
An integrative strategy to identify the entire
protein coding potential of prokaryotic genomes
by proteogenomics
Ulrich Omasits,1,6 Adithi R. Varadarajan,1,2,6 Michael Schmid,1 Sandra Goetze,2

Damianos Melidis,1 Marc Bourqui,1 Olga Nikolayeva,3 Maxime Québatte,4

Andrea Patrignani,5 Christoph Dehio,4 Juerg E. Frey,1 Mark D. Robinson,3

Bernd Wollscheid,2 and Christian H. Ahrens1
1Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics & SIB Swiss Institute of Bioinformatics, CH-8820
Wädenswil, Switzerland; 2Department of Health Sciences and Technology, Institute of Molecular Systems Biology, Swiss Federal
Institute of Technology Zurich, CH-8093 Zurich, Switzerland; 3Institute for Molecular Life Sciences & SIB Swiss Institute of
Bioinformatics, University of Zurich, CH-8057 Zurich, Switzerland; 4Biozentrum, University of Basel, CH-4056 Basel, Switzerland;
5Functional Genomics Center Zurich, ETH & UZH Zurich, CH-8057 Zurich, Switzerland

Accurate annotation of all protein-coding sequences (CDSs) is an essential prerequisite to fully exploit the rapidly growing
repertoire of completely sequenced prokaryotic genomes. However, large discrepancies among the number of CDSs anno-
tated by different resources, missed functional short open reading frames (sORFs), and overprediction of spurious ORFs
represent serious limitations. Our strategy toward accurate and complete genome annotation consolidates CDSs from mul-
tiple reference annotation resources, ab initio gene prediction algorithms and in silico ORFs (a modified six-frame transla-
tion considering alternative start codons) in an integrated proteogenomics database (iPtgxDB) that covers the entire protein-
coding potential of a prokaryotic genome. By extending the PeptideClassifier concept of unambiguous peptides for pro-
karyotes, close to 95% of the identifiable peptides imply one distinct protein, largely simplifying downstream analysis.
Searching a comprehensive Bartonella henselae proteomics data set against such an iPtgxDB allowed us to unambiguously iden-
tify novel ORFs uniquely predicted by each resource, including lipoproteins, differentially expressed and membrane-local-
ized proteins, novel start sites and wrongly annotated pseudogenes. Most novelties were confirmed by targeted, parallel
reaction monitoring mass spectrometry, including unique ORFs and single amino acid variations (SAAVs) identified in a
re-sequenced laboratory strain that are not present in its reference genome. We demonstrate the general applicability of
our strategy for genomes with varying GC content and distinct taxonomic origin. We release iPtgxDBs for B. henselae,
Bradyrhizobium diazoefficiens and Escherichia coli and the software to generate both proteogenomics search databases and inte-
grated annotation files that can be viewed in a genome browser for any prokaryote.

[Supplemental material is available for this article.]

Advances in next-generation sequencing technology and genome
assembly algorithms have fueled an exponential growth of
completely sequenced genomes, the large majority of which
(>90%) originate from prokaryotes (Reddy et al. 2015). The accu-
rate annotation of all protein-coding genes (interchangeably
used with CDSs from here on) is essential to exploit this genomic
information at multiple levels: from small, focused experiments,
up to systems biology studies, functional screens, and accurate pre-
diction of regulatory networks.

Yet, obtaining a high quality genome annotation is a chal-
lenging objective. Pipelines for automated de novo annotation
of prokaryotic genomes have been developed (Aziz et al. 2008;
Markowitz et al. 2009; Davidsen et al. 2010; Vallenet et al. 2013).
Such annotations greatly benefit from a manual curation step to
catch obvious errors (Richardson and Watson 2012), which is car-

ried out for selected reference genomes by resources like NCBI’s
RefSeq (Pruitt et al. 2012) or MicroScope (Vallenet et al. 2013).
Major re-annotation efforts can affect hundreds of CDSs (Luo
et al. 2009), highlighting the relevance of accurate genome anno-
tations (Petty 2010).

Despite improvements in functional genome annotation,
three major issues remain: the discrepancies of the number of
CDSs annotated by different reference annotation resources
(Poole et al. 2005; Bakke et al. 2009; Cuklina et al. 2016), the over-
prediction of spurious ORFs that do not encode a functional gene
product (Dinger et al. 2008; Marcellin et al. 2013), and the under-
representation of short ORFs (sORFs) (Hemm et al. 2008; Warren
et al. 2010; Storz et al. 2014). True sORFs, which often belong to
important functional classes like chaperonins, ribosomal proteins,
proteolipids, stress proteins, and transcriptional regulators (Basrai
et al. 1997; Zuber 2001; Hemm et al. 2008), are inherently difficult
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to differentiate from the large amount of spurious sORFs (Dinger
et al. 2008; Marcellin et al. 2013).

Proteogenomics, a research field at the interface of proteo-
mics and genomics (Ahrens et al. 2010; Nesvizhskii 2014), is one
attractive approach to address these problems. The direct protein
expression evidence provided by tandem mass spectrometry
(MS) for CDSs missed in genome annotations differs from ribo-
some profiling data: While the latter can capture translational ac-
tivity on a genome-wide scale (Ingolia 2014), proteogenomics
allows detection of stable proteins. First used in the genome anno-
tation effort for Mycoplasma mobile (Jaffe et al. 2004), proteoge-
nomics has since been applied to both prokaryotes (Gupta et al.
2007; de Groot et al. 2009; Payne et al. 2010; Venter et al. 2011;
Kumar et al. 2013; Marcellin et al. 2013; Kucharova and Wiker
2014; Cuklina et al. 2016) and eukaryotes (Nesvizhskii 2014;
Menschaert and Fenyo 2015). Yet, the need for computational so-
lutions to apply proteogenomics more broadly has been noted
(Castellana and Bafna 2010; Renuse et al. 2011; Armengaud et al.
2014; Nesvizhskii 2014). Of particular interest are tools that create
customized databases (DBs) to identify evidence for unannotated
ORFs. RNA-seq data have been used to limit the protein search
DB size to achieve better statistical power (Wang et al. 2012;
Woo et al. 2013; Zickmann and Renard 2015). Other MS-friendly
DB solutions that integrate data fromdifferent species or strains in-
cludeMScDB (Marx et al. 2013), MSMSpdbb (de Souza et al. 2010),
and PG Nexus (Pang et al. 2014). Even pipeline solutions were de-
veloped that allow the search of proteomics data against a six-
frame translation-based DB, including Peppy (Risk et al. 2013),
GenoSuite (Kumar et al. 2013), and PGP (Tovchigrechko et al.
2014). However, an integration that leverages benefits ofmanually
curated reference annotations and a six-frame translation into one
highly informative, nonredundant, and transparent resource has
not been accomplished so far.

Here,we address thisunmetneedof themicrobiologyandpro-
teomics community and present an integrative strategy that takes
theMS-friendly DB concept one important step further.We aimed
to develop a solution that integrates and consolidates annotations
from different sources and, at the same time, captures information
about their overlap and differences in (1) informative identifiers,
(2) an integrated proteogenomics search database (iPtgxDB), and
(3) a GFF (generic feature format) file that can be viewed in a ge-
nome browser and overlaid with experimental evidence. One key
objective was high information content, i.e., ensuring that the
vast majority of peptides in the search DB unambiguously identify
one distinct protein (Qeli and Ahrens 2010), thereby overcoming
the need to dis-entangle protein groups implied by shared peptides
and speeding up downstream data analysis. Stringency, i.e., allow-
ing tight control of the false discovery rate (FDR), and flexibility,
i.e., being applicable to both referencemodel organisms andnewly
sequenced strains, representedother key requirements.Here,we re-
lease the software as a public web server (https://iptgxdb.expasy.
org), so that iPtgxDBs canenable research groups to take full advan-
tage of completely sequenced genomes by improving genome an-
notations with proteogenomics.

Results

Experimental evidence underscores the need for a general
proteogenomics approach

Weused the α-proteobacterium Bartonella henselae strainHouston-
1 (Bhen) to explore howgenome annotation differences could best

be integrated for a proteogenomics approach. A comparison of
four Bhen reference genome annotations and results from two
ab initio gene prediction tools (see Methods) confirmed reports
for other organisms (Poole et al. 2005; Bakke et al. 2009; Cuklina
et al. 2016) that both the number of predicted ORFs and their pre-
cise start sites largely differ (see Supplemental Fig. S1). Only 50%of
the Bhen CDSs were annotated or predicted completely identical
by all six resources, and 37% were unique to one resource
(Supplemental Fig. S1A). Of note, 23% of the CDSs of the recent
NCBI RefSeq2015 re-annotation differed from RefSeq2013
(Supplemental Table S1): 55 CDSs were removed (99 added), 74
CDSs were shortened (54 extended), and 64 pseudogenes were re-
moved (15 added).

To assess the validity of the RefSeq2015 re-annotation, we re-
lied on an ideal data set: a complete prokaryotic proteome (includ-
ing many low abundant proteins) expressed under two conditions
that mimic those encountered by Bhen in the arthropod vector
midgut (uninduced condition) and the bloodstream of its mam-
malianhost (induced condition), whichhadbeen searched against
RefSeq2013 (Omasits et al. 2013). A search against a RefSeq2015
protein DB provided experimental evidence for many of the re-an-
notations, including six sORFs that we had previously identified
with a prototype of our proteogenomics approach as novel
(Supplemental Table S1) and which have since been added to
RefSeq2015. Also, among the 55 removed CDSs, we found 32 of
52 proteins we had earlier singled out as potential overpredictions
(Omasits et al. 2013). However, we also found several cases that
supported the earlier RefSeq2013 annotation, including expres-
sion evidence for CDSs that were relabeled as pseudogenes and
for removed CDSs. This highlights the need for an integrated,
yet general approach to address this fundamental problem of
gene annotation inconsistency.

A general, integrative proteogenomics approach

An ideal solution to capture the full protein-coding potential of ge-
nome sequences should therefore (1) consider results from differ-
ent reference genome annotations (Nesvizhskii 2014), which
often include substantial manual curation efforts from experts,
and from ab initio gene prediction tools, (2) allow the identifica-
tion of the small fraction of true functional sORFs often missed
by the above annotations or predictions, (3) aid in the annotation
of newly sequenced genomes, and (4) enable scientists to visualize
their experimental proteomics results in the context of both the
genome and all available annotations.

Toour knowledge, existing tools only address a subset of these
requirements. These include pipeline solutions that rely on a six-
frame translated genome like Peppy (Risk et al. 2013), which aims
to improve the scoring function for peptide spectrum matches
(PSMs), GenoSuite (Kumar et al. 2013), which uses four distinct
search algorithms before integrating and visualizing the results,
and PGP (Tovchigrechko et al. 2014), which draws on the experi-
enceofmanyproteogenomics studies (Venteret al. 2011) andhigh-
lighted the need for stringent criteria to accept novel ORFs.
However, these tools donot integrate different annotation sources.
Some MS-friendly integrated DBs accomplish this, such as MScDB
(Marx et al. 2013), which uses a peptide-centric clustering algo-
rithm to combine, e.g., cross-species DBs, orMSMSpdbb, which al-
lows thecreationofanonredundantproteinDBformultiple closely
related bacterial strains (de Souza et al. 2010).However, they donot
integrate different annotations of the same genome. PG Nexus
(Pang et al. 2014) uses the NCBI RefSeq annotation, a Glimmer ab
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initio prediction (Delcher et al. 2007), and a six-frame translation
against which peptides are searched with Mascot (Perkins et al.
1999) and later visualized onto the genome. However, the annota-
tions are not integrated and consolidated; the boundaries of
novel ORFs still have to be discovered based on peptide evidence,
which requires substantial manual effort. In addition, Mascot is
not ideal for the task of identifying novel ORFs in proteogenomics
approaches (Omasits et al. 2013; Risk et al. 2013). To address all of
the above objectives in one integrated solution, we devised a pro-
teogenomics workflow that relies on three steps (Fig. 1).

First, popular reference genome annotations, the results of ab
initio prediction algorithms, and in silico ORFs from a six-frame
genome translation were combined into an integrated proteoge-
nomics search database (iPtgxDB) (Fig. 1, upper panel) with the
aim to capture the entire genomic protein-coding potential (see
Methods). On top of genome annotations from NCBI RefSeq,
Ensembl, and Genoscope, we included results of the ab
initio gene prediction algorithms Prodigal (Hyatt et al. 2010),
which performs well even for genomes with high GC content
where gene calling is more difficult (Marcellin et al. 2013), and
ChemGenome (Singhal et al. 2008). The latter relies on physico-
chemical characteristics of codons calculated bymolecular dynam-
ics simulations (Singhal et al. 2008) and is thus quite different from
Prodigal and similar tools (Pati et al. 2010). Finally, to be able to

identify functional sORFs, which are often missed due to rather
conservative length thresholds for ab initio predicted ORFs, all po-
tential in silico ORFs (a modified six-frame translation considering
alternative start codons) (see Supplemental Methods) above a
selectable length threshold were added. A literature search for ex-
perimentally validated prokaryotic sORFs (Zuber 2001; Rowland
et al. 2004; Venter et al. 2011) revealed that novel sORFs were lon-
ger than 20 amino acids (aa), with very few exceptions (Hemm
et al. 2008). To balance comprehensiveness and avoid loss of stat-
istical power when searching large DBs (Blakeley et al. 2012; Noble
2015), we selected a length threshold of 18 aa.

In a second step, proteomics data—ideally comprehensive ex-
pression data obtained under multiple conditions (Ahrens et al.
2010)—is searched against the iPtgxDB and stringently filtered
(Fig. 1, middle panel). We used the search engine MS-GF+, which
rigorously computes E-values of PSMs based on the score distribu-
tion of all peptides (Kim and Pevzner 2014) and which had per-
formed favorably in our hands for large shotgun proteomics data
sets (Omasits et al. 2013) as well as in proteogenomics studies
(Risk et al. 2013; Zickmann and Renard 2015; Cuklina et al. 2016).

In a third step, peptide evidence is visualized in the context of
the genome and all annotations (contained in a GFF file) using a
genome browser such as IGV (Fig. 1, lower panel; Robinson et al.
2011). Candidates in major classes of novelty (novel ORFs, differ-
ent or additional start sites, expressed pseudogenes) can be inspect-
ed in the context of experimental data (e.g., proteomics and
transcriptomics data), functional annotations, and other features
to enable a comprehensive assessment and prioritization.

Creating minimally redundant but maximally informative
protein search databases

A unique aspect of our proteogenomics approach is that almost
all MS-identifiable peptides of the iPtgxDB unambiguously
identify one specific protein (Fig. 2). To achieve this, we first ex-
tended our PeptideClassifier concept (Qeli and Ahrens 2010).
PeptideClassifier was developed to classify the information con-
tent of peptides with respect to their originating gene model(s)
into six classes for eukaryotes and three classes for prokaryotes:
Class 1a peptides are most informative and allow unambiguous
identification at the protein sequence, protein isoform, and gene
model level (Supplemental Fig. S2). Our extension for prokaryotes
now also considers six peptide evidence classes and treats protein
sequences with a common stop codon and varying start positions
(N termini) as a protein annotation cluster, i.e., an equivalent of a
prokaryotic gene model (similar to isoforms of a eukaryotic gene
model). Class 1a peptides remain most informative as they are
unique to one entry in a DB, while class 1b peptides map uniquely
to one annotation cluster with all identical sequences. Class 2a
peptides identify a subset of sequences from an annotation cluster
and class 2b peptides map to all sequences of an annotation clus-
ter. Class 3a peptidesmap to identical sequences fromdifferent an-
notation clusters (typically duplicated genes). Class 3b peptides
map to different sequences from different annotation clusters
and are least informative.

The stepwise integration of resources, carried out in Figure 2A
for Bhen as a model, follows a hierarchy: To leverage the quality of
manual curation efforts, we start with reference annotations, then
ab initio predictions, then in silico ORFs. The anchor sequence is
selected from the annotation highest up in the hierarchy, i.e.,
here, RefSeq2015, unless no CDS is predicted in a given genomic
region. Each subsequent resource added new protein clusters and

Figure 1. Integrative proteogenomics workflow. For a completely se-
quenced prokaryotic genome (Bhen is shown as an example with annotat-
ed CDSs), reference genome annotations (blue containers), results from ab
initio gene prediction algorithms (green containers), and in silico ORFs
(white container) are downloaded or computed and integrated in a first
preprocessing step (upper panel). All CDS and pseudogene annotations
are matched, and informative gene identifiers are created and stored in
a minimally redundant iPtgxDB (red container; searchable protein se-
quences in FASTA format, integrated annotations in GFF format).
Experimental proteomics data arematched to the DB using a target-decoy
approach relying on stringent FDR cut-offs (middle panel). Identified PSMs
and peptides are postprocessed to visualize novel candidates (lower panel)
in the context of experimental data integrated with the GFF file.
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new extensions or reductions (i.e., alter-
native start sites) to an existing cluster,
while identical annotations are collapsed
(Table 1). Alternative start codons are
captured with our approach, even for in
silico ORFs (Fig. 2A).

The four distinct sequences (col-
lapsed from eight annotations) of the
protein cluster for apolipoprotein N-
acyltransferasewith the anchor sequence
BH_RS01095 (Fig. 2A) illustrate this
key principle: By only adding the full
sequence of the anchor protein plus
class 1a peptides (red in Fig. 2A) that
can unambiguously identify extensions
or internal start sites and few class 2a
peptides (yellow in Fig. 2A) to the
iPtgxDB, we minimize redundancy and
maximize information content of the
peptides, compared to adding all protein
sequences (Fig. 2A, lower panels). In the
latter case, many peptides classified as
2a or 2b, which imply a subset or all an-
notations of a CDS cluster, would get
added to the iPtgxDB. Identification of
such shared peptides greatly impedes
downstream analysis.

The protein identifiers of the four
distinct sequences transparently capture
overlap and differences of the annota-
tions (see Methods); they show in which
resource(s) the identified CDS is annotat-
ed, if and how the annotations differ,
and whether it is a novel ORF or an alter-
native start site, again largely improving
downstream data analysis (Fig. 2A).

The identifiers also contain geno-
mic coordinates, allowing the visua-
lization of all experimental peptide
evidence for a novel ORF in its genomic
context alongwith all integrated annota-
tions provided in the iPtgxDB GFF file.
Peptides implying any other sequence
(e.g., one of the three identifiers below
the anchor sequence identifier in Fig.
2A) would inform the experimentalist
at a glance that novel information com-
pared to RefSeq2015 was uncovered (see
Supplemental Methods for examples of
how to “interpret” the identifiers). A
box plot of the lengths of the proteins
added to our DB in the stepwise process-
ing illustrates that we capture increasing-
ly smaller proteins. Adding in silico ORFs
down to a selectable length threshold al-
lows us to query the entire protein-cod-
ing potential of the genome (Fig. 2B).

The final Bhen iPtgxDb contains
51,541 entries (Table 1), ∼30 times as
many as RefSeq2015 (1612). Important-
ly, 94% of all theoretically MS-identifi-
able tryptic peptides (6–40 aa) are class

Figure 2. Generating an iPtgxDB with informative identifiers and a minimally redundant protein
search DB in FASTA format. (A) CDSs and pseudogenes of seven resources are integrated in a stepwise
fashion. Informative protein identifiers are created and illustrated for the annotation cluster, with the
RefSeq2015 anchor sequence BH_RS01095 shown in bold, where three additional start sites exist. The
four different proteoforms are added to the protein search DB: the anchor sequence (bold) with the
full protein sequence, the extensions (RefSeq2013 and ChemGenome) add the upstream sequence up
to the first tryptic cleavage site within the anchor sequence. The shorter Prodigal prediction uses an al-
ternative start codon resulting in a distinguishable N-terminal peptide and therefore also gets added. The
two in silico ORFs are identical to annotations higher up in the annotation hierarchy and therefore are not
added. Peptide classes are shown for the N-terminal sequences of the CDS annotation cluster (see also
Fig. 2C). (B) Box plots of protein length for RefSeq2015 and those proteins that get added in each suc-
cessive step to the protein search DB illustrate that we include many sORFs potentially missed in the ref-
erence annotations. (C) Bar chart showing the DB complexity and the peptide classes for RefSeq2015, all
six integrated annotations without and with in silico ORFs, and the final iPtgxDB. The legend (inset)
shows colors for the six peptide classes.
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1a peptides, which allow unambiguous identification of one pro-
tein (red color in the legend of Fig. 2C). Figure 2C illustrates how
this is achieved: For RefSeq2015, almost all peptides mapped
uniquely to one protein, which is common for a prokaryote. Com-
bining all six annotations resulted in a modest increase of tryptic
peptides (23%). However, most peptides (85%) now matched at
least two annotations: either annotations for an identical sequence
(class 1b) or annotationsof proteinswithdifferent lengthbutof the
same annotation cluster (class 2a or 2b), whichwould greatly com-
plicate the interpretation of proteomics search results. Adding in
silico ORFs significantly increased the number of peptides, adding
mainly new unique peptides (class 1a) for ORFs in regions without
annotation (Fig. 2C). Our careful integration collapses identical se-
quences and removes 1b and2bpeptides; the other sharedpeptides
(classes 2a, 3a, and 3b) account for ∼6% of the iPtgxDB.

Defining DB complexity as the number of distinct tryptic
peptides of 6–40aa in length, the complexity of the resulting
iPtgxDB was ∼50% of that of a full six-frame translated genome
that Mascot (Perkins et al. 1999) or PG Nexus (Pang et al. 2014)
would rely on to identify proteogenomic evidence for novel pep-
tides. Despite the relatively large number of entries, the DB com-
plexity is only 70% of that of baker’s yeast and below 20% of a
human protein DB (Supplemental Table S2).

Searching Bhen proteomics against our iPtgxDB
identifies novel ORFs

We next searched existing data from a comprehensive expressed
proteome, an in vitro model mimicking interaction of Bhen with

the arthropod vector (uninduced condition) or its mammalian
host (induced condition) (Omasits et al. 2013), against the Bhen
iPtgxDB using MS-GF+. Relying exclusively on unambiguous class
1a peptides, this allowed the systematic identification of expres-
sion evidence for novel ORFs, novel start sites, and CDSs wrongly
annotated as pseudogenes (Table 2). Importantly, each of the ref-
erence genome annotations, ab initio gene prediction tools, and
in silico predicted ORFs provided unique novel hits, underlining
the value of our integrated approach (Table 2; Supplemental Fig.
S3). These hits are novel compared to the most common approach
of using the latest reference annotation as the search DB, i.e.,
RefSeq2015, in this case.

When searching large data sets, it is imperative to use strin-
gent cut-offs. This is particularly relevant for proteogenomics,
where correctly identified novel information would require a ge-
nome annotation change. We relied on an estimated PSM-level
false discovery rate cut-off of 0.01%, which resulted in a peptide-
level FDR of 0.12%. This cut-off is about 10-fold more stringent
than in other proteogenomics studies (Krug et al. 2013; Kumar
et al. 2013; Chapman and Bellgard 2014; Zickmann and Renard
2015) and closer to the cut-offs used by Payne and colleagues (pep-
tide level FDR cut-off 0.3%) (Venter et al. 2011). Of particular note,
the E-value score distribution of PSMs that identify novel features
is also bi-modal, similar to that of PSMs identifying annotated pro-
teins in the target DB (Fig. 3A). To claim a potential novel ORF, we
required at least three PSMs to class 1a peptides if predicted by a ref-
erence genome annotation/ab initio prediction tool, and four
PSMs to class 1a peptides for in silico ORFs, in line with earlier
recommendations (Nesvizhskii 2014). Furthermore, all genomic
regions encoding novel candidates/start sites were expressed
(Supplemental Table S3).

Overall, 37 novel Bhen ORFs (with respect to RefSeq2015)
were identified (Table 2; Supplemental Fig. S3): 12 annotated by
another resource or ab initio prediction tool, 10 in silico only pre-
dicted ORFs, and 15 with a pseudogene annotation. In addition,
17 alternative start sites were identified. The median length of 22
novel ORFs (excluding pseudogenes) was 48 aa and that of six nov-
el ORFs previously identified with a prototype versus RefSeq2013
(i.e., prior to the re-annotation) (Supplemental Table S1) was 80
aa (Supplemental Fig. S4). This confirms that the novel ORFs rep-
resent sORFs commonly underrepresented in genome annota-
tions. Analysis of the estimated expression levels of the novel
ORF candidates including pseudogenes (seeMethods) furthermore
indicated that several of the sORFs are well-expressed proteins
(Supplemental Fig. S4) that may carry out important functions.

Examples of novel ORFs included differentially expressed
sORFs such as BARHE0898 (68 aa), that was expressed roughly

Table 1. Result of the stepwise, hierarchical integration of resources for Bhen

Annotation source No. of annotations New clusters New extensions New reductions Cumulative clusters Cumulative annotations

1. RefSeq2015 1612 1612 – – 1612 1612
2. RefSeq2013 1612 211 79 66 1823 1968
3. Ensembl 1612 0 1 0 1823 1969
4. Genoscope 2114 476 9 64 2299 2518
5. ChemGenome 2211 688 515 35 2987 3756
6. Prodigal 1643 50 41 63 3037 3910
7. In silico 54,099 32,928 16,514 129 35,965 53,481

The number of annotations per source, new protein clusters, and new extensions and reductions are shown for each step and summarized under cu-
mulative clusters and cumulative annotations. Overall, protein sequences for 53,481 annotations mapped to 35,965 annotation clusters. The final
iPtgxDB had 51,541 entries, as sequences <6 aa (1750), i.e., not identifiable with shotgun proteomics, and indistinguishable internal start sites (190)
were not considered.

Table 2. Summary of novel information uncovered by the integrated
proteogenomics approach

Annotation
source

Novel protein-coding ORF
Evidence for

alternative NH2-
terminus

Not in
RefSeq2015

Pseudogene in
RefSeq2015

RefSeq2013/
Ensembl

4 10 5

Genoscope 4 1 0
ChemGenome 1 2 5
Prodigal 3 1 2
In silico ORFs 10 1 5
Total 22 15 17

Compared to RefSeq2015, each resource added some novelty with
respect to Bhen’s overall protein-coding potential. Notably, close to
80% of the identified novelties could be independently confirmed by
parallel reaction monitoring (PRM) (Supplemental Table S3).
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Figure 3. Examples of novel information uncovered by integrative proteogenomics. (A) E-value distribution of PSMs against proteins of decoy and target
DB (red and blue lines, left scale) plus the distribution of those PSMs that uncovered novelties (green line, right scale). A PSM level FDR cut-off of 0.01%was
selected per sample. (B–D) Zoomed-in views of genomic regions that harbor novelties. For illustration, a single frame of the forward/reverse strand with
possible start (green) and stop codons (red) is shown, along with annotations and experimental evidence (spectral counts scaled from 0 to 20). (B)
Example of a novel sORF of 68 amino acids (BARHE0898, frame +3). (C) Example of a highly expressed pseudogene (RefSeq2015: BH_RS01070, frame
−3); 2244 spectra aremapped to 117 peptides of NusA, which is annotated as a pseudogene in RefSeq2015 for unknown reasons. There is no experimental
evidence for the +8-aa N-terminal extension predicted by ChemGenome. (D) Proteomic expression evidence supports a 63-aa-longer proteoform of
BH_RS01750 (frame −3) uniquely predicted by ChemGenome.
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6.5-fold higher in the induced condition (Supplemental Table S3).
Peptide evidence supported the longer form of this ORF annotated
by Genoscope and Prodigal (Fig. 3B). Another novel sORF of 67 aa,
a lipoprotein uniquely predicted by ChemGenome, was only iden-
tified in the uninduced condition (Supplemental Fig. S5A). Even
smallerORFswere identified, including awell-expressed (nine pep-
tides, 143 PSMs) sORF of 49 aa that was uniquely predicted by
Prodigal (Supplemental Fig. S5B; Supplemental Table S3) and an
in silico only predicted sORF of 34 aa (Supplemental Fig. S5D).
We also identified a highly expressed RefSeq2015 pseudogene
(BH_RS01070, frame −3) (Fig. 3C) annotated as normal CDS (tran-
scription elongation factor NusA) by RefSeq2013, Ensembl, and
Genoscope. Other misannotated pseudogenes included a potassi-
um-efflux transporter (BH10840) and the Bartonella effector pro-
tein BepD (BH13410) (Supplemental Table S3). Finally, for
BH_RS01750, a hypothetical protein encoded in a prophage re-
gion, only ChemGenome correctly predicted a 63-aa-longer pro-
teoform than annotated by other resources; its expression was
supported by several peptides (Fig. 3D). Proteomic data thus can
support novel start sites (even multiple start sites) (Supplemental
Fig. S5C) and distinguish between those predicted by different ref-
erence annotations.

Confirmation of novelties by independent targeted
proteomics

In order to confirm novel ORFs by independent methods, the
expression of novel candidates at the protein level was assessed
by targeted proteomics experiments (Fig. 3B–D; Supplemental
Fig. S5A–D) with parallel reaction monitoring (PRM) assays
(Peterson et al. 2014). For this highly sensitive method, cytoplas-
mic (cyt) and total membrane (TM) extracts were prepared from
new biological samples as described (Omasits et al. 2013; see
Methods). Overall, we were able to validate 107 of 138 targeted
peptides (78%) (Supplemental Tables S3, S4), including low ex-
pressed novel proteins implied by one peptide and three PSMs.
We had previously derived predominant subcellular localizations
(SCL) for all proteins (Stekhoven et al. 2014), which we comput-
ed here also for the novel candidates (see Supplemental Methods;
Supplemental Table S3). Importantly, the SCL data agreed with
the PRM evidence in either cyt or TM fractions, thereby adding
yet another layer of support to the confirmed novel ORFs. The
validation success was 100% for the six novel ORFs identified pre-
viously by our prototype (novel with respect to the RefSeq2013
annotation) (Supplemental Fig. S4), ∼80% for 15 expressed pseu-
dogenes and 12 novel ORFs from another genome annotation/
prediction, 60% for novel in silico ORFs, and ∼55% for novel
start sites (Supplemental Table S3).

Of note, we identified 38 of 51 lipoproteins predicted to have
a SpII cleavage site (LipoP, version 1.0) (Supplemental Table S5).
Two of these were identified among the 12 novel ORFs (one pre-
dicted by Genoscope, one by ChemGenome) and two others
among the six novel ORFs identified previously, which have since
been incorporated in RefSeq2015. All four candidates were validat-
ed by PRM, and their predominant SCL indicated that they were
found exclusively in the total membrane or outer membrane frac-
tions (Supplemental Table S3). Lipoproteins could thus represent a
class of proteins for which a substantial percentage ismissed in ref-
erence genome annotations, which is relevant given their impor-
tant roles in signaling, protein folding and export, virulence,
immunity, and antibiotic resistance (Kovacs-Simon et al. 2011).

De novo assembly and genome comparison of Bhen strains
underlines the importance of a correct genome sequence

Massively reduced sequencing costs and improved assembly algo-
rithms make it possible to determine the actual genome sequence
of key bacterial strains used in a laboratory, which provides an
optimal basis to integrate functional genomics data and to correct-
ly identify novel sORFs. We thus explored to what extent our
lab strain (MQB277) differed from the Bhen reference strain
(Alsmark et al. 2004) and whether we could detect protein expres-
sion evidence for novel ORFs in unique genomic regions and for
single amino acid variations (SAAVs). Conceptually, this allowed
testing of our approach on a newly sequenced genome, now rely-
ing on an iPtgxDB integrating Prodigal predictions plus in silico
ORFs, but without curated reference genome annotations.

We de novo-assembled (Chin et al. 2013) the PacBio-se-
quenced genome of the MQB277 lab strain, derived from Bhen
CHDE101, a Bhen variant-1 strain (Lu et al. 2013), into one
1,954,773-bp high-quality contig (see Supplemental Methods),
i.e., ∼23.7 kbp longer than the NCBI reference genome (Fig. 4A).
To compare closely related genomes in the context of experimen-
tal evidence, we devised a “virtual genome” concept, i.e., a coordi-
nate system that integrates sequences from reference genome and
de novo assembly (Fig. 4). This allowed us to integrate annotation
and experimental data tracks, to efficiently zoom down to the sin-
gle nucleotide level, and to inspect all lines of evidence for ob-
served differences.

Overall, we noted a large inversion translocation (34.4 kbp)
close to the terminus of replication, previously reported for some
Bartonella isolates (Lindroos et al. 2006), and three insertions of
22.1, 6.1, and 1.4 kbp in the MQB277 assembly (Supplemental
Table S6). The 22.1- and 1.4-kb insertions affected a genomic re-
gion encoding the surface protein BH01510, a BadA1 adhesin
(Supplemental Fig. S6) and major pathogenicity factor that medi-
ates binding of B. henselae to extracellular matrix proteins and en-
dothelial cells (Riess et al. 2004). A complex repeat structure in this
region of the assembly harbored additional ORFs, whose expres-
sion was supported by unambiguous peptide evidence. In line
with the CDSMQB277_01630 lacking a C-terminalmembrane an-
chor, its predominant SCL was cytoplasmic (for more detail, see
Supplemental Fig. S6). These data help to explain earlier experi-
mental data that had demonstrated lack of or much lower BadA
surface expression in the Bhen CHDE101 variant strain (Lu et al.
2013).

Of note, the 6.1-kbp insertion harbored two CDSs predicted
to encode autotransporter proteins (Fig. 4B). Both MQB277_
12910 and MQB277_12920 were unique to the high-quality
PacBio assembly, which contains a direct repeat in this region
(missing in the reference), indicative of a duplication event.
Searching against the MQB277-based iPtgxDB, all three proteins
were highly expressed (Fig. 4B, MQB277 track), compared to
only BH_RS06340 based on the RefSeq2015 protein DB (NCBI
RefSeq track). Importantly, the novel CDS MQB277_12910 was
among the most up-regulated (42-fold) proteins in the induced
condition (Supplemental Table S3). This data is in line with the
dramatic re-organization of the membrane proteome reported
earlier (Omasits et al. 2013). Our SCL data indicated that all three
proteins were localized in the outer membrane (Supplemental
Table S3).

The assembly also comprises a genomic region harboring a 1-
bp insertion and a 81-bp deletion with respect to the reference.
Because of the frameshift caused by the insertion, protein
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expression of a CDS annotated as an ABC transporter (downstream
from the insertion) was only observed in the lab strain assembly
(Fig. 5A; Supplemental Table S6), which is also supported by tran-
scriptomics data (seeMethods). Due to the frameshift, CDSs in this
region were either annotated as pseudogenes or as split CDSs
(NCBI RefSeq track). This example is furthermore noteworthy, as
our transcriptomics data set (Omasits et al. 2013) had been re-
analyzed with an RNA-seq based proteogenomics approach
(Zickmann and Renard 2015), and a novel ORF was reported in
this region (Fig. 5A, orange arrow). However, only with the correct
assembly at hand can novel ORFs be identified completely accu-
rately. Our integrated analysis demonstrates that the novel ORF
in question is, in fact, longer, and its expression is supported by
class 1a peptides (MQB277 track, Supplemental Fig. S7).

Of note, we found several examples where single nucleotide
variations (SNVs) led to nonsynonymous protein sequence differ-
ences, as, e.g., for transcription elongation factor GreA (Fig. 5B).
The expression of this and 11 additional SAAVs (Supplemental
Table S3) was again independently validated by PRM assays.
Analysis of the 274 SNVs observed between the two genomes indi-
cated that they were significantly enriched in a limited number of
regions encoding surface proteins (114/274), including four of

eight hemagglutinins, and four hemoly-
sin activator proteins (HECs) (Supple-
mental Table S6). Together, our data
provide multiple lines of evidence for
the earlier postulation that genome rear-
rangements observed in natural Bhen
populations affect variation of surface
proteins (Lindroos et al. 2006).

Finally, the search against the as-
sembly-based protein DB led to overall
10,410more assigned PSMs and 441 pep-
tides (same 0.01% PSM level FDR thresh-
old) (Supplemental Table S7). Together,
these results emphasize the value that re-
search groups can gain by sequencing
and de novo-assembling their most im-
portant strains.

Integrated proteogenomics approach is
generically applicable

Genome annotation ismore difficult and
error-prone for genomes with high GC
content; they contain more spurious
ORFs and fewer stop codons, which leads
to a reduced accuracy of translation start
site prediction (Hyatt et al. 2010; Marcel-
lin et al. 2013). To demonstrate that our
approach can work beyond Bhen
(38.2% GC), we have applied an earlier
prototype on genomes with higher GC
content: We could identify novel ORFs
in the genome of Burkholderia kirkii
(62.9% GC) including metabolic en-
zymes missed in a RAST annotation
(Aziz et al. 2008), which carry out critical
functions in the obligate symbiosis with
plants of the genus Psychotria (Carlier
et al. 2013). For Bradyrhizobium diazoeffi-
ciens (64.1% GC) and in combination

with dRNA-seq data, we uncoveredmany novel short ORFs and in-
ternal start sites expressed under free-living conditions and in sym-
biosis with soybean (Cuklina et al. 2016). Finally, we applied our
approach on shotgun proteomics data sets from Escherichia coli
K-12 BW25113 (50.3% GC) during exponential growth (Krug
et al. 2013) or grown under multiple conditions (Schmidt et al.
2015; see SupplementalMethods). Even for thewell-annotated ge-
nome of the parental strain of the Keio knockout strain collection
(Baba et al. 2006), we could identify evidence for novel ORFs.
These included six pseudogenes with solid expression evidence
but also short in silico ORFs, including a highly conserved sORF
of 57 aa (three peptides, nine PSMs) plus several novel start sites
(Supplemental Tables S8, S9).

To enable proteogenomics for a larger microbiology research
community with access to proteomics core facilities, we provide
both a set of precomputed iPtgxDBs for several key prokaryotic
model organisms, including founder strains of gene knockout
collections, and the software to create them in a public web
server (https://iptgxdb.expasy.org) for any prokaryote (Fig. 6).
iPtgxDBs can thus be created for newly sequenced organisms,
e.g., type strains for the 11,000 named species targeted by the
Genomic Encyclopedia of Bacteria and Archea (GEBA) project

Figure 4. Comparative analysis in the context of experimental data. Integrated visualization of two
closely related genomes through a virtual genome concept. (A) On the left, the Bhen NCBI RefSeq ge-
nome (inner blue circle) is aligned to our de novo assembly (outer red circle). A large inversion-transloca-
tion (black bracket) is marked; several insertions or deletions in either genome are shown (white spaces)
and a center track for single nucleotide variations (SNVs). To the right, the virtual genome (gray) is shown
which incorporates both genome sequences, including all differences, into a common coordinate sys-
tem. Unique sequences are shown in blue or red (the inversion-translocation present in both genomes
is left as is). (B) Zoom into the region harboring a 6088-bp insertion in MQB277 (red bar), showing an-
notations for the RefSeq genome (below the virtual genome track) and assembly (above the virtual ge-
nome track), plus experimental proteomics evidence mapped against both genomes (spectral count
scaled from 0–800). This region harbors a direct repeat only in the assembly (orange bars). Three
CDSs (MQB277_12910, MQB277_12920, MQB277_12930) annotated as autotransporters are highly
expressed; the first two (novel CDSs) are only detected (unambiguous 1a peptides) with the correct ge-
nome sequence available.
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(Kyrpides et al. 2014) or environmental isolates. These organisms
offer unique opportunities to study various fundamental aspects
such as the development and spread of antibiotics resistance
(ABR), the presence of novel biochemical reactions (Montes
Vidal et al. 2017) or pathways relevant for biotechnological appli-
cations, or key functions encoded by important strains isolated
from complex microbiomes, whose importance for, e.g., human
health (Cho and Blaser 2012) and plant protection from patho-
gen attack in agricultural settings (Berendsen et al. 2012), has
been recognized.

Discussion

We present a flexible, yet general proteo-
genomics strategy that allowed us to
identify novelties in the genome of pro-
karyotes of different taxonomic origin
(α-, β-, γ-proteobacteria) and widely rang-
ing GC content. Investing a major effort
in a preprocessing step to hierarchically
integrate reference genome annota-
tions and predictions into an iPtgxDB
that covers the entire protein-coding
potential pays off: Close to 95% of the
peptides unambiguously imply one
protein (based on an extension of the
PeptideClassifier concept [Qeli and
Ahrens 2010] for prokaryotes), facilitat-
ing swift data analysis andmining. In ad-
dition, informative identifiers capture
overlap and differences of all resources,
start codon, and genomic coordinate in-
formation, such that novel ORFs, start
sites, or expressed pseudogenes can read-
ily be identified and visualized. These
features are unique to our solution. Our
iPtgxDBs come in the form of a protein
search DB and a GFF file containing all
annotations and identifiers.

For prokaryotes, the complexity of
iPtgxDBs is lower than that of a regular
protein search DB for, e.g., yeast or hu-
man (Supplemental Table S2). In our
view, the benefit of generating a single
iPtgxDB against which proteomics data
from any condition (or knockout strain)
can be searched to identify novel ORFs
outweighs that of other elegant solutions
that were developed for the more com-
plex eukaryotes. Both splice graphs
(Woo et al. 2013) and RNA-seq data
(Wang et al. 2012) reduce the complexity
and size of the search DB. However, in
both cases, DBs specific for the condi-
tions studied are generated, requiring
bioinformatics expertise and limiting
the general applicability of the resource.
The GFF file we provide can be very valu-
able for other proteogenomics software
solutions like GenoSuite (Kumar et al.
2013), PGP (Tovchigrechko et al. 2014),
and PG Nexus (Pang et al. 2014), which
allow users to search their data against a

six-frame translation and later visualize identified peptides
onto a genome sequence but lack integrated and consolidated
annotations.

The proteogenomics community is still to agree upon the best
practice for required FDR thresholds and confirmation of novel
candidates. Using very stringent FDR thresholds, as also advocated
by Venter et al. (2011), we show that the E-value distributions of
PSMs for novel hits and target proteins are similar. Furthermore,
we invested an extra effort to confirm the expression of novel
ORFs with selective and sensitive PRM assays. The validation

Figure 5. Protein evidence for single amino acid variations (SAAVs). (A) Genomic region encoding an
ABC transporter (BH_RS05910). RefSeq and Ensembl annotate it as a pseudogene, Genoscope as a frag-
mented pseudogene, while Prodigal and ChemGenome predict two CDSs. The reference genome (be-
low gray virtual genome bar; NCBI RefSeq track) differs from the MQB277 assembly (MQB277 track
above the virtual genome) by an insertion of 81 bp and a 1-bp deletion (red boxes); the 1-bp deletion
causes a frameshift, evidenced by the lack of protein expression downstream from it (spectral count be-
low the virtual genome; scaled from 0 to 800) and by transcriptomic data (reads mapped to the refer-
ence genome all support the insertion; lower panel). In contrast, the protein encoded by
MQB277_12040 in the assembly is expressed over almost its entire length (class 1a peptides; one pep-
tide identified by seven PSMs spans the frameshift region), also supported by transcriptomic reads map-
ping without any mismatch (Supplemental Fig. S7). (B) Evidence for a SNV causing a nonsynonymous
SAAV in the CDS of transcription elongation factor GreA. Four peptides (two, four, eight, 39 PSMs) con-
firming this SAAV (glycine in reference to glutamic acid in our assembly) are mapped to this position in
MQB277.
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success (80% overall) ranged from 100% for SAAVs and highly ex-
pressed novel sORFs to around 55% for novel start sites. Reasons
for the lower success with start sites can include N-terminal cleav-
age or modification, both of which can prevent detection of the
single peptide from being confirmed (Goetze et al. 2009).
Identification of internal start sites is evenmore difficult but great-
ly benefits from the availability of dRNA-seq data (Cuklina et al.
2016) and/or N-terminal enrichment steps.

Focusing on the description of our novel strategy, we did not
further characterize or functionally validate novel sORFs beyond
the PRM confirmation. More effort will be required to assess the
functional relevance of sORFs, e.g., by individual gene deletion
or genome-wide transposon mutagenesis screens (Christen et al.
2011). Recent work in yeast suggested that sORFs may represent
a pool of proto-genes that are under evolutionary pressure and
may lead to the birth of novel genes (Carvunis et al. 2012).
Indeed, genes that emerged more recently tend to be shorter
(Tautz and Domazet-Loso 2011).

Besides identifying missed sORFs, our data indicated that (1)
the procedures to annotate pseudogenes differ between resources
(and even releases) and have to be treated with caution, and (2)
likely overpredicted ORFs can be uncovered when relying on com-
plete, condition-specific expressed proteomes. Recent advances to
comprehensively identify expressed proteomes within a few days
(Nagaraj et al. 2012; Richards et al. 2015) suggest that proteomics
data can, at least in part, address this issue of overprediction. Such
extensive data sets can also uncover functionally relevant genomic
changes down to the SAAV level, with implications for clinical pro-
teomics and beyond. For example, by tracking clinically relevant
pathogens either over time (Lee et al. 2017) or comparing different
strains, genome changes that correlate with higher pathogenicity

(de Souza et al. 2011; Nasser et al. 2014;
Malmstrom et al. 2015) can be identified,
some of which ideally are supported by
direct protein expression evidence for
SAAVs.

Importantly, our data show that as-
sembling the correct genome sequence
of the strain under study is of critical im-
portance: It is the optimal basis not only
to comprehensively identify expression
differences between the conditions stud-
ied but also to accurately identify novel
sORFs by proteogenomics. An initial de
novo assembly should thus be carried
out routinely for the most important
strains, in particular those that form the
basis for long-term projects aiming to in-
tegrate functional genomics data.

We favor a conservative approach to
genome re-annotation, ideally carried
out by consortia that iteratively improve
the annotation of their respective model
or nonmodel organisms (Armengaud
et al. 2014), e.g., relying on a genome
Wiki concept (Fig. 6; Salzberg 2007). By
releasing iPtgxDBs initially for three mo-
del organisms (https://iptgxdb.expasy.
org; Supplemental File S10) and the soft-
ware to create them (Supplemental File
S11), we hope to enable a large user
base to apply proteogenomics in the ini-

tial genome annotation step. This will provide an optimal basis for
systems-wide functional studies and genome-scale regulatory or
metabolic predictions and help to fully capitalize on the genome
information and decode its function.

Methods

Source of reference genome annotations and ab initio predictors

Annotations of the Bhen reference genome (Alsmark et al. 2004)
were obtained from NCBI’s RefSeq (Pruitt et al. 2012)
(NC_005956.1; from 06/10/2013, called RefSeq2013, and 07/30/
2015, called RefSeq2015) (for ftp links, see Supplemental
Methods), from Ensembl’s Genomes project (GCA_000046705.1,
Feb/2015), and from Genoscope’s microbial genome annotation
and analysis platform (v2.7.3, accessed 03/09/2016) (Vallenet
et al. 2013). Ab initio gene predictions from Prodigal (v2.6)
(Hyatt et al. 2010) and ChemGenome (v2.0, http://www.scfbio-
iitd.res.in/chemgenome/chemgenomenew.jsp; with parameters:
method, Swissprot space; length threshold, 70 nt; initiation co-
dons, ATG, CTG, TTG, GTG) were used (Singhal et al. 2008).
Files were parsed to extract the identifier, coordinates, and se-
quences of bona fide protein-coding sequences and pseudogene
entries.

Integrative proteogenomics approach

The annotations were collapsed into singletons (same sequence in
all sources) or annotation clusters of two or more sequences with
the same stop codon but different start sites. For clusters, we define
an anchor sequence from the annotation highest up in the hierar-
chy, e.g., RefSeq2015. We construct an informative and transpar-
ent protein identifier that integrates all relevant information: A

Figure 6. Application of our integrated proteogenomics approach. We release open source iPtgxDBs
for several model organisms (https://iptgxdb.expasy.org); here, for Bhen, E. coli BW25113, and B. diaz-
oefficiens USDA 110 (left panel). Using proteomics data from any condition or knockout strain (light
brown boxes; here, schematically shown for E. coli), researchers can identify novelties and iteratively im-
prove the genome annotation, e.g., in a community-driven genomeWiki approach (Salzberg 2007). The
release of the software to integrate ab initio predictor(s) and in silico predictions (Supplemental Fig. S8)
can help to improve genome annotations of many newly sequenced genomes (right panel).
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code is added to the anchor sequence for each identical annotation
(RefSeq2013=rso, Ensembl=ens, Genoscope=geno, Prodigal=prod,
ChemGenome=chemg, in silico ORF=orf) separated by a pipe sign
(e.g., BH_RS00220|rso|ens|geno). Identical in silico ORFs are not
considered. For alternative start sites, the length difference com-
pared to the anchor annotation is added prior to the code (e.g.,
…|-17aa_prod|+6aa_chemg). Finally, chromosome, start and stop
position, reading frame, start codon, and CDS length complete
the identifier. The anchor sequence identifier thus integrates rele-
vant information of the genomic location and all annotation
sources for this region, including possible reductions and exten-
sions (see Fig. 2A). Identifiers for entries with alternative initiation
sites contain a reference to the anchor annotation, the length dif-
ference, and the annotation source (e.g., BH_RS00220_+6aa_
chemg). To create an iPtgxDB, we only add the complete sequence
of the anchor sequence of a cluster plus sequences of N-terminal
regions that give rise to identifiable (i.e., different from the anchor
sequence) tryptic peptides for the additional proteoforms of the
cluster. For extensions, the N-terminal sequence up to the first
tryptic cleavage site in the anchor sequence is added, for internal
start sites the N-terminal tryptic peptide if it starts from an alterna-
tive initiation codon other than ATG (TTG, GTG, or CTG) giving
rise to a N-terminal Met instead of a Leu, Val, or Leu, respectively.
For pseudogenes, we added the suffix “_p” (e.g., BH_RS02905_p) or
“_fCDS_p” (e.g., BHGENO0333_fCDS_p; “fragmented CDS”, for
Genoscope pseudogenes) to the identifier, and a sequence translat-
ed to the first stop codon to the protein DB. In silico ORFs above a
selectable length threshold (18 aa) were added (Supplemental
Methods). For the de novo-assembled Bhen MQB277 genome,
Prodigal predictions and in silico ORFs were integrated (same
length cut-off).

PeptideClassifier analysis of protein search DBs

The complexity and redundancy of protein search DBs was
assessed with the web-based PeptideClassifier tool (http://
peptideclassifier.expasy.org) to derive an evidence class for every
tryptic peptide of 6 to 40 aa (Supplemental Fig. S2). To deal with
multiple different annotations for the same genemodel, we gener-
ated the required gene-annotationmapping files using the stop co-
don coordinates as the common gene name across annotations,
i.e., an extension of the original concept of gene-protein mapping
(see text and Fig. 2; Qeli and Ahrens 2010). A web service to sup-
port peptide classification for proteogenomics in prokaryotes will
soon be released.

Stringent re-analysis of proteomics and transcriptomics data

Proteomics data (ProteomeXchange, acc.# PXD000153) was
searched withMS-GF+ (v.10.0.72) (Kim and Pevzner 2014) and de-
scribed parameters (Omasits et al. 2013) against the RefSeq2015-
based DB, the iPtgxDB (51,541 proteins), and the iPtgxDB of our
de novo assembly (52,687 proteins). A PSM FDR threshold of
0.01% was used; estimated peptide and protein level FDRs were
0.12% and 0.6%, respectively (Supplemental Table S7). Protein ex-
pression estimates and differential expression values were comput-
ed as described (Omasits et al. 2013). Reads from the matched
Bhen transcriptomics data set (GEO, acc.# GSE44564) were strin-
gently remapped both to the NCBI reference genome (Alsmark
et al. 2004) and to our de novo assembly using NovoAlignCS
v1.06.04 (Novocraft). For reads supporting coding SNVs, we only
considered reads without a mismatch. This allowed us to provide
transcriptomic support for a substantial amount of observed geno-
mic differences, both coding and noncoding. For more details, see
Supplemental Methods.

Bacterial strains, genomic DNA, and protein extracts

High-quality gDNA was extracted from Bhen strains MQB277 and
CHDE101 (Schmid et al. 2004), a close laboratory variant of the
NCBI Bhen Houston-1 ATCC49882 reference strain (Alsmark
et al. 2004) and parental strain of MQB277, using Sigma-
Aldrich’s GenElute kit. Both were sequenced (Pacific Biosciences
[PacBio]) and assembled into one high-quality contig (Supplemen-
tal Methods). Protein extracts of cytoplasmic and total membrane
fractions were prepared from bacterial cells grown under unin-
duced and induced conditions as described (Omasits et al. 2013).

Protein features, functional annotation, conservation

Several protein features including signal peptides, transmembrane
topology, lipoproteins, and protein domains were predicted, and
protein sequences functionally annotated by eggNOG (Huerta-
Cepas et al. 2016). Conservation of novel ORFs was assessed with
tblastn. Predominant SCL information was computed for all pro-
teins (including novel ORFs) similar to Stekhoven et al. (2014).
For details, see Supplemental Methods.

Independent validation by targeted proteomics

Peptides for novel ORFs, start sites, expressed pseudogenes, or as-
sembly-specific changes were selected based on spectral count,
number of tryptic sites, number of missed cleavage sites, and
PeptideRank prediction (Qeli et al. 2014). Heavy-labeled reference
peptides were purchased from JPT Peptide Technologies GmbH
and used to set up PRM assays (Supplemental Table S4; Peterson
et al. 2014). Specific transitions were measured in cyt and TM ex-
tracts of biological replicates of both conditions (new fractions).
Only traces within a mass accuracy of 10 ppm were evaluated;
we excluded transition interference bymanually validating co-elu-
tion of peptide traces. For details of the sample preparation andMS
set-up, see Supplemental Methods.

Software availability

Software to create iPtgxDBs for any prokaryote is available in
Supplemental File S11 and via the public web server (https://
iptgxdb.expasy.org).

Data access
The genome sequence of Bhen variant-1 strainCHDE101 from this
study has been submitted to NCBI GenBank (https://www.ncbi.
nlm.nih.gov/genbank/) under accession number CP020742.
iPtgxDBs for Bhen Houston-1, Bhen CHDE101, E. coli BW25113,
and B. diazoefficiens USDA 110 are available in Supplemental File
S10. PRM data from this study have been submitted to Panorama
(https://panoramaweb.org/labkey/Bartonella_Proteogenomics.url).
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assembled and annotated the genomes with input fromA.P., J.E.F.,
O.N., and M.D.R.; M.Q. and C.D. provided Bhen gDNA and new
protein extracts; S.G. and B.W. validated selected candidates by
PRM; M.B. developed the iPtgxDB website with input from
A.R.V. and C.H.A.; C.H.A. wrote the manuscript. All authors com-
mented on the manuscript.
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