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A B S T R A C T

We adapt a population-based model of Opisthorchis viverrini transmission dynamics to determine the effectiveness
of three different interventions. The model includes the definitive hosts, humans; the reservoir hosts, dogs and
cats; and the intermediate hosts, snails and fish. We consider the interventions: education campaigns to reduce
the consumption of raw or undercooked fish, improved sanitation and treatment through mass drug adminis-
tration. We fit model parameters to a data set from two islands in southern Lao PDR. We calculate the control
reproduction number, simulate different scenarios and optimise the interventions with optimal control. We look
at the potential of the interventions to eliminate transmission within 20 years. The model shows that education
and improved sanitation need a very high coverage to fulfil the goal of elimination, whereas annual drug dis-
tribution at medium coverage is sufficient. The best solution is a combination of drug distribution at a medium
level of coverage and as high as possible coverage of education and improved sanitation.

1. Introduction

The liver fluke Opisthorchis viverrini infects people through nutrition-
related behaviour such as eating raw or undercooked infected fish. The
distribution of O. viverrini occurs mainly in Southeast Asia. Over 67.3
million people are at risk of getting infected with this liver fluke [1].
Over 8 million people are infected with O.viverrini in the Mekong area
in Thailand, Lao People’s Democratic Republic (PDR), Cambodia and
Vietnam [2]. Infection with O. viverrini can, in the worst case, lead to a
subtype of liver cancer [3].

The life cycle of O. viverrini includes humans, dogs and cats as defi-
nitive hosts and snails and fish as first and second intermediate hosts. The
adult worm lives in the bile ducts of its definitive hosts. Their eggs reach
the external environment through faeces. The eggs are ingested by the first
intermediate host, snails of the genus Bithyniawhen they reach freshwater.
The free-living cercariae leave the snails and penetrate through skin of the
fish of the family Cyprinidae, their second intermediate host. The cercariae
develop inside the fish into metacercariae and the fish reaches its infective
stage for the definitive host [4]. The worms can survive in the definitive
hosts for about 10 years [5].

Our model analysis is based on a model from a previously published
paper [6]. This model includes humans, dogs and cats as definitive
hosts and snails and fish as intermediate hosts. Distributions of

unknown parameters of this model were estimated by a Bayesian
sampling resampling approach and point estimates with maximum
likelihood estimation using data collected from two villages in Lao PDR.

There is no published paper on modelling interventions against O.
viverrini, but there are many publications on interventions against other
diseases, such as influenza vaccination, which can be adapted. Optimal
control is used to optimise the coverage of the chosen intervention in
different influenza models. We can adapt the optimal control method of
these influenza models to our model.

We find the optimal coverage of each intervention to reach the goal
of elimination of O. viverrini within 20 years. We consider three dif-
ferent types of interventions and model their targeted coverage. The
first intervention is the use of education campaigns to change people’s
eating habits so that they stop eating raw or undercooked fish, reducing
new infections in humans. The second one is improved sanitation,
which prevents outdoor defecation. We assume that this intervention is
perfect, so that no egg is able to reach the environment and be ingested
by snails, when people use the latrine. The last intervention is treat-
ment. We consider the coverage of people that need to be treated, with
the assumption that the drugs are completely efficacious. We also
consider the optimal frequency of drug distribution. Currently,
Praziquantel is the only drug available against O. viverrini [1], which
has a high efficacy in regard to cure rate and egg reduction rate [2].
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Other interventions against O. viverrini, not considered here, are
drug treatment of reservoir hosts and the detection of potential cancer
in the liver with ultrasound in humans [7,8]. We did not include the
treatment of reservoir hosts, as we showed in the previous paper [6],
that is not possible to interrupt transmission without focusing on re-
ducing the mean worm burden in humans. Furthermore, this model of
the mean worm burden in humans only considers transmission and does
not include the impact of morbidity, which would be focus of inter-
ventions against cancer.

After describing the model, we estimate the unknown parameters
using data from Lao PDR. We define the basic as well as the control
reproduction numbers of the model. This helps us to determine the
minimum coverage of each intervention. Then we optimise targeted
coverage levels with the optimal control method. Finally we investigate
the elimination potential of interventions by estimating the time to and
probability of achieving elimination of O. viverrini.

2. General mathematical model

We extend the previously published model with reservoir hosts of O.
viverrini to include the effect of interventions [6]. We assume that the
transmission of O. viverrini depends on humans, dogs and cats as defi-
nitive hosts and snails and fish as intermediate hosts. We simulate the
mean worm burden in humans, dogs and cats and the prevalence of
infection in fish and snails. We model the interventions as:

(i) education campaign to reduce the consumption of raw or under-
cooked fish. We let Ie denote the coverage successfully reached by
the education campaign, that is, the proportion of people who do
not get further infected by eating raw or undercooked fish.

(ii) improved sanitation to stop transmission from humans to snails,
we let Id denote the coverage of improved sanitation, that is the
proportion of people who stop defecating outdoors because of the
improved sanitation.

(iii) mass drug administration, we let Im denote the proportion of
people treated annually (except for campaigns at lower frequencies
as described later).

Assuming γ is the rate per unit time of treating people,

− × = −γ T Iexp( ) 1γ m

is the proportion of untreated humans with Tγ as the time interval of
treatment in days [9]. It follows that the treatment rate is
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where the state variables are shown in Table 1 and the parameters in
Table 2.

We model the mean worm burden per human host, wh, assuming a
negative binomial distribution for the distribution of worms in humans
[6]. We assume no correlation between the worm burden of an in-
dividual and the probability of being influenced by the education
campaign to stop eating raw fish, so the transmission rate from fish to
humans is proportionally reduced by − I(1 )e . The worms die naturally
in humans, μphwh, or because of treatment, − − wI t

T h
log(1 ( ))m

γ
. We make the

implicit assumption that there is no correlation between worm burden
and the likelihood of being treated so the proportion of people getting
treated (with the assumption that treatment is perfect) is equal to
killing this proportion of worms in humans. The infection rate of snails
depends on the proportion of people who have access to a latrine and do
not defecate outdoors. Making the implicit assumption that access to a
latrine is not correlated with worm burden, improved sanitation pro-
portionally reduces the transmission from humans to snails by − I(1 )d .

We use data from a study on two islands in the Mekong in
Champasack province, Lao PDR, conducted from October 2011 to
August 2012. We have data on the prevalence of infection in humans,
dogs, cats, snails and fish and on the intensity of infection in humans
(see Table 3). The number of humans is estimated from the study in
Champasack province [10], but additional data on the number of ani-
mals and death rates are from literature and expert opinion.

To estimate =β β β β β β β β( , , , , , , ),hf df cf sd sc sh fs we followed the
Bayesian resampling approach in [6] with the same parameter ranges as
in Table 4 and no intervention = = =I I I 0,e d m followed by the max-
imum likelihood estimation (MLE) method. We sample 50,000 data sets
and resample 500 of them in the Bayesian resampling approach. The
final estimate with MLE is found in Table 4.

We simulate the ODE system (1) with the Runge-Kutta 4 method
with the initial value we estimate from the data,

=w w w i i( (0), (0), (0), (0), (0)) (33, 3, 13, 0.003, 0.3),h d c s f and time steps
in days up to 20 years. The numerical results of the model with para-
meter values of the MLE are presented in Fig. 1. To show the un-
certainty of the parameter sets, we also illustrate the median, the mean
and the standard deviation of the 500 data sets in Fig. 1.

3. Model with continuous treatment

We first assume continuous treatment with Im constant throughout
the year and =T 365γ days in the model, which refers to a daily treat-
ment rate while coverage is defined as the proportion of people treated
within one year (as described above). For the model with continuous
treatment, it is possible to calculate the basic and the control re-
production number and to determine the threshold value of coverage
where the control reproduction number is equal to one.

3.1. Basic and control reproduction number

The basic reproduction number � 0 is the average number of new
offspring per parasite in the next step of the life cycle assuming no
density dependence and no interventions. It is calculated as the spectral
radius of the next-generation matrix [11]. The cubed spectral radius is
equal to the number of adult offspring in mammalian hosts from one
adult worm in a mammalian host. It follows that when the basic re-
production number is below one (� < 10 ), the parasite cannot produce

Table 1
State variables of the opisthorchiasis model, see [6, Table 1].

Variable Description

wh Mean worm burden per human host
wd Mean worm burden per dog host
wc Mean worm burden per cat host
is Proportion of infectious snails
if Proportion of infectious fish
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enough offspring to persist. The control reproduction number � � in-
cludes the impact of interventions on the reproduction number. The
next-generation matrix K of the model (1), with constant Im, is given by

=
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assuming that treatment is distributed continuously. Its spectral radius,
and therefore the control reproduction number of the model, is given by
the expression,

� � = ⎛

⎝
⎜

− − +
− −

+
− − +

− −
⎞

⎠
⎟

N N β μ T I N β β μ N β β μ
μ T I μ μ μ μ

N N β I I I I T N β β μ μ
μ T I μ μ μ μ

( log(1 ))( )
( log(1 ))

(1 )( )
( log(1 ))

.

s f fs ph γ m d df sd pc c cf sc pd

ph γ m pd pc s f

s f fs d e d e γ h hf sh pd pc

ph γ m pd pc s f

1
3

The basic reproduction number,

�
� � � � �� � �� � �� �� �� � �� �� �� 	 	� �	 �� ��

�	 �� � �

= ⎛

⎝
⎜

+ + ⎞

⎠
⎟

β β β μ β β μ β β μ μ
μ μ μ μ

( )
,0

1
3

is equal to the control reproduction number � � if the coverage of all
interventions is 0 (no interventions in the population). The basic re-
production number is � = 1. 13510 with the MLE parameter values in
Table 4.

The control reproduction number depends on the type and coverage
of the intervention. Fig. 2, shows the impact of coverage of each in-
tervention applied singly on the control reproduction number for
parameter values determined by MLE and =T 365γ . The control re-
production number � � has a similar dependence on the level of cov-
erage of education campaigns (Ie) and improved sanitation (Id). The
coverage needs to be at least 34% for either of these two interventions
for � � to be below 1. The coverage of the mass drug administration (Im)
has a much stronger effect on the control reproduction number than the
coverage of the education campaign (Ie) and improved sanitation (Id).
The control reproduction number for mass drug administration de-
creases below 1 at the a low coverage of 10%. Fig. 2 also shows that the
incremental effectiveness of the interventions in reducing � � increases
with coverage for improved sanitation and education campaign but
decreases for mass treatment. Therefore, programs should try to
achieve as high a coverage of education campaigns and improved sa-
nitation as possible, but a moderate coverage of mass treatment may be
sufficient.

The possible combination of the interventions Ie and Id (without Im)
which are successful in achieving � � < 1, for MLE parameter values, are
shown in Fig. 3. The minimum combination such that � � < 1 is

= =I I 0.2025e d .

4. Model with pulsed treatment

The second model is a pulsed treatment applied at a fixed frequency.
This model takes into account that the number of worms increases in
humans in between mass drug administration. For example, treatment
once a year, conducted over one day, is modelled by,

= ⎧
⎨⎩

=I t I t( ) , mod 365 1,
0, else,m

m

with =T 1γ day.
This model allows us to additionally consider the frequency of the

mass drug administration in determining the effectiveness of inter-
ventions on the probability of elimination and time to elimination. We
also calculate the optimal coverage of the mass drug administration and
education campaigns using optimal control theory.

Table 2
Parameters of the opisthorchiasis model with interventions, adapted from [6, Table 2].

Parameter Description Dimension

Nh Population size of humans Animals
Nd Population size of dogs Animals
Nc Population size of cats Animals
Ns Population size of snails Animals
Nf Population size of fish Animals
μph Per capita death rate of adult parasites in humans (includes additional mortality due to death of humans) 1/Time
μpd Per capita death rate of adult parasites in dogs (includes additional mortality due to death of dogs) 1/Time
μpc Per capita death rate of adult parasites in cats (includes additional mortality due to death of cats) 1/Time
μs Per capita death rate of snails 1/Time
μf Per capita death rate of fish including mortality through fishing by humans 1/Time
βhf Transmission rate from infectious fish to humans per person per fish 1/(Time × Animals)
βdf Transmission rate from infectious fish to dogs per dog per fish 1/(Time × Animals)
βcf Transmission rate from infectious fish to cats per cat per fish 1/(Time × Animals)
βsd Infection rate of snails per parasite in a dog host 1/(Time × Animals)
βsc Infection rate of snails per parasite in a cat host 1/(Time × Animals)
βsh Infection rate of snails per parasite in a human host 1/(Time × Animals)
βfs Infection rate of fish per snail 1/(Time × Animals)
Ie Proportion of people who stop eating raw fish due to intervention Dimensionless
Id Proportion of people who stop defecating outdoors due to intervention Dimensionless
Im(t) Proportion of people getting treatment (medication) at time t Dimensionless
T Interval of drug distribution Time

Table 3
Total number tested and positive hosts from two islands in Lao PDR [10], see
[6, Table 3].

Variable Description Value

nh Number of tested humans 994
ph Number of positive tested humans 603
nd Number of tested dogs 68
pd Number of positive tested dogs 17
nc Number of tested cats 64
pc Number of positive tested cats 34
ns Number of tested snails 3102
ps Number of positive tested snails 9
nf Number of tested fish 628
pf Number of positive tested fish 169
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4.1. Effectiveness of interventions

The minimum levels of coverage we calculated with continuous
treatment, where � � = 1, are not sufficient to reach a low mean worm
burden in humans in 20 years. Hence, we simulate reasonably achiev-
able coverage levels of Ie∈ {0.2, 0.4, 0.6} and Id, Im∈ {0.4, 0.6, 0.8}. We
choose these coverage levels because we assume that it is more difficult
to changes people’s eating habit through education campaigns, than it
is to convince them to use a latrine or accept treatment. Mass drug
administration is assumed to be distributed over one day once a year.
Fig. 4 shows the numerical solutions for all state variables for each
intervention at these different levels of coverage compared to no in-
terventions.

To investigate the impact of mass drug administration on the fre-
quency of distribution, we simulate campaigns distributing drugs every

Fig. 1. Numerical simulation of the O. viverrini model (1) with parameter values selected using MLE (black line) and with the 500 parameters sets chosen with the
Bayesian sampling-resampling without any interventions ( = = =I I I 0e d m ) the mean (grey line), median (grey dashed line) and standard deviation (grey area).

Fig. 2. Control reproduction number as a function of the coverage level for
various intervention applied singly and the basic reproduction number, calcu-
lated with the parameters from the MLE solution in Table 4.
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0.5, 1, 2, 3 and 4 years. Hence, Im(t) is the proportion of humans who
receive a drug against O. viverrini in every drug distribution campaign.
The influence of the choice of this frequency on the mean worm burden
in humans with different levels of coverage is shown in Fig. 5.

4.2. Optimal control

To synchronously optimise the level of coverage of the education
campaign (Ie) and the mass drug administration (Im) in the model, we
use the optimal control method. We do not try to optimise the sanita-
tion coverage because we assume that any program would try to
maximise sanitation for all its additional health benefits. We focus on
optimising interventions that are targeted against O. viverrini. To fulfil
the linearity property of the right-hand side of the model (1), we op-
timise the treatment rate,

= −
−

γ t
I t

( )
log(1 ( ))

365
,m

instead of the proportion Im(t), when Im(t) and correspondingly γ(t) are

piecewise constant for a pulsed treatment rate. Since treatment dis-
tribution occurs once a year, we have a rate γ(t) of treated people with
the properties,
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with the annual rate γk for = …k n1, , , ∈n �. The first equation of the
ODE system (1) becomes
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Minimising the coverage of the interventions affecting humans leads to
the optimal control problem,
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with the weight =α 0.001, the time = ×T 20 365 (in days), =n ,T
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0≤ Ie(t)≤ 0.9 and 0≤ γk≤ 0.0016, which is equivalent to
≤ = − × ≤I γ0 1 exp( 365) 0.8m k for each = …k n1, , . The regularisa-

tion parameter α priorities the minimisation of the mean worm burden
instead of the coverage level. The optimal control solutions are robust
to this parameter, the results are similar even with =α 1. We assume
that it is not possible to reach all people by either campaign, and that
the maximum achievable coverage of drug distribution is 80%, and of
the education campaigns is 90%.

To simplify the notation, we write =I t I( ) ,e e =γ t γ( ) and
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Table 4
Parameter values of the model and ranges for the sampling, adapted from [6, Table 5].

Variable Value Range MLE Unit

Nh 14,542 [7271, 21, 813] 15,705 Animals
Nd 7271 [3635.5, 10906.5] 8437 Animals
Nc 4847 [2423.5, 7270.5] 6098 Animals
Ns 20,000 [2000, 40, 000] 31,019 Animals
Nf 8000 [800, 16, 000] 9701 Animals
μph

×
1

10 365 ⎡⎣ ⎤⎦× ×
,1

20 365
1

1 365 ×
1

4.8 365
1/Days

μpd
×

1
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,1
8 365

1
0.4 365 ×

1
2.2 365
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×

1
4 365 ⎡⎣ ⎤⎦× ×

,1
8 365

1
0.4 365 ×

1
1.5 365
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μs
×

1
1 365 ⎡⎣ ⎤⎦× ×

,1
2 365

1
0.1 365 ×

1
1 365

1/Days

μf
×
1

2.5 365 ⎡⎣ ⎤⎦× ×
,1

5 30
1

0.25 365 ×
1

1.5 365
1/Days

βhf × −4.1111 10 6 × ×− −[4.1111 10 , 8.2222 10 ]7 6 × −5.9785 10 6 1/(Animal x Day)

βdf × −2.0159 10 7 × ×− −[2.0159 10 , 4.0317 10 ]8 7 × −3.2337 10 7 1/(Animal x Day)

βcf × −4.1077 10 6 × ×− −[4.1077 10 , 8.2155 10 ]7 6 × −2.9608 10 6 1/(Animal x Day)

βsh × −1.4846 10 11 × ×− −[1.4846 10 , 2.9693 10 ]12 11 × −1.0210 10 11 1/(Animal x Day)

βsd × −1.4846 10 11 × ×− −[1.4846 10 , 2.9693 10 ]12 11 × −2.8635 10 11 1/(Animal x Day)

βsc × −1.4846 10 11 × ×− −[1.4846 10 , 2.9693 10 ]12 11 × −4.7734 10 12 1/(Animal x Day)

βfs × −6.9536 10 6 × ×− −[6.9536 10 , 1.3907 10 ]7 5 × −1.2900 10 5 1/(Animal x Day)

Fig. 3. Combinations of Ie and Id such that � � < 1 in absence of Im ( =I 0m ). The
other parameters are set to their MLE solution in Table 4.
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= ∈ × ∈U I t I t t T{ ( ) ( ) [0, 0.9] [0, 0.0016] , [0, ]}.n

To show that a solution exists to this optimal control problem, we
have to prove the following assumptions [12,13]:

Proposition 1 (Existence).

(i) The set of solutions of the system (1) is not empty and the right-hand

side is continuous and bounded.
(ii) U is closed and convex and f can be written as

= + +f t w I γ a t w b t w I c t w γ( , , , ) ( , ) ( , ) ( , ) .h e h h e h

(iii) L(t, wh, · ) is convex on U.

Fig. 4. Numerical simulations of the model (1) with different coverage levels of the interventions compared to the baseline scenarios with no intervention. The
parameters are set to the MLE solution in Table 4.
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Proof.

(i) The ODE system (1) is well-posed in the strip ⊆S ,5� which is
defined by the boundaries of the system’s solution for (wh, wd, wc,
is, if):
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The right-hand side of the system is well-posed and with con-
tinuous partial derivatives. The proof of the existence and un-
iqueness of the solution of the model (1) can be found in [6,
Section 2.1].
The right-hand side of the ODE system (1) is clearly continuous
and bounded in the strip ⊆S ,͠ 5� given by
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(ii) U is closed and convex because it is a Cartesian product of closed
intervals. f can be written as a linear combination in the form
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The linear combination for the other system of equations (f2, f3, f4,
f5) looks similar.

(iii) To show that L(t, wh, · ) is convex on U, we must have:

− + ≤ − +L t w I I L t w I L t w I( , , (1 ϵ) ϵ ) (1 ϵ) ( , , ) ϵ ( , , ),h h h1 2 1 2
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To characterise the optimal solution, we use Pontryagin’s maximum
principle [14]. The proof can be found in Pontryagin’s original text
[15].

There exists a piecewise differentiable adjoint variable,

=λ t λ t λ t λ t λ t λ t( ) ( ( ), ( ), ( ), ( ), ( )),1 2 3 4 5

such that,

′ = −∂
∂

λ t H t x t I t λ t
x

( ) ( , * ( ), * ( ), ( ))

with the Hamiltonian,

∑= +
=

H t w w w i i I γ λ L t w I λ t f x t( , , , , , , , , ) ( , , ) ( ) ( , ),h d c s f e h l l l1

5

and =x w w w i i* ( *, *, *, *, *)h d c s f as the corresponding state variables of the
optimal control functions =I I γ t* ( *, ( )*)e .

Proposition 2. The optimal controls are given by the set

= ⎧
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⎧
⎨⎩

⎫
⎬⎭

⎫
⎬⎭
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* min max 0, , 1 ,
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e
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h
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Proof. Let I* be the optimal control functions to the corresponding state
variables w w w i i*, *, *, *, *,h d c s f which minimise our integral function J(I). It
follows with the Pontryagin’s maximum principle that adjoint variables

=λ t λ t λ t λ t λ t λ t( ) ( ( ), ( ), ( ), ( ), ( ))1 2 3 4 5 exist such that

Fig. 5. Numerical simulations of the frequency of treatment every 0.5, 1, 2, 3 and 4 years and its effect on the mean worm burden in humans. The parameters of the
MLE solution in Table 4 are used for the calculation.
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′ = − + + − − −λ w λ μ γ λ β N I i2 ( ) (1 )(1 ),h ph sh h d s1 1 4 (3a)

′ = − −λ λ μ λ β N i(1 ),pd sd d s2 2 4 (3b)

′ = − −λ λ μ λ β N i(1 ),pc sc c s3 3 4 (3c)

′ = − + + + − −λ λ β N w I β N w β N w μ λ β N i( (1 ) ) (1 ),sh h h d sd d d sc c c s fs s f4 4 5

(3d)

′ = + − − − −λ λ β N i μ λ β N I λ β N λ β N( ) (1 ) ,fs s s f hf f e df f cf f5 5 1 2 3 (3e)

with transversality conditions =λ t( ) 0i 1 for = …i 1, ,5. Considering the
optimality condition =∂

∂ 0,H t x t I t λ t
I

( , * ( ), * ( ), ( )) we get the solutions

=I
λ β N i

α
* ,e

hf f f1
2 (4a)

=γ λ w
α

* .h1
2 (4b)

It follows with the characteristics of the control set U that the
proposition holds (compare [13]). □

We use the Forward-Backward Sweep method with the Runge-Kutta
4 method to calculate the solution of the optimal control [14]. We
calculate the optimal control solution for three different, but fixed,
coverage levels of Id: 0.4, 0.6, and 0.8. We start with the end value of
the MLE solution in Fig. 1 as initial value of the state variables,

=w w w i i( (0), (0), (0), (0), (0)) (47.107, 0.815, 5.120, 0.002, 0.323).h d c s f

We choose the weight =α 0.001 and solve the ODE system (1) with the
MLE parameters in Table 4 forward in time with 1000 iterations, fol-
lowed by the calculation of ODE system of the adjoint functions (3)
backward in time with 1000 iterations. With the new solution of the
adjoint functions, we can update the solution of the intervention I ac-
cordingly to the equations (4). We repeat these steps until the relative
error of the interventions is smaller than δ,

− ≤I I
I

δ,
͠

with I͠ being the previous solution. To include the option of =I 0 we
transform it to the condition

− − ≥δ I I I 0.͠

The parameter δ is set to =δ 0.001 [14].
The solution of the treatment rate γ(t) is transformed back to the

proportion = − ×I γ γ t( ) 1 exp( ( ) 365)m . The minimisation of the inter-
ventions Ie and Im(γ) is shown in Fig. 6(a) — it is the same solution for
all three assumption of Id∈ {0.4, 0.6, 0.8}. The mean worm burden in
the definitive hosts and the prevalence in the intermediate hosts de-
pends on the coverage of improved sanitation, Id, as shown in
Fig. 6(b)–(f).

The solution of the optimal control problem shows that the optimal
coverage for treatment is 44%. The coverage of people that should stop
eating raw or undercooked fish is set to the maximum of 90% over the
whole time period.

4.3. Elimination

We define the elimination of O. viverrini as in Definition 1 when
there is less than one worm per person (wh≤ 1) or less than one in-
fected fish (if×Nf≤ 1) or snail (is×Ns≤ 1).

Definition 1 (Elimination). Elimination of O. viverrini is reached if at
least one of the following statements is true:

(i) wh≤ 1
(ii) if×Nf≤ 1

(iii) is×Ns≤ 1,

within a default timeframe of 20 years.

Fig. 7 shows the time to elimination and probability of elimination
at varying frequencies of mass treatment and at varying levels of cov-
erage for all three interventions. We estimate the time to elimination for
MLE parameter values (see Table 4) assuming that interventions are
deployed at time =t 0 with the endemic equilibrium in the absence of
interventions as the initial condition. Fig. 7(a) shows the time to
elimination at different frequencies of mass treatment at coverage levels
of Im∈ {0.4, 0.5, 0.6, 0.7, 0.8}. Fig. 7(b) shows the time to elimination
for all interventions as the coverage of each intervention increases. We
estimate the probability of reaching elimination as the proportion of the
500 resampled parameter sets that achieve the definition of elimination
above. The probability of elimination as a function of treatment fre-
quency is shown in Fig. 7(c) and as a function of intervention coverage
is shown in Fig. 7(d). The results show that mass treatment, even at
very low frequencies is more effective and faster in achieving elim-
ination than improved sanitation or education campaigns and even
relatively low coverage of treatment at a high frequency is as effective if
not more than high coverage of the other interventions or of treatment
at low frequencies.

5. Discussion

We defined the basic and control reproduction number of the model
with continuous treatment (1). Education campaigns (Ie) and improved
sanitation (Id) show a similar relationship between coverage and the
control reproduction number, with a sharper decrease as coverage in-
creases. Since increasing coverage leads to larger gains, if these inter-
ventions are deployed, high coverage should be targeted. The coverage
of mass treatment (Im) has a stronger influence on the reproduction
number, and a lower coverage is sufficient to reach the threshold of 1.
The minimal coverage of successfully targeted humans with education
campaigns is Ie≈ 0.34. The same is true for coverage of improved sa-
nitation, Id≈ 0.34. The coverage of continuous treatment has to reach
Im≈ 0.10 within a year at a minimum to eventually lead to elimination.

The decrease of the worm burden in humans with mass drug ad-
ministration in the model with pulsed treatment also depends on the
frequency of the distribution. The more often the distribution takes
place, the faster the mean worm burden decreases. The decrease in
mean worm burden in humans is much steeper with distributions once
or twice a year, than every 2, 3, or 4 years. However, as the coverage of
mass drug administration increases, the impact of the frequency of
distribution decreases.

The optimal control calculation suggests a yearly mass drug ad-
ministration coverage of Im≈ 0.44, to achieve elimination in 20 years
and that education campaigns should target 90% of people to stop
eating raw or undercooked fish. Varying the underlying coverage of
improved sanitation, Id∈ {0.4, 0.6, 0.8} does not have an influence on
the optimal control calculations of the coverage of mass treatment or
education campaigns.

The World Health Organization promotes regular mass drug ad-
ministration to reduce the parasite burden in the community and the
subsequent development of severe morbidity. Today, Praziquantel is
the only efficacious medicine against trematodes such as Opisthorchis
and Schistosoma. It has been widely and intensively used in human
trematode infection control, but so far no resistance has been identified.
However, there is a potential risk that resistance might develop.
Therefore, in addition to researching new drug candidates, such as
Tribendimidine [16], preventive control measures such as promoting
well-cooked fish consumption and improved sanitation is essential
(although behaviour change remains challenging to achieve).

According to our simulation results, mass drug administration has to
take place once or twice a year to achieve elimination within 20 years.
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About 97% of the 500 resampled parameter sets reach elimination with
a mass treatment coverage of the optimal control solution of 44% ad-
ministered twice a year. A treatment once a year with the same cov-
erage of 44% leads still to elimination in about 78% of the parameter
sets. The other two interventions, education campaigns (Ie) and (re-
spectively) improved sanitation (Id), require a very high coverage (over
60%) to reach elimination within 49, and (respectively) 45 years. Also,
the probability of elimination of these two interventions within 20
years is below 18% respectively 51% even with a high coverage level.
Therefore, education campaigns and improved sanitation alone are not

enough to reach the elimination goal; and mass treatment of humans is
necessary.

However, high coverage of education campaigns reduces the re-
infection of treated humans, and improved sanitation reduces trans-
mission to snails and brings additional health benefits. Hence, we
should seek as high a coverage as possible of these interventions. In this
analysis we have defined the coverage of the education campaigns as
the proportion of people who stop eating raw or undercooked fish and
consequently do not reinfect themselves. We have similarly defined the
coverage of improved sanitation as the proportion of defecations that

Fig. 6. Optimal control results of the interventions and the solution of the model calculated with the Forward-Backward Sweep method for the different assumptions
on Id. The MLE solution parameters (Table 4) are used for the calculations.
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occur within improved sanitation. Neither of these definitions of cov-
erage are easy to measure in the field may be approximated through
questionnaires.

Here, we ignore seasonality, intensity of infection in fish, the age of
humans and the secondary impacts of overdispersion of worms in this
model. Fish and snail populations follow a seasonal pattern. Including
seasonality in the model could help to optimise the timing of inter-
ventions to more effectively reduce worm burden. The mean worm
burden in the definitive hosts increases as the intensity of infection in
fish increases. However, here we only modelled the prevalence of in-
fection in fish since we lacked data on the intensity of infection in fish.
Also, in reality older people have more worms, because they accumu-
late worms over their life time. This implies that interventions could be
more or less effective depending on the age group of humans that is
targeted (such as education campaigns in schools) but our model ig-
nores this targeting.

The worms are not only unequally distributed over age but are
generally heterogeneous with an overdispersed distribution over the
population (that is, a few people have an extremely high number of
worms while the majority have zero to a few worms). We modelled this
by assuming a negative binomial distribution for the worm burden in
the human population [6] but ignored the secondary impacts of this
overdispersion. These effects — such as the impact of worm burden on
morbidity; the nonlinear relationship between treatment and worm
burden on morbidity; and the impact of targeted interventions — would
be better analysed with an individual-based model that can separately
track the worm burden of each human and the impact of interventions
on that human.

We also did not consider the sustainability of the interventions. It
has been shown that governmental control programmes are often only
successful during the implementation [17]. We assume here that the
interventions will continue to be active and equally efficacious over the
simulation period; that is the human population will maintain the be-
haviour change of not eating raw fish and that the improved sanitation

will be maintained. Acknowledging these assumptions, our model
suggests that elimination of O. viverrini in Lao PDR is feasible within 20
years, if at least reasonable coverage of annual mass drug administra-
tion campaigns is maintained and efforts are made to change the po-
pulation’s eating habits and sanitation is improved.
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