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Abstract

Soil erodibility, commonly expressed as the K-factor in USLE-type erosion models, is a crucial
parameter for determining soil loss rates. However, a national soil erodibility map based on
measured soil properties did so far not exist for Switzerland. As an EU non-member state,
Switzerland was not included in previous soil mapping programs such as the Land Use/Cover
Area frame Survey (LUCAS). However, in 2015 Switzerland joined the LUCAS soil sampling pro-
gram and extended the topsoil sampling to mountainous regions higher 1500 m asl for the first
time in Europe. Based on this soil property dataset we developed a K-factor map for Switzerland
to close the gap in soil erodibility mapping in Central Europe. The K-factor calculation is based
on a nomograph that relates soil erodibility to data of soil texture, organic matter content, soil
structure, and permeability. We used 160 Swiss LUCAS topsoil samples below 1500 m asl and
added in an additional campaign 39 samples above 1500 m asl. In order to allow for a smooth in-
terpolation in context of the neighboring regions, additional 1638 LUCAS samples of adjacent
countries were considered. Point calculations of K-factors were spatially interpolated by Cubist
Regression and Multilevel B-Splines. Environmental features (vegetation index, reflectance
data, terrain, and location features) that explain the spatial distribution of soil erodibility were in-
cluded as covariates. The Cubist Regression approach performed well with an RMSE of
0.0048 t ha h ha™' MJ™'" mm~'. Mean soil erodibility for Switzerland was calculated as
0.0327 t ha h ha™! MJ~" mm~" with a standard deviation of 0.0044 t ha h ha™" MJ~" mm~". The
incorporation of stone cover reduces soil erodibility by 8.2%. The proposed Swiss erodibility map
based on measured soil data including mountain soils was compared to an extrapolated map
without measured soil data, the latter overestimating erodibility in mountain regions (by 6.3%)
and underestimating in valleys (by 2.5%). The K-factor map is of high relevance not only for the
soil erosion risk of Switzerland with a particular emphasis on the mountainous regions but also
has an intrinsic value of its own for specific land use decisions, soil and land suitability and soil
protection.
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1 Introduction

The productive capacity of the soil is the most important
resource for human food supply (Morgan, 2006; Borrelli
et al., 2017). However, depletion in productive capacity and
an increase of soil erosion rates are progressing with the
growth of population and agricultural intensification (Brown,
1981; Pimentel et al., 1995; Lal, 2001; Yang et al., 2003;
Dotterweich, 2013). On global arable lands, soils are not in
equilibrium as soil loss rates exceed the tolerable soil loss
(FAO, 2015). Among the physical parameters influencing soil
erosion (soil physical, chemical, and biological properties,
climate conditions, landscape characteristics; Verheijen et al.,
2009) the susceptibility of soil is controlled by soil properties that
restrain the detachment of soil particles, and affect infiltration,
permeability, and water capacity (Wischmeier and Smith, 1965).

*Correspondence: S. Schmidt; email:

simon@simonschmidt.de

si.schmidt@ unibas.ch;

© 2018 The Authors. Journal of Plant Nutrition and Soil Science published by Wiley-VCH Verlag GmbH & Co. KGaA

The susceptibility of a soil to erode is commonly called soil erodi-
bility. It is assessed as the K-factor in the Universal Soil Loss
Equation (USLE; Wischmeier and Smith, 1965) and its revised
versions (RUSLE; Renard et al., 1997) which compute soil ero-
sion by a multiplication of the rainfall erosivity R, cover and man-
agement C, slope length and steepness LS, and support practi-
ces P (Wischmeier and Smith, 1978). Experimentally, the K-fac-
tor is the average annual soil loss (A) per rainfall erosivity unit
(R) measured for the standard conditions of the unit plot (Wisch-
meier and Smith, 1978):

K=" (1)
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In a rather practical context, it can be seen as a value to
describe the annual average of the total soil and soil profile
reactions in relation to substantial water erosion processes
like detachment and transport (Renard et al., 2010). Informa-
tion about soil erodibility is preferable to be assessed by long-
term measurements on natural plots (Renard et al., 2010). A
relationship of soil erodibility and particle size distribution was
assessed by Wischmeier et al. (1971) for soils in the USA
and expressed in a nomograph. That nomograph was devel-
oped to estimate soil erodibility from readily available soil
property data and standard profile descriptions as field meas-
urements of K are time-consuming and demand at least 3 (up
to 10) years of measurement to determine values (Foster et
al., 2008). Later, Wischmeier and Smith (1978) developed an
equation that rests on the nomograph based on rainfall simu-
lations data from 55 soils in the US [see Eq. (2); Renard and
Ferreira, 1993]. This equation is the most used and cited
function to calculate soil erodibility from ready-to-use soil data
(Borrelli et al., 2017). Alternative equations for particular soil
types (e.g., high clayey, volcanic, mollisol) were developed,
but these are not of necessity for Swiss conditions (Wang
et al., 2013). Auerswald et al. (2014) developed a K-factor
equation based on German soil survey data. Their equation
fully emulated the nomograph of Wischmeier and Smith
(1978) beyond the limitations of 70% silt, soil erodibility less
than 0.02 t ha h ha™' MJ=' mm~, 4% soil organic matter, and
exclusion of rock fragments. However, the equation is not yet
widely tested (applied in 5 publications) and considered as
“far from perfect in many cases” (Auerswald et al., 2014). To
ensure a continental comparability of Swiss soil erodibility, we
decided to use the equation of Wischmeier and Smith (1978),
which was earlier applied for European countries (see below;
Panagos et al., 2014).

Determining the soil properties of the equation of Wischmeier
and Smith (1978) includes topsoil texture (sand, very fine
sand, silt, and clay content), soil organic matter, soil structure,
and soil permeability (Wischmeier et al., 1971). However, as
the latter parameters are also difficult to measure, and regard-
ing the demand on large-scale models and assessments,
alternative methods to cover the spatial distribution of soil
information are needed (Diek et al., 2016; 2017; Wang et al.,
2016a). Still the majority of these alternatives follow the
nomograph or equation of Wischmeier et al. (1971) and
Wischmeier and Smith (1978) to model soil erodibility with
soil properties derived by remote sensing (Wang et al.,
2016b; Ostovari et al., 2017) or digital soil mapping (DSM)
techniques (Bahrawi et al., 2016; Ganasri and Ramesh,
2016; laaich et al., 2016).

For Switzerland, previous studies have used a variety of poly-
gon-based soil property and soil suitability maps of different
scales to estimate the soil erodibility based on the parameter
classes of texture, stone, and organic matter content
(Prasuhn et al.,, 2010; 2013). Unfortunately, high- and
medium-resolution soil maps (up to 1:50000) are heterogene-
ous and do only cover 25% of the Swiss national area. With
the recent demand of national spatial soil data, DSM evolved
as an appropriate method to complement the conventional
soil survey methods (McBratney et al., 2003) that are often
biased especially for Switzerland with its high percentage of
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remote mountain areas with low accessibility (Nussbaum
etal., 2014; 2017; 2018). The principle of DSM considers that
similar environmental conditions cause the formation of simi-
lar soil and soil properties (Hudson, 1992).

Often, soil survey input data sources of the DSM maps origi-
nate from non-uniform soil databases, which make the results
often incomparable, although underlying equations and meth-
odologies are identical. Topsoil surveys (0-20 cm) in the
framework of the Land Use/Cover Area frame Survey
(LUCAS; Téth et al., 2013) allowed the establishment of a
homogenous soil database across 23 EU member states.
Panagos et al. (2012a) presented a K-factor map as a first
homogenized product of the database. Later, the underlying
spatial prediction methodology was improved (Cubist Regres-
sion and Multilevel B-Splines), the number of soil samples
increased and the number of countries enlarged (25 EU
member states; Panagos et al., 2014). The past two sampling
campaigns of LUCAS (2009-2012 and 2015) cover a total of
more than 22,000 soil samples (Orgiazzi et al., 2018). As
Switzerland was not part of the first LUCAS sampling (2009),
an extrapolation of soil erodibility for Switzerland without
Swiss soil samples was realized based on topsoil data of oth-
er EU countries (map uploaded at the European Soil Data
Centre ESDAC; Panagos et al., 2012b). However, this ex-
trapolated soil erodibility is associated with high uncertainties
and was therefore not published in a peer-review journal. In
2015, Switzerland joined the LUCAS program and 199 sam-
ples were collected. For the first time also soil samples from
mountain areas above 1500 m asl were included (n = 39).

Although the presence of seasonal effects on the K-Factor
(mainly triggered by freeze-thaw processes) is discussed in
the literature (Renard et al., 1991; Renard and Ferreira, 1993;
Renard et al., 1997; Bryan, 2000), we decided not to model
soil erodibility on a seasonal scale. Kinnell (2010) reviewed
different approaches to assess the seasonality of the K-factor.
However, none of these approaches include the hardly meas-
urable influencing interactions and effects (e.g., climate influ-
ences and seasonality of freeze—thaw, compaction by life
stock trampling, human management activities) simultane-
ously for a proper process-oriented modeling (Leitinger et al.,
2010; Pineiro et al., 2010; Vannoppen et al., 2015). Further-
more, the divergence of seasonal K-factors to an annual
K-factor is poorly discussed in the literature (e.g., Wall et al.,
1988). In the RUSLE2 User’s Reference Guide (Foster et al.,
2008) it is even stated that no statistical evidence exists for
an inconsistency of soil erodibility over time. Rather, the rain-
fall erosivity (Schmidt et al., 2016) and the cover and man-
agement factor (Schmidt et al., 2018) can be seen as highly
dynamic erosion factors with an intra-annual variation.

The aim of the present study is to assess the spatial and tem-
poral patterns of soil erodibility of Switzerland by (1) mapping
K-factors based on Swiss LUCAS data. Additionally, (2) differ-
ences between the interpolation and extrapolation to produce
a national soil erodibility map are evaluated. With the map-
ping of soil erodibility based on soil samples, we aim to
improve the prediction of the existing extrapolated soil erodi-
bility map.
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2 Material and methods

2.1 LUCAS topsoil sampling

A dataset of 199 soil samples from the LUCAS topsoil sam-
pling was used to obtain a soil erodibility map of Switzerland.
The LUCAS topsoil sampling is a standardized procedure
with one aliquot out of five mixed subsamples for each
sampled location. A recent review about LUCAS is provided
by Orgiazzi et al. (2018). All samples were air-dried and ana-
lyzed for particle size distribution (according to the USDA
classification) and soil organic carbon content in a single 1ISO-
certified laboratory. The laboratory analysis is explained in
detail by Orgiazzi et al. (2018). 160 soil samples of Switzer-
land cover grasslands and forests at elevations less than
1500 m asl (sample distribution of 12.7 km x 12.7 km), 39
samples were taken at the same land use units in the Alpine
region above 1500 m asl (20.6 km x 20.6 km) (hamed as
Alpine samples throughout the study). The total Swiss sample
set spans over elevations from 287 m asl to 2337 m asl. It
covers all biogeographic regions (Jura, Alpine Midland, and
Northern/Southern/Western/Eastern Alps) of Switzerland and
has a mean point density of one per 207 km?, which equals
an average distribution of one sample within a grid of
14.4 km x 14.4 km (Fig. 3). That sample spread of Switzer-
land corresponds to the mean spread across the 25 EU Mem-
ber States of the 2009-2012 sampling (14 km x 14 km; Pana-
gos et al., 2013). The Alpine samples were selected following
a stratified random sampling to make sampling in remote
areas possible. As a logistical stratum we selected sampling
points at grassland locations above 1500 m asl by the criteria
of accessibility (max. distance of 200 m to the next street
accessible with 4-wheel drive). We tried to manually cover the
natural strata exposition (south, north) and geological units
(consolidated and unconsolidated sediment, igneous rock,
metamorphic rock) which are related to the soil formation but
are not homogenously assessed by a random sampling ap-
proach. We assume that differently exposed soils experi-
enced another degree of solar radiation (Yimer et al., 2006)
and soil texture varies with geological units (Jenny, 1941).
After assigning the strata, the 39 samples were randomly dis-
tributed (in ESRI ArcGIS) proportional to the strata units to
cover each combination of exposition and geology. Addition-
ally, 1638 samples of the surrounding countries Germany,
Austria, Slovenia, Italy, and France were used to delineate a
better prediction for the spatial interpolation (see below).
These data were already part of the European soil erodibility
mapping (Panagos et al., 2014). Additionally, the European
Soil Database (King et al., 1994) provides information for the
soil structure of the LUCAS samples.

2.2 Calculation of soil erodibility for the LUCAS
topsoil samples

The soil erodibility (K) equation by Wischmeier and Smith
(1978) includes the following soil properties: particle size dis-
tribution in percent [very fine sand m,,, (0.05-0.1 mm), silt
Mg (0.002-0.05 mm), and clay m,,, (< 0.002 mm) content],
the organic matter content OM in percent, the soil structure
class s and the permeability class p. According to their empiri-
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cal experiments, Wischmeier and Smith (1978) propose to
calculate the soil erodibility as the following function, whereby
K is expressed in t ha h ha™' MJ=" mm~" according to the
International System of units (Foster et al., 1981):

K=

[(2.1x10*xM""x (12 — OM) + 8.25x (s — 2) + 2.5x(p — 3))/100]

x0.1317,
@)

where M is the textural factor composed of (mg, + m ) x
(100 — mc,ay). The particle size distribution is analytically
determined. Textural classes are set according to USDA
(1951). Soil structure is defined as the overall architecture of
soils and the assembling of individual texture components
like sand, silt, and clay and its combination to aggregates
(Chesworth, 2008). It can be derived by a pedotransfer func-
tion including the land use class und soil name proposed by
van Rast et al. (1995). Soil structure is classified into four
classes: humic, poor, normal or good. Soil permeability is the
soils capacity to transmit water and can be assessed by the
soil texture classes (permeability classes 0 to 4) (USDA,
1983; Chesworth, 2008). The used tables to extract soil struc-
ture s and soil permeability p can be found in Panagos et al.
(2014). The soil erodibility equation underlies three restric-
tions: silt content > 70% is set to 70%, organic matter content
> 4% is set to 4%, and the very fine sand fraction is estimated
as 20% of the total sand fraction (Panagos et al., 2014). Only
1 out of 199 of all Swiss samples (0.5%) has a silt fraction
greater 70% and was adjusted to that threshold. Assets and
drawbacks of the organic content limitation are already dis-
cussed (Panagos et al., 2014). The fine sand fraction was ap-
proximated to 20% of the total sand fraction (Panagos et al.,
2014). A particle size analysis of a subset of the Swiss sam-
ples (n = 38) including very fine sand (26% of total sand) con-
firmed that an estimated ratio of 20% is appropriate for Euro-
pean soils.

Additionally, we calculated the K-factor for all 199 Swiss
LUCAS topsoil samples based on another K-factor equation
proposed by Rémkens et al. (1997), which takes only the soil
texture into consideration and neglects the soil organic matter
content, the soil structure, and the soil permeability. The infor-
mation on soil texture is transformed by the geometric mean
particle diameter equation by Shirazi and Boersma (1984).

As discussed in the literature (Poesen et al., 1994; de
Figueiredo and Poesen, 1998; Panagos et al., 2014; Bosco
et al., 2015), the positive effects of the stone cover on reduc-
ing soil erosion are not negligible. That impact can be incor-
porated into the soil erodibility calculation by using a correc-
tion factor S, for the relative decrease in sediment yield. That
correction factor is multiplied with the K-factor and calculated
as following (Poesen et al., 1994):

S = 670A04><(PC—10)7 (3)

where R, is the percentage of stone cover (stoniness). It was
estimated (classes: 0—-10%, > 10-25%, > 25-50%, > 50%;
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Eurostat, 2009) during the LUCAS topsoil sampling for each
location (Panagos et al., 2014).

The soil erodibility K and soil erodibility incorporating the ston-
iness correction factor K ; were calculated for a total of 1837
LUCAS topsoil samples (including data from bordering
countries in addition to the 199 Swiss samples) following the
Egs. (2) and (3).

2.3 Mapping the K-factor for Switzerland

In the present study we used vegetation indices (Normalized
Difference Vegetation Index NDVI, Enhanced Vegetation
Index EVI) of the Moderate Resolution Imaging Spectroradi-
ometer (MODIS) data MOD13Q1 (Didan et al., 2015), reflec-
tance data from MODIS, terrain features (elevation, slope,
base level of streams, altitude above channel base level, and
multi-resolution index of valley bottom flatness) derived from
the Shuttle Radar Topography Mission (SRTM) Digital Eleva-
tion Model (Farr et al., 2007), and latitude and longitude as
covariates. A list of covariates can be found in Tab. 1 and in
Panagos et al. (2014). These covariates are already identified
as the most important for predicting soil erodibility in the Euro-
pean Union. In order to be reproducible, consistent, and com-
parable we used the same predictive variables and resolu-
tions for Switzerland as were used for the European Union.

We used Cubist Regression (CR) (Quinlan, 1992; 1993) to
spatially predict the K-factors for Switzerland including the
above-mentioned covariates. CR is a tree model that uses
recursive partitioning to subset the dataset into finer rule-
based sub-datasets. These rules cluster data with relatively
homogeneous characteristics. As long as a condition is identi-
fied to be false, the model proceeds with the next rule until it
meets a true condition. As soon as a situation matches a con-
dition, an individual linear regression model is fit for the data
partition. A specific set of covariates that predict best is auto-
matically chosen for each subset of an individual regression
equation (Ballabio et al., 2017). It can be seen as a model
tree with linear regression models at its terminal leaves. As
such, CR allocates a series of local linear regression models
and results in an overall combined non-linear function. Fur-
thermore, it makes use of the previous linear regression to
smooth and adjust the prediction (prevent underprediction,
reduce overfitting). The selection of covariates and combina-
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tion of regressions increase the estimation accuracy. After the
CR, the residuals are interpolated with Multilevel B-Splines
(MBS) (Lee et al., 1997). MBS interpolate scattered points to
generate a smooth surface as well as the best fit of these
points. The method used a hierarchy of control lattices to gen-
erate a series of functions, whose sum approaches the
desired approximation function (Weis and Lewis, 2001). A
bootstrapped cross-validation (Efron and Gong, 1983) (100
repetitions) with randomly selected samples and a one out of
ten replacement of the main dataset was used to fit the mod-
el. The K -factor, incorporating the effect of stoniness, was
also modeled by CR and MBS. The modeling was performed
in R (v 3.4.2) with the packages ‘cubist’ and ‘MBA'. Terrain
features were extracted in SAGA GIS (v 6.0.0) (Conrad et al.,
2015) and visualization was realized in ESRI ArcGIS
(v10.3.1).

The K-and K -factor values are the base for the DSM. We
extended the database across the Swiss border to increase
population size for the statistical regressions, to better predict
particularly the border areas of Switzerland and the special
features of the high Alpine soils erodibility where the sample
number is limited.

The performance of the interpolation is evaluated with the
standardized measure of certainty f based on the standard
deviation s of the estimated variable V (McBratney et al.,
2003) and calculated as follows:

. (2s
f_1—mln<v,1>.

A low certainty is expressed by 0 (0%) and high certainty by 1
(100%).

(4)

2.4 Extrapolation of soil erodibility for Switzerland
by using data from EU countries

Extrapolated K-factor maps for European countries (from the
EU28 assessment; Panagos et al., 2013) not being part of
the previous LUCAS campaigns are already provided via the
European Soil Data Centre (Panagos et al., 2012b; ESDAC,
2018) due to a number of requests from non-EU users. The
extrapolated map of Switzerland used the same covariates
and methodology but is not supported by measured data. A

Table 1: List of covariates used in the cubist regression model for modeling the soil erodibility of Switzerland.

Covariate group Covariate

Spatial resolution Data source

Vegetation index Normalized Difference Vegetation Index

NDVI, Enhanced Vegetation Index EVI

MODIS raw band data Band1,2,3,7

Terrain features elevation, slope, base level of streams,
altitude above channel base level,
multi-resolution index of valley bottom

flatness

Location parameter latitude, longitude

250 m Moderate Resolution Imaging
Spectroradiometer (MODIS) MOD13Q1
(Didan et al., 2015)

250 m MODIS (Didan et al., 2015)

25m Shuttle Radar Topography Mission

(SRTM) (Farr et al., 2007)
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comparison of the extrapolated map with the herein proc-
essed interpolated K-factor map of Switzerland evaluates the
necessity for soil input data into the DSM process.

3 Results and discussion

3.1 Soil properties and erodibility of the LUCAS
topsoil samples

The calculations of the K factor from the analysis of the 199
Swiss LUCAS topsoil samples in the laboratory show an
average soil erodibility of 0.0334 t ha h ha™' MJ™' mm™
(Tab. 2) with a range from 0.0180 t ha h ha™' MJ-' mm~’
(lowest susceptibility of Swiss soils to be eroded) to
0.0611 t ha h ha™' MJ™' mm™ (highest susceptibility of
Swiss soils to be eroded). 83% (166) of all samples have
K-factor values between 0.0250 t ha h ha™! MJ~! mm~" and
0.0400 t ha h ha™' MJ=' mm™'. The K-factor increases as
the samples are getting siltier (Spearman correlation coeffi-
cient ry = 0.397). Silt content varies between 16% and 73%.
The mean fraction of very fine sand is 6.4% (range from
1.2% to 16.4%). A higher content of the sand fraction is very
weakly correlated with a reduction of the K-value
(rg¢ = =0.078). The mean clay content of all 199 samples is
17.7% (range from 2.0% to 40.0%). All samples are rich in
organic matter content with a mean proportion of 3.3%. Erodi-
bility is slightly reduced by a higher content of organic matter
(ry = —0.265). However, in general, Wischmeier and Manner-
ing (1969) could not identify a clear correlation between
organic matter and soil erodibility as particle size distribution
is overruling a possible influence.

Soil structure class has a relatively low variability in Switzer-
land. Only 1% of soil structure is classified outside class 1 or
2. The permeability class with the highest frequency is 3
(moderate). Soils with higher permeability have a higher infil-
tration capacity and reduce runoff. In a first approach, we con-

Table 2: Mean measured values for soil properties.
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sidered a pedotransfer function to predict the soil permeability
instead of deriving soil permeability from soil texture classes.
As such, a subset of undisturbed topsoil samples of 11 Alpine
locations with three replicates were measured in the laborato-
ry according to the corresponding saturated hydraulic con-
ductivity. Results indicated that the permeability was driven
by secondary pores and not at all related to the primary
porosity. That fact impedes the prediction and led us back to
the original approach of Panagos et al. (2014).

The 39 Alpine samples are rich in sand content and can be
classified as loamy soils. The mean soil texture of the remain-
ing 160 Swiss samples is silty loam. Most of the Swiss
samples are either classified to the texture class loam or silty
loam (Fig. 1). The mean soil erodibility of samples above
1500 m asl is smaller than the mean of locations below
1500 m asl (0.0320 versus 0.0338 t ha h ha™' MJ-! mm™,
respectively), although a decreasing trend of clay content
(r =-0.172) with height and a slightly increasing trend of very
fine sand and organic matter (r, = 0.151, resp. ry = 0.159) with
height (from 287 m asl to 2337 m asl of 199 samples) is
observed. Spatial trends by latitude exist for clay and sand.
Clay content increases (r, = 0.545) and sand content
decreases (r, = —0.476) from South to North. This relation of
latitude and soil properties is mainly influenced by the terrain
contrasts between southern and northern Switzerland. No
correlation exists between soil properties and longitude. We
expected no relationship between soil properties and longi-
tude as the terrain contrasts are heterogeneous and do not
follow any obvious gradient. However, due to the correlation
of soil properties and latitude we decided to use spatial coor-
dinates as a predictor for the K-factor modeling in the follow-
ing chapter.

The soil erodibility calculation based on Rémkens et al.
(1997) revealed a slightly different K-factor of 0.0371 t ha h
ha=' MJ-' mm~'. However, we decided to use the nomograph
based equation as it is recommended by Renard et al. (1997)

Soil properties Samples Switzerland
<1500 m asl > 1500 m asl

Number of samples n 160 39 199

Sand (%) 29.2 426 31.8

Very fine sand m,; (%) 5.8 8.5 6.4

Silt m;, (%) 51.3 471 50.5

Clay mg,, (%) 19.5 10.4 17.7

Textural factor M 4588.3 4965.4 4662.2

Organic matter OM (%) 5.3 5.9 5.4

Soil structure class s? 1 1 1

Permeability class p? 3 3 3

Soil erodibility K (t ha h ha™' MJ~" mm~") 0.0338 0.0320 0.0334

2Mode value.
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K-factor
(t ha h)/(ha MJ mm)

0.0213
0.0291
0.0328
0.0368
@ 0.0811

Figure 1: Particle size distribution diagram of all 199 LUCAS topsoil
samples according to the USDA soil texture classification propor-
tional to the K-factor (quantile classification).

as long as measured soil parameters are not limited and
measured in the USDA soil texture classification.

3.2 Soil erodibility mapping

3.2.1 National soil erodibility map based on LUCAS
topsoil samples

The mean spatially predicted soil erodibility for Switzerland is
0.0327+0.0044 t ha h ha=' MJ~! mm~". The histogram repre-
sents a bell-shaped curve with varying K-factors from 0.0143
to 0.0517 t ha h ha™' MJ~" mm~'. Lowest values are in the
Alpine valleys and highest in the top elevated regions of the
Swiss Alps. The map has a spatial resolution of 500 m (Fig. 2;
note that urban areas and lakes have been removed from the
resulting Swiss K-factor map). The RMSE at all the 199 loca-
tions of predicted and measured samples is 0.0048 t ha h
ha=' MJ-! mm~'. The standardized measure of certainty f is
87% for the predicted K values (Fig. 3). The distribution of
certainties of predicted and observed K-factors is heterogene-
ous without any apparent distribution. The RMSE of all 1836
samples used for the spatial prediction (Switzerland incl. adja-
cent countries) is 0.0064 t ha h ha=! MJ~" mm~" with a mean
predicted K of 0.0328 t ha h ha™! MJ~! mm~" and a f of 82%.

Advantages of CR are its capacity to work for non-linear rela-
tionships and its interpretability. It diminishes overfitting due
to its partitioning and rule-based routines (Malone et al.,
2017). Cubist is among the best performing prediction meth-
ods compared to 17 others (e.g., random forest, neural net,
linear regression) (Kuhn and Johnson, 2013). MBS has a
high performance in terms of computing speed and automatic
optimization of the parameters. It was preferred over kriging,
as kriging is heavily dependent on the variogram estimation,
which can be problematic especially in computing the empiri-
cal variogram. The choice of binning distance, maximum
range, and other parameters can drastically change the final
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outcome. Moreover, kriging makes several assumptions
about data distribution that are often not met in practice.

Vegetation indices, reflectance data, terrain features, and
spatial coordinates were used as covariates. The relative
importance of the used covariates is already discussed
(Panagos et al., 2014). A direct relationship between the
K-factor and hillslope features could be proved for mountain-
ous areas of Southern Italy (Colombo et al., 2010). Kulikov et
al. (2017) used terrain features (e.g., slope degree and curva-
ture, elevation) next to Landsat band ratios as covariates to
spatially model K-factors in Kyrgyzstan. According to a review
by McBratney et al. (2003), the key sources of environmental
covariates for predicting soil properties were either relief
(80%) and/or auxiliary soil property (35%) data. Additionally,
spatial coordinates appear to be serving as a meaningful pre-
dicting factor in DSM. They include spatial relationships which
are not expressed in any other environmental variable
(McBratney et al., 2003). Usually, parent material can be seen
as a suitable covariate for soil erodibility as a relationship of the
geological parent material and soil texture is often assumed
(André and Anderson, 1961). However, our analysis on Alpine
soils showed no significant correlation of geological bedrock
and soil texture due to the homogeneous glacial till coverage
(Blume etal., 2016) and the sampling only of topsoils.

Comparison of modeled K-factors for Switzerland and the sur-
rounding countries reveal a mean of soil erodibility close to
the averages of Austria (0.0321 t ha h ha™' MJ™" mm™),
Germany (0.0334 t ha h ha™' MJ™' mm™), and ltaly
(0.0822 t ha h ha—' MJ~' mm™'). The K-factor of Slovenia is
slightly lower (0.0313 t ha h ha™" MJ~! mm~") with highest val-
ues in the karst zone (Prus et al., 2015). One exception is met
by the comparison to France where the K-factor is higher
(0.0356 t ha h ha™' MJ=" mm~"). The higher values in France
might arise out of the high proportion of erodible loess pla-
teaus in Northern France.

The average K-factors have a slightly positive altitudinal gra-
dient (with the exception of the colline zone < 800 m asl).
K-factors are increasing from 0.0308 t ha h ha=' MJ~" mm~"in
the montane zone (800-1800 m asl) to a maximum of
0.0404 t ha h ha™' MJ~" mm~" in the nival zone (> 3100 m
asl). Willen (1965) could identify a doubling of erodibility at
elevation ranges of 2160 m asl compared to 600 m asl in Cali-
fornia.

The incorporation of the stoniness cover reduces the spatially
predicted mean K-factor of Switzerland by 8.2% (to
0.0297 t ha h ha™! MJ=' mm~" with a standard deviation of
0.0054 t ha h ha™' MJ~" mm™) (Fig. 2). This reduction is simi-
lar to the influence of stoniness in reducing K-factors in neigh-
boring central European countries (Austria, Germany, and
Slovenia). The RMSE (0.0054 t ha h ha™' MJ™' mm™) is
slightly higher, f is lower (83%) than those of the soil erodibility
neglecting the stoniness effect. The strongest effect of stoni-
ness to the soil erodibility is visible in the region close to the
French border (Jura mountain range) and the northern Alpine
foothill (Fig. 2). The reduction due to stone cover is smaller
than the average reduction of the K-Factor at the European
scale (15%; Panagos et al., 2014). The latter might be ex-
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Figure 2: (a) K-factor and (b) K-factor (including the effect of stone cover) maps of Switzerland.

plained by the relatively lower effect of stoniness in the high  As auxiliary soil data, we considered datasets from Swiss fed-
alpine regions of Switzerland compared to lowlands: the aver-  eral agencies (e.g., NABODAT, Rehbein et al., 2017) and
age K-factor in the Swiss lower regions (< 1500 m asl) is re-  cantonal soil data. In these particular cases, we had to deal
duced by 12.2%, in the Swiss Alpine region (> 1500 m asl)  with inconsistencies owing to different soil sampling methods,
only by 1.8%. sampling periods, laboratory analysis, clustered data, incom-
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Figure 3: Certainty map of observed and predicted K-factor values of Switzerland in percentage (0% low certainty; 100%
very high certainty) and distribution of LUCAS samples. Certainty is calculated according to Eq. (4). Black dots in the sur-
rounding of Switzerland represent a subset (n = 261) of the additional used 1638 LUCAS samples.

plete spatial coverage, and missing parameters. Thus, the
tested local data could not be used to improve the model
result.

3.2.2 Comparison with extrapolated mapping of soil
erodibility at the European scale

The comparison of the extrapolated (EU map; no measured
data for Switzerland available; Panagos et al., 2014) and
the interpolated map (including measured data from
Switzerland, this study) with identical methods (CR, MBS)
and covariates results in similar average K-factor values for
Switzerland (0.0327 t ha h ha?' MJ7' mm™ vs.
0.0333 t ha h ha™' MJ™' mm™). The mean deviation of
extrapolated and interpolated average values is —1.2%. The
mean is relatively balanced by considering under- and over-
estimation simultaneously. However, the spatial patterns,
mainly caused by the addition of the measured Alpine sam-
ples that had not been integrated into the LUCAS before,
expose some systematic deviations (Fig. 4).

The difference map shows an overestimation of K-factors in
the top Alpine region and an underestimation in the valleys
and Northern/Southern Alpine foothills by the extrapolated
EU map compared to the interpolated map of this study. The
highest overestimation can be found in the eastern Alps
(Canton Grisons). The differences between extrapolation and
interpolation of soil erodibility are relatively small in the lower
relief Swiss midland in the north of the Alps, because these
areas seem to be well represented by the non-Swiss LUCAS
dataset. Regions with a small deviation (—6% to 8%) from the
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interpolated K-factor map have an average elevation of
272 m asl. The extrapolation is based on LUCAS topsoil sam-
ples of the surrounding EU countries and the sampling cam-
paign was limited up to heights of 1500 m asl. This means
that alpine samples were not considered in the extrapolation
at all. Thus, neglecting of mountainous soils might provoke
high uncertainties with a general trend of overestimating
K-factors in the mountains. In contrast, even though lower
regions like the Alpine valleys are included in the sampling of
other countries were obviously nevertheless difficult to predict,
most likely owing to the complex relief situations in Europe.

We calculated the local mean soil losses on a polygon scale
over 100 random municipalities to evaluate the influence of
an under-/or overestimate on the overall soil erosion risk
assessment. The municipalities were derived from a total of
2382 Swiss municipalities of the dataset SwissBOUNDAR-
IES3D (Swisstopo, 2018b). They are randomly distributed in
Switzerland and are differently-sized (from 1.2 km? to
149.2 km?). We used the annual R-, annual C-, and the
LS-factor to multiply them once with the interpolated and
once with the extrapolated annual K-factor of Switzerland.
Results of the 100 municipalities showed a tendency of the
extrapolated K-factors to overestimate soil loss by 6.3% and
underestimate soil loss by 2.5% in the Alpine region
(> 1500 m asl) and lower regions (< 1500 m asl), respectively.

4 Conclusions

The soil data of the Swiss soil erodibility mapping originates
from the first LUCAS sampling campaign including samples
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Figure 4: Difference of extrapolated K-factors (with no measured data from Switzerland) to the interpolated K-factors
(based on 199 additional LUCAS topsoil samples in Switzerland) in percentages. Map classes are classified according to

quantiles.

above 1500 m asl. For the first time, the K-factor based on
measured topsoil samples is presented on a national scale in
Switzerland. We modeled the spatial distribution of soil erodi-
bility for Switzerland with Cubist Regression and Multilevel
B-Splines under consideration of environmental covariates.
An incorporation of the stoniness into the K-factor cover
causes a mean reduction of 12.2% in the lower regions
(< 1500 m asl) and 1.8% in the Alpine regions (> 1500 m asl).
A comparison of the K-factors interpolated with 199 measured
LUCAS topsoil samples in Switzerland (including
n =39 > 1500 m asl) and extrapolated values based only on
soil samples of the neighboring countries < 1500m asl of pre-
vious LUCAS campaigns not considering Switzerland,
resulted in surprisingly consistent average values, but indi-
cated considerable spatial deviations mostly at high eleva-
tions and in Alpine valleys. The analysis demonstrates that
regions with high elevation contrasts but no measured soil
data tend to be over- or underestimated. A well-distributed
sampling network, extended even to high elevation regions,
increased the mapping accuracy compared to an extrapo-
lated approach without measured soil samples within the pre-
dicted area. Our results suggest that the soil erodibility in oth-
er Alpine countries might also be under-/ overestimated due
to a lack of topsoil samples on mountainous regions. A sam-
pling of mountainous regions as was done in this study in
Switzerland should be envisaged in future campaigns of
Alpine countries to reduce that uncertainty in soil erodibility
and in soil loss assessments.

By modeling the K-factor of Switzerland we were able to fill
the Swiss blank spot in the European soil erodibility map and
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make the Swiss values comparable to other European coun-
tries. However, caused by the number of samples and spatial
resolution, the map should be used as an overview, indicating
trends and regional differences within Switzerland or to neigh-
boring countries and not as a detailed map for local studies.
The mapping approach could be further improved by addition-
al topsoil data and spatial high resolution covariates (e.g.,
NABODAT, Rehbein et al., 2017; SwissAlti3D, Swisstopo,
2018a). Unfortunately, most of the existing Swiss topsoil data-
sets do not have a national coverage and a harmonization of
several datasets is impeded by various data owners, different
sampling campaigns and applied sampling and analytical
methodologies. It would be conceivable to use these clus-
tered data (e.g., NABODAT data, Rehbein et al., 2017) in
addition to high resolution predictors to model soil erodibility
for specific regions of Switzerland with a high sampling den-
sity (e.g., for Swiss midland). The calculation of the soil erodi-
bility for the blank spot of Switzerland on the map has not
only an added value for European soil erosion risk assess-
ments, but delivers further valuable information on a continen-
tal scale for other environmental and soil related issues like
site-specific land use decisions, soil and land suitability, and
soil protection including agro-economic considerations.
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