmol creatinine (Dhayat et 

al. 2015; Garde et al. 2004). Validity and stability of this urine collection method for steroid analyses 

have been previously reported (Heckmann et al. 2005; Mazzarino et al. 2011; Thomas 2010). 

Minimal urine volume required for steroid analysis was 200 µl, standard volume was 1.5 ml; for 

creatinine measurement 5 µl urine was used. The assay variability for the steroid metabolites was 

between 15-22%, as previously reported (N’Gankan et al. 2002; Quattropani et al. 2001; Vogt et al. 

2002). 

2.4 Statistical analysis 

We restricted our analysis to the nine glucocorticoid metabolites that were detectable in our study 

population: eight were detectable in the urine of all the study newborns (cortisol, cortisone, 5α-

tetrahydrocortisol (α-THF), tetrahydrocortisol (THF), α-cortol, tetrahydrocortisone (THE), α-

cortolone and β-cortolone) and the ninth had negligible missing data (β-cortol, for which only two of 

165 observations were missing). Since the distribution of concentrations for many of the 

glucocorticoid metabolites was strongly right-skewed, data were normalized by natural logarithmic 

transformation.  

Multivariable linear regression models were used to evaluate the association between road traffic 

noise and: 1) the concentration of each glucocorticoid metabolite; 2) the sum of cortisol (the most 

abundant endogenous glucocorticoid and primary hormone responsible for stress responses) and 

cortisone (the inactive form); 3) the total sum of the nine glucocorticoid metabolites measured. The 
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noise exposure variables were categorized into tertiles (subsequently referred to as “low”, “medium” 

and “high” categories). 

All models were calculated unadjusted (i.e. crude), adjusted for anthropometric factors including sex, 

gestational age and weight at the time of urine sample (i.e. basic) and further adjusted for potential 

confounders (i.e. full) identified in previous studies as relevant risk factors (Dhayat et al. 2015; 

Rüedi et al. 2013): delivery mode; pathological cardiotocogram (CTG); maternal smoking during 

pregnancy; educational status of the mother; season at birth; vaginal infection; maternal atopy; NO2 

exposure during pregnancy; and existence of older siblings. We used backwards step selection, 

retaining all statistically significant variables (p < 0.1) or variables that, when removed, changed the 

risk estimate by at least 10% of the previous value. 

Associations were considered statistically significant when p-value < 0.05 and borderline statistically 

significant when 0.05 ≤ p-value < 0.1.  All statistical analyses were performed in R software (version 

3.1.2). 

3. Results 

3. 1 Summary statistics 

From the 205 enrolled newborns, we excluded those with low gestational age (n = 2), jellified urine 

samples (n = 35) and unreadable chromatogram (n = 3), giving a total sample of 165 (80.5%) 

newborns. Of those, 88 (53%) were male, the mean (SD) gestational age was 39.5 (1.3) weeks and 

weight at the time of the urine sample was 4.3 (0.6) kg. There were 21% of the newborns delivered 

by Cesarean section and 5% of the mothers smoked during pregnancy (Table 1). The median long-

term exposure to road traffic noise was 52.4 dB(A) for LeqD, 45.6 dB(A) for LeqN and 54.4 dB 

Lden (Table 2). The exposure distribution (for Lden) for the study population was similar compared 

to the general population, especially in the high category population (data not shown). The cortisol 
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and cortisone concentration (in μg/mmol creatinine) measured from urine were 109.5 (72.4) and 

352.8 (205.8), respectively. Details on the 9 glucocorticoid metabolites are provided in Table 3. It 

should be noted that compared to glucocorticoid levels measured in another health study population 

(Dhayat et al. 2015) the levels in our cohort were systematically higher (Table 3). Reasons 

underlying this difference may be due to different sampling strategies. 

<< Table 1 hereabouts >> 

<< Table 2 hereabouts >> 

<< Table 3 hereabouts >> 

Noise and NO2 exposure during pregnancy showed low correlation coefficients (r = 0.33 for all 

exposure metrics, i.e. LeqD, LeqN and Lden). Additionally, all noise exposure metrics were highly 

correlated with each other (Pearson’s correlation (r) ranged between 0.99 and 1.00). Therefore, 

association results between glucocorticoid concentration and noise are only shown for Lden, as it is 

the aggregated noise metric, representing noise levels over all 24hr periods in a year. 

3.2 Association between road traffic noise (Lden) and glucocorticoid metabolite concentration 

Though not statistically significant, we observed indications of a positive association between road 

traffic noise exposure in the high category compared to low (reference) exposure category with 

cortisol (%change = 12.1% [95%CI: -10.3, 40.1%], p-value = 0.316). Newborns exposed in the high 

noise category showed borderline significant higher levels of cortisone compared to the reference 

(22.6% [-1.8, 53.0], p-value = 0.074) (Figure 1, Table 4). For the downstream metabolites, road 

traffic noise exposure was shown to be borderline associated with higher concentrations of β-

cortolone for newborns in the high exposed category (51.5% [-0.9, 131.5], p-value = 0.057), whereas 

the borderline associations were in the opposite direction for α-cortolone (-18.3% [-33.6, 0.6], p-

value = 0.059) and THF (-23.7% [-42.8, 1.9], p-value = 0.069) concentrations.  
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Our findings also indicate a positive relationship between noise in the high exposure category, 

compared to the reference, and the sum of cortisol and cortisone, although this was not statistically 

significant (p = 0.103). We found no association between noise exposure and the total sum of the 

nine glucocorticoids. In general, similar results were obtained for the crude and basic models (Table 

4). 

<< Figure 1 hereabouts >> 

<< Table 4 hereabouts >> 

4. Discussion  

In this study of healthy newborns, we found some indications of associations between higher road 

traffic noise exposure as an environmental stressor and several of the glucocorticoids measured in 

urine; these associations were only borderline statistically significant. Overall steroid production, as 

assessed by the sum of the nine glucocorticoid metabolites, was not associated with higher road 

traffic noise exposure. On the other hand, we found a non-significant but positive relationship 

between higher road traffic noise and the sum of cortisol and cortisone. 

Cortisol is produced in the adrenal cortex after stimulation through the HPA axis (Figure 2). This 

hormone is the most relevant glucocorticoid in humans since it is the main substrate which exerts 

biological effects by binding to the glucocorticoid receptor. The biological inactive form of cortisol is 

cortisone, but the two are interconvertible. The conversion between the two metabolites is achieved 

in many peripheral tissues by two enzymes: 11β-hydroxysteroid dehydrogenase (HSD) type 1 

converts cortisol to cortisone, and 11β-HSD type 2 does the opposite. These glucocorticoids are 

metabolized to downstream products and excreted in the urine (Dhayat et al. 2015; Oakley and 

Cidlowski, 2013).  
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Compared to the reference, we found exposure in the highest road traffic noise category was 

borderline significantly associated with higher concentrations of cortisone only; cortisol was not 

associated with higher noise levels though the point estimate was also positive. That one of these 

metabolites is borderline significant may indicate that road traffic noise may increase glucocorticoid 

production, suggesting a potential activation of the HPA axis, as proposed by previous studies (Ising 

et al. 2004b; Lefèvre et al 2017; Selander et al. 2009; Wagner et al. 2010). However, we also 

investigated downstream metabolites and found no robust increase. We found borderline significant 

positive associations between higher road traffic noise and β-cortolone concentration, while 

borderline significant negative associations were found for THF and α-cortolone.  

<< Figure 2 hereabouts >> 

There are several mechanisms which can modify glucocorticoid concentrations at the level of 

production or metabolism. These include expression and activation of enzymes that catalyze substrate 

to product conversions in the steroid pathways (Miller and Auchus 2011). It could be speculated that 

noise exposure modifies the amount of glucocorticoid production by directly changing the HPA axis 

activity. This hypothesis seems rather unlikely since the total amount of steroids (as assessed by the 

sum of the nine glucocorticoids) did not increase. It may rather be that noise exposure modifies the 

enzymes’ activity indirectly. For example, noise exposure could change the levels of reactive oxygen 

species (ROS), which may further modify glucocorticoid biosynthesis. This has been previously 

shown by Ohlemiller et al. (1999) who observed increased ROS activity in the cochlear after noise 

exposure. As this hypothesis cannot be directly confirmed from our data, further mechanistic studies 

are recommended to assess how noise exposure causes its effects.  

The precise exposure window related to the changes in glucocorticoid concentrations observed in our 

study is still unclear, i.e. whether the change in concentrations was related to maternal stress 

responses during pregnancy or stressful events in early infancy. Regardless of the uncertainty about 
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the relevant exposure time, our results indicate that newborn infants exposed to higher levels of road 

traffic noise had borderline significant higher levels of the main glucocorticoid metabolite cortisone. 

This could indicate that road traffic noise exposure may act as a potential environmental stressor in 

early postnatal life. It is worthwhile noting that other stressful factors, e.g. birth events, may also 

produce effects on the HPA axis. 

It remains unclear if our findings have a possible physiological relevance later in life. It has been 

previously suggested that both fetal and early postnatal life environment are important determinants 

of some diseases in adults. Although exposure to higher levels of glucocorticoids may result in 

beneficial short-term metabolic consequences, excess is related to increased blood pressure and 

alterations of the glucose metabolism in the long term (Edwards et al. 1996). These effects can persist 

and increase the risk of cardiovascular, metabolic, neuroendocrine and behavioral disorders later in 

life (Barker 1995; Barker et al. 1989; Seckl 2001). Studies in rats have suggested that increased fetal 

exposure to glucocorticoids may explain higher risks of hypertension (Benediktsson et al. 1993), 

diabetes (Nyirenda et al. 1998) and endocrine system alterations (Barbazanges et al. 1996) in 

adulthood.  

Strengths and limitations 

One of the main strengths of our study is the standardized assessment of detailed prenatal risk 

factors, enabling us to control for potential confounders. Glucocorticoid measurements were all 

performed at the same time point (five weeks of age), eliminating a known age-dependent impact on 

measurements (Dhayat et al. 2015). The exact time (hour) of day for the urine sampling was not 

standardized. However, as neonates do not have the typical adult-type day-night rhythm at the age 

investigated (Iwata et al. 2013) we consider that our sampling method did not influence our findings. 

Measurements included a large batch of glucocorticoid metabolites, rather than only one prominent 

metabolite, e.g. cortisol. This batch analysis correlates well with the entire amount of glucocorticoids 
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in the body, and represents well the infants’ physiological stress response due to road traffic noise, as 

assessed in this study. 

Our multivariable linear regression models were adjusted for air pollution which, while not highly 

correlated in our study, can be correlated with traffic noise due to the common source. We also used 

spatially detailed noise and air pollution models in assigning individual level exposures at the home 

address. Due to the high correlation among the noise metrics (Pearson’s correlation > 0.99 for all 

combinations of LeqD, LeqN and Lden), we cannot assess if day or night exposure is more 

influential on change in glucocorticoid concentrations. Our exposure further represents the longer-

term average rather than road traffic noise specifically for pregnancy and five weeks after birth. This 

is considered adequate given that daily fluctuations in noise levels are similar day-to-day, and noise 

is less influenced by meteorology than air pollution. Further, it was not feasible to employ spot noise 

measurements for this study. We also did not have information on the working address of the mother 

during pregnancy. However, in this study we assume that night-time noise is most critical for 

potential health effects during the pre-natal period. It seems unlikely that noise at work is strongly 

correlated to night-time noise (except through factors already included in the confounding 

adjustments) and thus confounding from noise at work is unlikely to be relevant for our analysis. 

Additionally, data on perinatal and early postnatal noise exposure was not available; but, as we only 

included healthy newborns in our cohort without complications during delivery, the average stay in 

the hospital was only 1-3 days. Therefore, the impact of noise exposure during this short time 

interval, compared to the whole study period, was likely not very substantial.  

Detailed information on the floor where the residence was located was not available, reducing 

precise assessment of the noise exposure. However, as illustrated by Karipidis et al. (2014), noise 

levels on the highest exposed side of a typical residential building change only slightly with floor 

height. Further, only 13.3% participants resided in buildings taller than three floors, thus our 

assumption of the middle building floor is reasonable for most participants. As in most studies, noise 
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exposure was only assessed at home and we further did not have information on window opening 

behavior, placement of the infant’s sleeping room, or amount of time spent outside the home. This 

last point is less relevant for the newborns included in this study since healthy babies in Switzerland 

are typically cared for by mothers at home after a brief hospital stay. Mothers and infants may of 

course spend some daytime hours outdoors, but we also adjusted for season of birth to account for 

potential differences in exposure due to outdoor activity and window opening behavior.  

It may also be viewed as a limitation that glucocorticoid metabolites were assessed at one time point 

(5 weeks of age), and are therefore just snap-shot. This should be considered in the interpretation of 

our results, given the possible short-term physiologic alterations during the first year of life (Dhayat 

et al. 2015). Only by longitudinal assessment of exposure based on measurements, in line with 

repeated measurements of glucocorticoid metabolites, are conclusions on a sustained and 

physiologically relevant effect of road traffic noise exposure upon glucocorticoid metabolites 

possible. Finally, we recognize our small sample size which may explain the large confidence 

intervals and borderline significant associations.  

5. Conclusions 

Though not reaching statistical significance, our study suggests a potential relationship between road 

traffic noise exposure and glucocorticoid metabolism in early postnatal life. Further prospective 

studies in larger pediatric samples are needed to better understand the clinical relevance of our 

indicative findings, especially in subjects exposed to high noise levels where potential adverse 

effects may be more relevant. 
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Table 1: Demographic data for the 165 newborns. 

 

Notes: 
a Result is given in mean ± standard deviation  
b Result is given in number (%) 
  

 Summary statistics 
Anthropometric data  
    Gestational age at birth (weeks) a 39.5 ± 1.3 
    Weight at the time of urine collection (kg) a 4.3  ± 0.6 
    Length at the time of urine collection (cm) a 54.2 ± 2.0 
    Sex (male) b 88 (53) 
Family history  
    Maternal education (low) b 30 (18) 
    Maternal education (medium) b 56 (34) 
    Maternal education (high) b 79 (48) 
    Older siblings b 97 (59) 
Pregnancy history - 
    Caesarean section b 34 (21) 
    Vaginal infection during pregnancy b 42 (25) 
    Maternal smoking during pregnancy b  8 (5) 
    Pathological cardiotocogram b 18 (11) 
    NO2 exposure during pregnancy (µg/m3) a 17.1 ± 5.3 
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Table 2: Noise exposure data for the 165 newborn. 

 Median IQR Range for tertiles 
T1 T2 T3 

 LeqD (day) road noise exposure (dB(A)) 52.4  45.4 – 57.9 35.0 – 46.8 46.9 – 56.2 56.3 – 69.5 
 LeqN (night) road noise exposure (dB(A)) 45.6  38.2 – 50.7 25.0 – 39.5 39.6 – 49.0 49.1 – 62.4 
 Lden road noise exposure (dB) 54.4 47.0 – 59.6 35.0 – 48.4 48.5 – 57.9 58.0 – 71.2 
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Table 3: Glucocorticoid metabolite concentrations (in μg/mmol creatinine) in newborns. 

Metabolite a Mean ± SD IQR 
Cortisol 109.5 ± 72.4 63.2 – 122.6 
Cortisone 352.8 ± 205.8 196.4 – 461.0 
5α-Tetrahydrocortisol (α-THF) 55.8 ± 53.6 23.0 – 75.2 
Tetrahydrocortisol (THF) 31.1 ± 63.1 12.7 – 28.2 
α-Cortol 181.3 ± 178.8 64.6 – 233.6 
β-Cortol 72.3 ± 109.3 33.4 – 70.4 
Tetrahydrocortisone (THE) 1632.0 ± 844.4 986.0 – 2053.0 
α-Cortolone 227.8 ± 125.0 139.2 – 298.6 
β-Cortolone 691.6 ± 395.1 413.8 – 917.4 

Notes: 
a. Glucocorticoid metabolite concentrations were measured for all newborns (n = 165), except for β-cortol (n 
= 163) 
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Table 4: Association between road traffic noise (determined by Lden) and concentrations of 
glucocorticoid metabolites a 

Cortisol 
metabolite 

 Crude model Basic model b Adjusted model c 
 Noise exposure (Lden) level d Noise exposure (Lden) level d Noise exposure (Lden) level d 
 Medium High Medium High Medium High 

Cortisol %change 2.8 (-16.2, 26.1) 15.9 (-5.7, 42.5) 3.8 (-15.1, 26.9) 15.2 (-6.5, 41.9) 0.1 (-19.2, 24.0) 12.1 (-10.3, 40.1) 
p-value 0.795 0.162 0.717 0.185 0.991 0.316 

Cortisone %change 4.6 (-14.7,  28.1) 22.4 (-0.3, 50.2) 5.5 (-13.8, 29.1) 22.8 (-0.4, 51.3) 2.8 (-16.9, 27.2) 22.6 (-1.8, 53.0) 
 p-value 0.666 0.055 0.604 0.056 0.797 0.074 
5α-Tetrahydrocortisol 
(α-THF) 

%change -6.47 (-31.4, 27.5) -2.7 (-28.8, 33.0) -6.7 (-31.8, 27.5) -4.4 (-30.8, 32.2) -5.9 (-32.0, 30.1) -13.8 (-38.5, 20.8) 
p-value 0.673 0.864 0.662 0.786 0.712 0.39 

Tetrahydrocortisol 
(THF) 

%change -8.23 (-30.3, 20.8) -16.9 (-37.1, 9.7) -7.2 (-29.2, 21.8) -19.8 (-39.5, 6.2) -0.2 (-24.4, 31.7) -23.7 (-42.8, 1.9) 
p-value 0.542 0.192 0.592 0.125 0.989 0.069 

α-Cortol %change 4.7 (-25.0, 46.1) 9.6 (-21.7, 53.3) 7.3 (-21.2, 46.1) 7.3 (-22.1, 47.7) 2.3 (-26.3, 42.0) 2.2 (-27.3, 43.7) 
p-value 0.789 0.596 0.655 0.667 0.892 0.901 

β-Cortol %change -13.7 (-32.9, 10.9) -5.1 (-26.3, 22.2) -12.9 (-32.2, 11.9) -8.0 (-29.0, 19.0) -13.0 (-33.2, 13.2) -15.3 (-35.5, 11.3) 
p-value 0.251 0.685 0.282 0.525 0.301 0.236 

Tetrahydrocortisone 
(THE) 

%change 4.1 (-13.9, 25.8) 1.9 (-15.9, 23.4) 4.8 (-13.4, 26.6) 3.0 (-15.4, 25.3) 3.5 (-14.8, 25.6) -5.9 (-23.1, 15.2) 
p-value 0.681 0.848 0.632 0.772 0.732 0.557 

α-Cortolone %change -1.0 (-18.4, 20.1) -7.1 (-23.6, 13.0) -0.9 (-18.3, 20.3) -10.5 (-26.7, 9.4) -3.5 (-21.0, 17.9) -18.3 (-33.6, 0.6) 
p-value 0.918 0.462 0.931 0.281 0.729 0.059 

β-Cortolone %change 25.8 (-13.4, 82.7) 51.5 (3.9, 120.8) 26.3 (-13.4, 8) 53.4 (3.9, 126.6) 27.6 (-15.1, 91.8) 51.5 (-0.9, 131.5) 
p-value 0.231 0.032 0.227 0.033 0.243 0.057 

Total sum of 
glucocorticoids 

%change 1.7 (-13.6, 19.8) 5.3 (-10.6, 24.1) 2.7 (-12.6, 20.8) 5.3 (-10.9, 24.4) 0.8 (-14.7, 19.1) -2.3 (-17.8, 16.1) 
p-value 0.837 0.535 0.745 0.546 0.925 0.789 

Sum of cortisol and 
cortisone 

%change 3.7 (-14.9, 26.2) 20.3 (-1.4, 46.7) 4.6 (-13.9, 27.1) 20.5 (-1.5, 47.4) 1.8 (-17.1, 25) 19.6 (-3.5, 48.1) 
p-value 0.721 0.071 0.65 0.072 0.863 0.103 

Notes: 
a. Results are shown in percent change in concentration (95%CI) in comparison with newborns in the low exposure category (i.e. reference category); p-
values < 0.1 are indicated in bold print. 
b. The Basic model was adjusted for sex, gestational age at birth and weight at the time of urine collection. 
c. The Adjusted model was further adjusted for maternal smoking during pregnancy, delivery mode, occurrence of vaginal infection, maternal 
education, existence of older siblings, season at birth and NO2 exposure during pregnancy. 
d. Categorized into tertiles (i.e. <48.4 dB: low; 48.4-57.9 dB: medium; >57.9 dB: high). 
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Figure legends 
 
Figure 1. Association between road traffic noise (determined by Lden) and the concentration of 

glucocorticoid metabolites in newborn’s urine. Points represent the percent change in concentration 

derived from full adjusted models compared to newborns in the low exposure (i.e. reference) 

category; error bars show 95% CI. 

Figure 2. Schematic presentation of hypothesized road traffic noise effects on glucocorticoid 

metabolites. Stress (i.e. road traffic noise) may exert effects on the hypothalamus-pituitary-adrenal 

(HPA) axis. This may change the equilibrium between cortisol and cortisone, produced in the adrenal 

cortex via the enzyme 11β-hydroxysteroid dehydrogenase (HSD). Cortisol is the active 

glucocorticoid which binds to the glucocorticoid receptor and induces biological effects, while 

cortisone is the inactive form. The downstream glucocorticoid metabolites assessed in the urine are 

produced by enzymatic processes from cortisol and cortisone. The metabolites were measured in the 

urine of newborns.  
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Table S1. Association between road traffic noise (determined by Lden) and concentrations of 
glucocorticoid metabolites a 

Cortisol 
metabolite 

 Crude model Basic model b Adjusted model c 
 Noise exposure (Lden) level d Noise exposure (Lden) level d Noise exposure (Lden) level d 
 Medium High Medium High Medium High 

Cortisol %change 2.8 (-16.2, 26.1) 15.9 (-5.7, 42.5) 3.8 (-15.1, 26.9) 15.2 (-6.5, 41.9) 0.1 (-19.2, 24.0) 12.1 (-10.3, 40.1) 
p-value 0.795 0.162 0.717 0.185 0.991 0.316 

Cortisone %change 4.6 (-14.7,  28.1) 22.4 (-0.3, 50.2) 5.5 (-13.8, 29.1) 22.8 (-0.4, 51.3) 2.8 (-16.9, 27.2) 22.6 (-1.8, 53.0) 
 p-value 0.666 0.055 0.604 0.056 0.797 0.074 
5α-Tetrahydrocortisol 
(α-THF) 

%change -6.47 (-31.4, 27.5) -2.7 (-28.8, 33.0) -6.7 (-31.8, 27.5) -4.4 (-30.8, 32.2) -5.9 (-32.0, 30.1) -13.8 (-38.5, 20.8) 
p-value 0.673 0.864 0.662 0.786 0.712 0.39 

Tetrahydrocortisol 
(THF) 

%change -8.23 (-30.3, 20.8) -16.9 (-37.1, 9.7) -7.2 (-29.2, 21.8) -19.8 (-39.5, 6.2) -0.2 (-24.4, 31.7) -23.7 (-42.8, 1.9) 
p-value 0.542 0.192 0.592 0.125 0.989 0.069 

α-Cortol %change 4.7 (-25.0, 46.1) 9.6 (-21.7, 53.3) 7.3 (-21.2, 46.1) 7.3 (-22.1, 47.7) 2.3 (-26.3, 42.0) 2.2 (-27.3, 43.7) 
p-value 0.789 0.596 0.655 0.667 0.892 0.901 

β-Cortol %change -13.7 (-32.9, 10.9) -5.1 (-26.3, 22.2) -12.9 (-32.2, 11.9) -8.0 (-29.0, 19.0) -13.0 (-33.2, 13.2) -15.3 (-35.5, 11.3) 
p-value 0.251 0.685 0.282 0.525 0.301 0.236 

Tetrahydrocortisone 
(THE) 

%change 4.1 (-13.9, 25.8) 1.9 (-15.9, 23.4) 4.8 (-13.4, 26.6) 3.0 (-15.4, 25.3) 3.5 (-14.8, 25.6) -5.9 (-23.1, 15.2) 
p-value 0.681 0.848 0.632 0.772 0.732 0.557 

α-Cortolone %change -1.0 (-18.4, 20.1) -7.1 (-23.6, 13.0) -0.9 (-18.3, 20.3) -10.5 (-26.7, 9.4) -3.5 (-21.0, 17.9) -18.3 (-33.6, 0.6) 
p-value 0.918 0.462 0.931 0.281 0.729 0.059 

β-Cortolone %change 25.8 (-13.4, 82.7) 51.5 (3.9, 120.8) 26.3 (-13.4, 8) 53.4 (3.9, 126.6) 27.6 (-15.1, 91.8) 51.5 (-0.9, 131.5) 
p-value 0.231 0.032 0.227 0.033 0.243 0.057 

Total sum of 
glucocorticoids 

%change 1.7 (-13.6, 19.8) 5.3 (-10.6, 24.1) 2.7 (-12.6, 20.8) 5.3 (-10.9, 24.4) 0.8 (-14.7, 19.1) -2.3 (-17.8, 16.1) 
p-value 0.837 0.535 0.745 0.546 0.925 0.789 

Sum of cortisol and 
cortisone 

%change 3.7 (-14.9, 26.2) 20.3 (-1.4, 46.7) 4.6 (-13.9, 27.1) 20.5 (-1.5, 47.4) 1.8 (-17.1, 25) 19.6 (-3.5, 48.1) 
p-value 0.721 0.071 0.65 0.072 0.863 0.103 

Notes: 
a. Results are shown in percent change in concentration (95%CI) in comparison with newborns in the low exposure category (i.e. reference category); 
p-values < 0.1 are indicated in bold print. 
b. The Basic model was adjusted for sex, gestational age at birth and weight at the time of urine collection. 
c. The Adjusted model was further adjusted for maternal smoking during pregnancy, delivery mode, occurrence of vaginal infection, maternal 
education, existence of older siblings, season at birth and NO2 exposure during pregnancy. 
d. Categorized into tertiles (i.e. <48.4: low; 48.4-57.9: medium; >57.9: high). 
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Table S2. Association between road traffic noise (determined by Leq during the day) and 
concentrations of glucocorticoid metabolites a 

Cortisol 
metabolites 

 Crude model Basic model b Adjusted model c 
 Noise exposure (LeqD) level d Noise exposure (LeqD) level d Noise exposure (LeqD) level d 
 Medium High Medium High Medium High 

Cortisol %change 2.1 (-16.9, 25.3) 16.4 (-5.2, 42.9) 4.2 (-14.9, 27.6) 14.3 (-7.0, 40.5) 1.1 (-18.4, 25.3) 10.6 (-11.3, 37.9) 
p-value 0.844 0.148 0.692 0.206 0.92 0.374 

Cortisone %change 5.7 (-13.9, 29.7) 20.7 (-1.6, 48.1) 7.5 (-12.3, 31.8) 19.6 (-2.8, 47.2) 5.5 (-14.8, 30.7) 18.6 (-4.9, 47.8) 
 p-value 0.597 0.073 0.487 0.092 0.624 0.132 
5α-Tetrahydrocortisol 
(α-THF) 

%change -4.6 (-30.1, 30.3) -4.7 (-30.2, 30.1) -5.3 (-30.9, 29.8) -6.1 (-31.8, 29.4) -6.1 (-32.1, 30.0) -13.5 (-38.1, 20.8) 
p-value 0.768 0.763 0.736 0.703 0.707 0.396 

Tetrahydrocortisol 
(THF) 

%change -9.3 (-31.2, 19.7) -15.9 (-36.2, 11.0) -7.3 (-29.5, 21.9) -19.3 (-38.9, 6.6) -3.1 (-26.7, 28.2) -20.6 (-40.4, 5.9) 
p-value 0.493 0.223 0.587 0.133 0.827 0.118 

α-Cortol %change 1.2 (-27.6, 41.3) 13.3 (-18.9, 58.3) 7.1 (-21.6, 46.1) 7.6 (-21.6, 47.6) 2.3 (-26.3, 42.0) 2.2 (-27.0, 43.3) 
p-value 0.948 0.465 0.668 0.652 0.894 0.898 

β-Cortol %change -14.4 (-33.5, 10.2) -4.6 (-25.8, 22.7) -13.7 (-33.0, 11.0) -7.3 (-28.2, 19.7) -14.2 (-34.1, 11.7) -13.9 (-34.3, 12.8) 
p-value 0.229 0.716 0.253 0.561 0.257 0.28 

Tetrahydrocortisone 
(THE) 

%change 1.8 (-15.9, 23.2) 4.2 (-13.9, 26.1) 3.2 (-14.7, 25.0) 4.6 (-13.9, 27.1) 1.3 (-16.6, 23.0) -3.4 (-20.9, 18.1) 
p-value 0.854 0.672 0.744 0.648 0.898 0.738 

α-Cortolone %change -1.4 (-18.8, 19.8) -6.6 (-23.1, 13.4) -1.2 (-18.7, 20.0) -9.8 (-26.0, 10.0) -4.3 (-21.7, 16.9) -17.1 (-32.6, 1.9) 
p-value 0.89 0.49 0.901 0.311 0.666 0.076 

β-Cortolone %change 23.9 (-14.8, 80.3) 53.2 (5.3, 122.8) 25.0 (-14.5, 82.6) 54.1 (4.8, 126.6) 26.7 (-15.8, 90.5) 52.2 (0.0, 131.5) 
p-value 0.263 0.027 0.251 0.029 0.258 0.052 

Total sum of 
glucocorticoids 

%change 0.3 (-14.8, 18.2) 6.7 (-9.3, 25.6) 2.0 (-13.3, 20.1) 5.9 (-10.2, 24.9) -0.2 (-15.6, 17.9) -1.1 (-16.6, 17.3) 
p-value 0.97 0.434 0.808 0.494 0.977 0.899 

Sum of cortisol and 
cortisone 

%change 4.3 (-14.5, 27.1) 19.2 (-2.2, 45.3) 6.2 (-12.7, 29.3) 17.9 (-3.5, 44) 4.1 (-15.3, 28) 16.2 (-6.1, 43.7) 
p-value 0.678 0.084 0.547 0.109 0.705 0.168 

Notes: 
a. Results are shown in percent change in concentration (95%CI) in comparison with newborns in the low exposure category (i.e. reference category); 
p-values < 0.1 are indicated in bold print. 
b. The Basic model was adjusted for sex, gestational age at birth and weight at the time of urine collection. 
c. The Adjusted model was further adjusted for maternal smoking during pregnancy, delivery mode, occurrence of vaginal infection, maternal 
education, existence of older siblings, season at birth and NO2 exposure during pregnancy. 
d. Categorized into tertiles (i.e. <46.8: low; 46.8-56.2: medium; >56.2: high). 
 

 

Figure S1. Association between daytime road traffic noise and the concentration of glucocorticoid 
metabolites in newborn’s urine. Points represent the percent change in concentration derived from full 
adjusted models in comparison to newborns in the low exposure (i.e. reference) category; error bars 
show 95% CI.  
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Table S3. Association between road traffic noise (determined by Leq during the night) and 
concentrations of glucocorticoid metabolites a 

Cortisol 
metabolites 

 Crude model Basic model b Adjusted model c 
 Noise exposure (LeqN) level d Noise exposure (LeqN) level d Noise exposure (LeqN) level d 
 Medium High Medium High Medium High 

Cortisol %change 3.6 (-15.5, 27.1) 16.4 (-5.2, 42.9) 4.6 (-14.4, 27.9) 15.6 (-6.0, 42.2) 0.3 (-19.1, 24.4) 12.2 (-10.1, 40.1) 
p-value 0.734 0.15 0.66 0.172 0.977 0.31 

Cortisone %change 6.8 (-12.8, 30.9) 23.6 (0.8, 51.6) 7.8 (-11.9, 31.8) 24.0 (0.7, 52.6) 4.9 (-15.3, 29.8) 23.8 (-0.7, 54.4) 
 p-value 0.525 0.043 0.468 0.044 0.665 0.06 
5α-Tetrahydrocortisol 
(α-THF) 

%change -2.0 (-28.1, 33.7) -0.3 (-27.0, 36.1) -2.2 (-28.5, 33.7) -2.0 (-29.0, 35.2) -2.8 (-29.8, 34.7) -12.2 (-37.3, 23.0) 
p-value 0.901 0.983 0.889 0.901 0.866 0.45 

Tetrahydrocortisol 
(THF) 

%change -6.4 (-28.9, 23.3) -16.1 (-36.3, 10.7) -5.2 (-27.7, 24.5) -18.9 (-38.7, 7.3) 1.1 (-23.5, 33.6) -23.2 (-42.4, 2.5) 
p-value 0.638 0.217 0.703 0.144 0.941 0.075 

α-Cortol %change 5.7 (-24.2, 47.5) 10.1 (-21.2, 53.8) 7.9 (-20.7 – 47.0) 7.5 (-21.8, 47.8) 1.1 (-27.3, 40.5) 1.5 (-27.8, 42.6) 
p-value 0.743 0.575 0.628 0.656 0.949 0.931 

β-Cortol %change -12.5 (-32.0, 12.5) -4.3 (-25.6, 23.0) -11.4 (-31.0, 14.0) -7.1 (-28.2, 20.1) -12.5 (-32.9, 14.1) -14.9 (-35.2, 11.7) 
p-value 0.298 0.732 0.349 0.575 0.325 0.248 

Tetrahydrocortisone 
(THE) 

%change 5.7 (-12.6, 27.8) 2.7 (-15.2, 24.2) 6.4 (-12.0, 28.7) 3.7 (-14.7, 26.1) 4.0 (-14.4, 26.4) -5.7 (-22.9, 15.4) 
p-value 0.567 0.788 0.521 0.715 0.695 0.572 

α-Cortolone %change -0.6 (-18.1, 20.6) -6.9 (-23.3, 13.1) -0.4 (-17.9, 20.9) -10.2 (-26.4, 9.6) -4.2 (-21.6, 17.2) -18.6 (-33.8, 0.2) 
p-value 0.953 0.474 0.971 0.291 0.68 0.054 

β-Cortolone %change 25.6 (-13.5, 82.4) 51.1 (3.8, 119.8) 26.0 (-13.5, 83.7) 52.9 (3.7, 125.5) 26.2 (-16.3, 90.1) 50.3 (-1.6, 129.5) 
p-value 0.233 0.033 0.231 0.033 0.268 0.061 

Total sum of 
glucocorticoids 

%change 3.3 (-12.2, 21.6) 6.1 (-9.8, 24.9) 4.3 (-11.3, 22.7) 6.1 (-10.1, 25.2) 1.4 (-14.2, 19.9) -2 (-17.5, 16.4) 
p-value 0.695 0.476 0.608 0.488 0.872 0.816 

Sum of cortisol and 
cortisone 

%change 5.6 (-13.3, 28.5) 21.3 (-0.4, 47.9) 6.5 (-12.3, 29.4) 21.5 (-0.6, 48.5) 3.4 (-15.9, 27) 20.5 (-2.6, 49.2) 
p-value 0.591 0.057 0.526 0.059 0.754 0.088 

Notes: 
a. Results are shown in percent change in concentration (95%CI) in comparison with newborns in the low exposure category (i.e. reference category); 
p-values < 0.1 are indicated in bold print. 
b. The Basic model was adjusted for sex, gestational age at birth and weight at the time of urine collection. 
c. The Adjusted model was further adjusted for maternal smoking during pregnancy, delivery mode, occurrence of vaginal infection, maternal 
education, existence of older siblings, season at birth and NO2 exposure during pregnancy. 
d. Categorized into tertiles (i.e. <39.5: low; 39.5-49.0: medium; >49.0: high). 

 
 
 

 
Figure S2. Association between night time road traffic noise and the concentration of glucocorticoid 
metabolites in newborn’s urine. Error bars show 95% CI. Points represent the percent change in 
concentration derived from full adjusted models in comparison to newborns in the low exposure (i.e. 
reference) category; error bars show 95% CI. 
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Figure S3. Comparison of the associations for the different traffic noise exposure metrics (i.e. Lden, 
LeqD and LeqN) and the concentration of each glucocorticoid metabolite: a) cortisol; b) cortisone, c) 
5α-tetrahydrocortisol (α-THF); d) tetrahydrocortisol (THF); e) α-cortol; f) β-cortol, g) 
tetrahydrocortisone (THE); h) α-cortolone; i) β-cortolone. Points represent the percent change in 
concentration; error bars show 95% CI. Reference category: low noise exposure. Full adjusted 
models.  
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