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From laboratory to point of entry: development
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Abstract

BACKGROUND: Rapid genetic on-site identification methods at points of entry, such as seaports and airports, have the potential
to become important tools to prevent the introduction and spread of economically harmful pest species that are unintentionally
transported by the global trade of plant commodities. This paper reports the development and evaluation of a loop-mediated
isothermal amplification (LAMP)-based identification system to prevent introduction of the three most frequently encountered
regulated quarantine insect species groups at Swiss borders, Bemisia tabaci, Thrips palmi and several regulated fruit flies of the
genera Bactrocera and Zeugodacus.

RESULTS: The LAMP primers were designed to target a fragment of the mitochondrial cytochrome c oxidase subunit | gene and
were generated based on publicly available DNA sequences. Laboratory evaluations analysing 282 insect specimens suspected
to be quarantine organisms revealed an overall test efficiency of 99%. Additional on-site evaluation at a point of entry using
37 specimens performed by plant health inspectors with minimal laboratory training resulted in an overall test efficiency
of 95%. During both evaluation rounds, there were no false-positives and the observed false-negatives were attributable
to human-induced manipulation errors. To overcome the possibility of accidental introduction of pests as a result of rare
false-negative results, samples yielding negative results in the LAMP method were also subjected to DNA barcoding.

CONCLUSION: Our LAMP assays reliably differentiated between the tested regulated and non-regulated insect species within
<1 h. Hence, LAMP assays represent suitable tools for rapid on-site identification of harmful pests, which might facilitate an
accelerated import control process for plant commodities.
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1 INTRODUCTION and packaging materials.267 In addition, pests can unintentionally
The unintended spread of invasive insect species by global trade ~ be vectored as stowaways in transport vehicles (e.g. ships, trains,

leads to considerable economic losses in agriculture.'-3> Numerous
insect species have been introduced into Europe, including harm-
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lineata)." As global trade is increasing, it is conceivable that the
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and lorries), which assist the dispersal along trade networks,
including anthropogenic corridors such as canals and railways.>3°
Besides trade, international tourism, as well as changes in climate
and land use also govern the movement of invasive species.'®

International agreements such as the World Trade Organization
(WTO) Agreement on the Application of Sanitary and Phytosani-
tary Measures (SPS) and the International Plant Protection Conven-
tion (IPPC) of the Food and Agricultural Organization of the United
Nations (FAO) were concluded with the intention to prevent the
spread and introduction of invasive species, as well as to promote
the adoption of appropriate measures for their control.

Within the European Union (EU), economically harmful plant
pests, including insects, are regulated as quarantine organisms
and are banned from import to the continent based on the Euro-
pean Council Directive 2000/29/EC."'? This regulation also pre-
vents the spread of such pests within the EU member states.’'2
Switzerland as a non-EU member has ratified the same plant health
regulations in the framework of the agreement between the EU
and the Swiss Confederation on trade in agricultural products.
Inspections of plant consignments suspected to harbour quaran-
tine organisms at points of entry (POEs), such as airports, seaports
or other border controls, represent an important prevention mea-
sure against the introduction and movement of agricultural pests.!

In Switzerland, import inspections rely on visual examinations of
plant products suspected to harbour quarantine organisms. Yet,
morphological differentiation between harmful and non-harmful
insects can be difficult. In particular, the early developmental
stages (e.g. eggs and larvae) for which morphological keys are
missing are challenging.'* Suspicious insects are therefore sent to
areference laboratory (Agroscope, Wadenswil, Switzerland) where
they are analysed using DNA barcoding, a method that accurately
identifies insects without the need for extensive knowledge of
morphological taxonomy. For identification by DNA barcoding,
part of the mitochondrial gene cytochrome ¢ oxidase subunit 1
(COI) is amplified and sequenced.'"'>'6 The resulting signature
sequence is then queried against a database containing reference
sequences for different species such as the publicly available
Barcode of Life Data System (BOLD).""'” Because the method uses
DNA instead of morphological characteristics, it can be equally
well used for identification of taxa at all life stages.!’ Unlike tradi-
tional morphological identification, DNA barcoding also enables
the identification of cryptic insect pest lineages.'®" However,
although barcodes exist for well over 2 million different arthropod
species, the method is limited by the fact that it can only identify
specimens for which pre-existing reference barcode sequences
are readily available.””

The shipment of samples to the Agroscope reference laboratory
and the subsequent DNA barcoding analysis generally require
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2-3 working days. This represents a major drawback of genetic
diagnosis, as, in the meantime, the tested import consignments
are blocked at the POE. Considering the fact that plant imports
often are perishable commodities (e.g. fruits), the import delay
due to the time between sampling and diagnosis can result in sub-
stantial economic losses for the importer. A promising approach
to circumvent this delay is the use of rapid molecular on-site tests
for species identification directly at the POE. The requirements for
such an on-site identification system are, however, considerable.
In addition to the feasibility of a test being performed rapidly
by plant health inspectors with minimal laboratory training,
high diagnostic specificity (true-negative rate) and sensitivity
(true-positive rate) are pivotal to prevent the import of quarantine
insect species and to meet obligations to the trade operators.

Loop-mediated isothermal amplification (LAMP) is a suit-
able technology for on-site analyses of organisms for which
taxon-differentiating DNA or RNA sequences are known.?’ LAMP
is highly specific as this method uses six primer pairs recognis-
ing eight distinct DNA regions.2'?? Because of its isothermal
nature and the robustness against inhibitors, LAMP tests can
be performed in a simple and rapid manner in a laboratory-free
environment.?2~2*

This paper reports on the development and evaluation of a
LAMP-based identification system for quarantine insects and its
successful implementation at the POE at Zurich Airport, Switzer-
land. The assay allows the molecular on-site identification of Thrips
palmi, Bemisia tabaci, and several regulated fruit fly species from
the genera Bactrocera and Zeugodacus. The fruit fly assay includes
a group of members of the Bactrocera dorsalis species complex
(Bactrocera cacuminata, Bactrocera carambolae, Bactrocera dor-
salis, Bactrocera papayae, and Bactrocera philippinensis, hereafter
the ‘B. dorsalis group’), as well as Bactrocera latifrons and Zeu-
godacus cucurbitae. These pest species were chosen as targets,
because they account for >70% of the intercepted quarantine
insect species over the past several years at the POE at Zurich Air-
port. The reported method has been designed for application by
plant health inspectors with minimal laboratory training and can
be performed within 1 h. As a result of its simplicity and the speed
with which LAMP assays enable precise molecular diagnostics, this
method represents a timely and promising new tool for National
Plant Protection Organizations (NPPOs) and others in need of rapid
identification of potential invasive pests on imported plant com-
modities.

2 METHODS

2.1 DNA extraction

For T. palmi, DNA was extracted from individual adults, for B. tabaci
it was extracted from larvae and for the fruit flies it was extracted
from approximately 1 mm?3 of larval tissue. For DNA extraction,
tissue samples were added to 30 pul of an alkaline lysis solution
[600 pm potassium hydroxide (Sigma-Aldrich Corp., St Louis, MO,
USA) and 2 pm Cresol Red (Sigma-Aldrich Corp.)] and heated to
95 °C for 5 min on a heat block (Thermomixer Comfort; Eppendorf
AG, Hamburg, Germany). The DNA extract was used directly for the
LAMP reaction without any purification step.

2.2 LAMP primer design

LAMP assays for T. palmi and fruit flies of the genera Bactrocera
and Zeugodacus were designed using publicly available sequences
of an approximately 650-bp-long fragment at the 5’ end of the
COI gene retrieved from the GenBank database.?> For B. tabaci,
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Figure 1. (A) Implementation procedure and (B) workflow of the LAMP-based identification system at the POE at Zurich Airport. On-site test verification
was performed by a control application inspecting results of the positive and negative controls, as well as melting temperatures of the LAMP amplification

products. POE, point of entry; QO, quarantine organism.

as a result of the high level of sequence variation, a sequence
fragment located at the 3’ end of COl was chosen as the target
sequence for the LAMP assay. Primer design was performed using
LAMPdesigner version 1.02 (Premier Biosoft International, Palo
Alto, CA, USA) and Geneious versions R7-10.26

The fruit fly assay is designed as a combined LAMP test compris-
ing one primer set targeting B. latifrons and Z. cucurbitae, and a
second primer set targeting the B. dorsalis group (B. carambolae,
B. cacuminata, B. dorsalis, B. papayae, and B. philippinensis). In order
to simplify the protocol, the assay does not distinguish between
the different fruit fly species targeted by the two primer sets. To
ensure the specificity of this assay, sequences from the follow-
ing closely related, non-target species were included in the primer
design: Anastrepha spp. (11 species), Bactrocera spp. (five), Ceratitis
spp. (12), Dacus spp. (32), and Rhagoletis spp. (five).

With the intention to cover the global sequence diversity
observed for B. tabaci samples, a combined LAMP assay with
three slightly different primer sets was designed. Closely related,
non-target species included in the design of this assay were:
Aleurocanthus spp. (two), Aleurochiton aceris, Aleurodicus dugesii,
Bemisia spp. (three), Neomaskellia andropogonis, Tetraleurodes
acacia, and Trialeurodes spp. (four).

The T. palmi LAMP test consists of only a single primer set and
the following non-target species were included in the design:
Frankliniella spp. (two), Cephalothrips monilicornis, Scirtothrips spp.
(five), and Thrips spp. (two). Primers of all assays described in this
study contain degenerated bases; the types and positions of the
degeneracies are given in Supporting Information Table S1. They
are available as commercial kits (OptiGene Ltd, Horsham, UK).

2.3 LAMP assays

LAMP reactions were performed in eight-well strips or 96-well
plates. The reaction volume was 25 pl, containing 15 pl of Lyse
n’ Lamp Isothermal Master Mix (OptiGene Ltd), 1.3 um F3 and B3
primers, 13.3um FIP and BIP primers, 6.6 um loopF and loopB
primers and 2.5 pl of sample DNA extract. LAMP reactions were
performed using Genie® |l (OptiGene Ltd) or a 7500 Real-Time PCR
System (Applied Biosystems, Carlsbad, CA, USA) at 65 °C for 60 min.
To determine the LAMP product melting temperature, samples
were heated to 98 °C and cooled to 75 °C, while measuring fluo-
rescence in real time.

As a negative amplification control, 2.5 pl of alkaline lysis solu-
tion (described above) was added to the reaction instead of DNA
extract. Purified polymerase chain reaction (PCR) amplicons gen-
erated in the DNA barcoding approach (described below) were
diluted to a concentration of 5 x 10 ng ul~" in alkaline lysis solu-
tion (described above) and a volume of 2.5 pl was used as a positive
amplification control. DNA concentrations of the positive ampli-
fication controls were measured using a Qubit 3.0 Fluorometer
(Thermo Fisher Scientific Inc., Waltham, MA, USA).

2.4 LAMP implementation and procedure at the POE

Individual steps in the development, implementation and evalua-
tion of the LAMP assays at the POE at Zurich Airport are illustrated
in Fig. 1A. After LAMP primer design, assays were evaluated for
diagnostic accuracy under laboratory conditions by testing quar-
antine insect species intercepted between 2012 and 2015 at the
POE at Zurich Airport and results were cross-validated by DNA
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Table 1. Results of LAMP assay evaluation performed under (A) laboratory and (B) on-site conditions at the POE at Zurich Airport
LAMP assay N Nrp Nep Nry Ney SEN (%) SPE (%) PPV (%) NPV (%) EFF (%)
A Fruit fly? 117 57 0 60 0 100.0 100.0 100.0 100.0 100.0
B. tabaci 67 62 0 2 3 95.4 100.0 100.0 40.0 95.5
T. palmi 98 75 0 22 1 98.7 100.0 100.0 95.7 99.0
Overall 282 194 0 84 4 98.0 100.0 100.0 95.5 98.6
B Fruit fly? 14 9 0 4 1 90.0 100.0 100.0 80.0 92.9
B. tabaci 13 13 0 0 0 100.0 n/c 100.0 n/c 100.0
T. palmi 10 7 0 2 1 87.5 100.0 100.0 66.7 90.0
Overall 37 29 0 6 2 93.6 100.0 100.0 75.0 94.6

calculated.

B. philippinensis).

N, number of analyses; Nyp, number of true-positive results; Ngp, number of false-positive results; Ny, number of true-negative results; Ngy, number
of false-negative results; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; EFF, test efficiency; n/c, not

@ The fruit fly LAMP assay includes B. latifrons/Z. cucurbitae, as well as the B. dorsalis group (B. carambolae, B. cacuminata, B. dorsalis, B. papayae, and

barcoding. Thereafter, the LAMP protocol was further adapted to
enable plant health inspectors with minimal laboratory training
to successfully perform the method under on-site conditions. The
resulting simplified protocol consists of only one single pipetting
step, which has been achieved by the fabrication of pre-mixed
LAMP kits, including all chemicals for the DNA amplification reac-
tions. Furthermore, chemicals were stained with a dye (i.e. Cresol
Red) to facilitate the handling of the small amount of liquid with
the pipette (i.e. by enabling visual checking). LAMP kits were sup-
plied by the Agroscope reference laboratory and stored at -20 °C.

After the technology transfer including the installation of a LAMP
work station at Zurich Airport, plant health inspectors received
basic laboratory training. Subsequent to the first LAMP round
supervised by one of the investigators, plant health inspectors
performed the LAMP tests independently. In order to evaluate
the performance of the implemented identification system, LAMP
results from the POE at Zurich Airport were cross-validated by DNA
barcoding.

The workflow of the established identification system consists
of visual inspections of incoming plant commodities followed by
molecular identification using the LAMP assays in the case of
the detection of insects suspected to be quarantine organisms
(Fig. 1B). Each LAMP read-out is then checked for validity using
a custom-written Microsoft® Excel® 2013 application available
upon request from the corresponding author. The application
checks the presence of amplification, the results of the controls
and the expected melting temperature. The following lower and
upper melting temperature threshold values were set: fruit fly
assay, 80 and 85 °C; B. tabaci assay, 80 and 85.8°C; and T. palmi
assay, 78 and 84 °C. In the case of a valid positive result, the plant
health inspector in charge can immediately destroy or reject the
infested cargo.

In the case of a negative or invalid positive result, the DNA
extract is sent to the Agroscope reference laboratory and is
identified to species level through DNA barcoding. This control
step ensures maximum test sensitivity, also preventing the intro-
duction of unknown biotypes not included in the initial primer
design. Such unknown biotypes can pose a risk for false-negative
LAMP results, because the DNA amplification-based identification
approach recognises only predefined targets. The addition of a
sequencing step in the procedure also allows updating of the cur-
rent LAMP assays by including new biotypes in the current LAMP
primer set.

2.5 Analyses of diagnostic accuracy

In order to assess diagnostic accuracy, the following formulas
were used to calculate sensitivity (true-positive rate), specificity
(true-negative rate), positive predictive value (percentage of
results that are true-positive), negative predictive value (per-
centage of results that are true-negative), and test efficiency
(percentage of correct test results):

N
%100

Sensitivity (SEN) = —————
Nrp + Ney

N
Specificity (SPE) = % x 100

N+ Nep
Positive predictive value (PPV) = _MNe 100
Nrp + Nep
Negative predictive value (NPV) = L X 100
Ny + Ney
Npp + N.
Test efficiency (EFF) = Al N X 100

Nrp + Nry + Nep + Ney

where N represents the number of analyses, N, the number
of true-positive results, Ny the number of true-negative results,
Ngy the number of false-negative results, and Ngp the number of
false-positive results.

2.6 DNA barcoding

All specimens included in the laboratory and on-site LAMP
assay evaluation process were also subjected to DNA barcod-
ing. PCR was carried out on a GeneAmp PCR System 9600
(PerkinElmer Inc., Waltham, MA, USA). The following primer
pairs were used to amplify the ‘Barcode of Life’ fragment (i.e.
the 5 end of the COI gene) of T. palmi and the fruit fly spec-
imens: Ron (GGAGCTCCTGACATAGCATTCCC) and C1-N-2353
(GCTCGTGTATCAACGTCTATTCC).?”28 In order to amplify the bar-
code fragment of B. tabaci located at the 3’ end of the COI gene,
the primers C1-J-2195 (5-TTGATTTTTTGGTCATCCAGAAGT-3')
and TL2-N-3014 (5-TCCAATGCACTAATCTGCCATATTA-3') were
used.?’?® Reactions were run in reaction volumes of 20 pl with
1 X HotStarTaq Master Mix (Qiagen AG, Hilden, Germany), 0.4 pm
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of each primer and 1 pl of DNA extract diluted 1:10 in molecular
grade water. The PCR reaction was performed using the following
cycling conditions: 15 min at 95 °C, followed by 45 cycles of 40 s at
95°C, 155 at 45 °C, ramping over 60 s to 60 °C and 2 min at 72 °C,
and a final elongation step of 7 min at 72 °C. A clean-up step of
the amplification product was performed using the NuceloFast®
96 PCR system (Marcherey-Nagel GmbH, Diiren, Germany).

Linear amplification was carried out on a Labcycler (Senso-
Quest GmbH, Gottingen, Germany) in 10-pl reactions containing
1x BigDye®Terminator v1.1 Ready Reaction Mix (Applied Biosys-
tems), 0.2 pum of either forward or reverse primer (see above) and
1l of PCR product diluted 1:10 in molecular grade water. The
linear amplification reaction was performed using the following
cycling conditions: 15 min at 95 °C, followed by 45 cycles of 15 s at
95°C, 15sat45 °Cand 2 min at 72 °C. The DyeEx 96 Kit (Qiagen AG)
was used to remove unincorporated dye terminators. The ampli-
cons were then sequenced on a 3130x| Genetic Analyzer (Applied
Biosystems) according to the manufacturer’s instructions.

Forward and reverse DNA sequences were assembled using
Geneious versions R7-10.2° The assembled sequences were then
blasted for species identification against multiple publicly acces-
sible databases, including GenBank, BOLD and Q-bank.'72>2° All
sequences generated during the on-site evaluation step were
uploaded to GenBank; accession numbers are shown in Support-
ing Information Table S2.

2.7 Sequence analyses

To assess the species-wide genetic diversity found in the on-site
evaluation samples and to enable estimations of the risk of future
false-negative results, the COl sequences of insect specimens
analysed during on-site evaluation were compared to those
retrieved from the GenBank database (accessed 15 June 2017).
Sequences were aligned with MUSCLE using default parameters
implemented in Geneious version 10.0.9.2>2%3° To investigate
whether the specimens analysed during on-site evaluation reflect
the genetic diversity of larger data sets, genetic diversity indices
such as the number of polymorphic sites (N;), the number of hap-
lotypes (h), haplotype diversity (H,), nucleotide diversity (z) and
the mean number of pairwise differences (MNPD) were estimated
in DnaSP version 5.10.3" In silico primer specificity analyses were
performed using the primer testing function implemented in
Geneious version 10.0.9.2% Of note, the same software was used
to generate pairwise genetic similarity matrices in order to assess
the genetic similarity of the on-site evaluation specimens.?

3 RESULTS

3.1 Primer design and laboratory evaluation of the LAMP
assays

The primer sets of the LAMP assays were designed based on
the mitochondrial COI gene, where in silico analyses revealed
taxa-specific regions for the target organisms.

In the first evaluation of the LAMP assays, a total of 282 insect
specimens (fruit flies, N=117; B. tabaci, N =67; T. palmi, N = 98)
suspected to be quarantine organisms were analysed by LAMP
under laboratory conditions (Table 1A). Thereby, the fruit fly assay
correctly identified Z. cucurbitae specimens from four different
countries of origin, B. latifrons specimens from two different
countries of origin and specimens from the B. dorsalis group from
nine different countries of origin (Table 2A). Specimens from 13
non-target, closely related or morphologically similar species

gave negative results in the same analysis (Table 2A). During the
evaluation of the B. tabaci assay, specimens originating from eight
different countries were correctly identified and two specimens
from a closely related species gave negative results (Table 2B).
Of note, the T. palmi assay was successfully tested for the identi-
fication of specimens originating from eight different countries
(Table 2C). The same assay gave negative results when testing
eight closely related, non-target species (Table 2C).

The test efficiency of the three individual assays ranged from
95.5% (B. tabaci assay) to 100% (fruit fly assay), and an overall test
efficiency of 98.6% was calculated (Table 1A). Specificities were
found to be 100% for all three tested LAMP assays (Table 1A). The
overall test sensitivity was 98.0% and sensitivity was lowest in the
B.tabaci test (95.4%) (Table 1A). During the first evaluation step, all
tests showed a positive predictive value of 100%. A low negative
predictive value was assigned to the B. tabaci test (40%) because of
the low number of true-negative results (Table 1A). For the fruit fly
and T. palmi assays, the negative predictive values were found to be
100 and 95.7%, respectively (Table 1A). Altogether, the overall neg-
ative predictive value was 95.5% (Table 1A). Mismatches in primer
binding sites of false-negative B. tabaci and T. palmi biotypes were
analysed and primer sets were modified (Table S3). When subse-
quently re-tested with the adapted primer sets, samples were cor-
rectly identified (data not shown).

3.2 On-site evaluation of the LAMP assays at the POE
A total of 37 insect specimens were analysed by LAMP under
on-site conditions at the POE at Zurich Airport (Table 1B). The
overall test efficiency was 94.6% and efficiency ranged from 90.0 to
100% in the individual assays (Table 1B). Specificity was calculated
to be 100% for all assays (Table 1B). During on-site evaluation,
sensitivity was lowest in the T. palmi assay (87.5%) and an overall
sensitivity of 93.6% was calculated. Positive predictive values were
found to be 100% for all assays. Negative predictive values for
the fruit fly and T. palmi assays were 80.0 and 66.7%, respectively
(Table 1B). The two false-negative samples were found to be
positive when subsequently re-tested by the LAMP method in the
Agroscope reference laboratory (data not shown). Analysing the
pairwise genetic similarity matrix of the DNA barcoding fragment
of tested fruit flies, false-negative B. latifrons sample no. 20496 was
found to be genetically identical to sample no. 11524, which was
correctly identified at the POE (Fig. S1A). The same was true for the
false-negative T. palmi sample no. 11535, which was shown to be
identical to the correctly identified sample no. 11529 (Fig. S1C).
Test performance of the on-site evaluation was assessed by
analysing the duration until a positive result was available (time
to positive) and melting temperatures of amplification products
(Table 3). In order to separately investigate test performances of
specimens from the B. dorsalis group and B. latifrons/Z. cucurbitae,
results of the combined fruit fly assay were stratified (Table 3).
Observed average times to positive (mean + SD) ranged from
33.8+ 11.6 min (B. dorsalis group) to 56.1 + 5.6 min (B. latifrons/Z.
cucurbitae) (Table 3). The melting temperatures were shown to
extend from 80.1 + 0.4 °C (T. palmi) to 82.2 + 0.4 °C (B. latifrons/Z.
cucurbitae) and were observed to be very similar for T. palmi and
the stratified fruit fly samples (Table 3).

3.3 Sequence variation at primer binding sites

As a consequence of the lack of genetic information, it is virtually
impossible to include the entire taxon-specific genetic diversity
in the evaluation process of genetic tests, at least for non-model
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B. philippinensis

Table 2. Diversity and geographical origin of insect samples used for laboratory evaluation of the LAMP assays for (A) regulated fruit flies of the
genera Bactrocera and Zeugodacus, (B) B. tabaci and (C) T. palmi. The B. dorsalis group includes B. cacuminata, B. carambolae, B. dorsalis, B. papayae, and

Zaprionus indianus (8) India -
Zaprionus indianus (8) Dominican Republic -

Species Origin LAMP Species Origin LAMP
A Bactrocera dorsalis group (5) Cambodia + Bemisia tabaci (4) Canary Islands +
Bactrocera dorsalis group (6) Cameroon + Bemisia tabaci (1) Dominican Republic +
Bactrocera dorsalis group (8) India + Bemisia tabaci (20) Israel +
Bactrocera dorsalis group (4) Malaysia + Bemisia tabaci (13) Malaysia +
Bactrocera dorsalis group (3) Pakistan + Bemisia tabaci (14) Morocco +
Bactrocera dorsalis group (3) Sri Lanka + Bemisia tabaci (1) Singapore +
Bactrocera dorsalis group (8) Thailand + Bemisia tabaci (9) Thailand +
Bactrocera dorsalis group (4) Uganda + Bemisia tabaci (3) Vietnam +
Bactrocera dorsalis group (1) Vietnam + Trialeurodes vaporariorum (2) Canary Islands -
Bactrocera latifrons (3) Thailand +
Bactrocera latifrons (2) Vietnam +
Zeugodacus cucurbitae (3) Bangladesh + C Thrips palmi (9) Dominican Republic +
Zeugodacus cucurbitae (1) Cambodia + Thrips palmi (16) India +
Zeugodacus cucurbitae (3) The Philippines + Thrips palmi (1) Indonesia +
Zeugodacus cucurbitae (3) Vietnam + Thrips palmi (11) Malaysia +
Anastrepha fraterculus (3) Argentina - Thrips palmi (19) Pakistan +
Anastrepha oblica (3) Dominican Republic - Thrips palmi (10) Sri Lanka +
Anastrepha sp. (3) Dominican Republic - Thrips palmi (6) Thailand +
Anatrichus sp. (1) Sri Lanka - Thrips palmi (4) Vietnam +
Atherigona orientalis (9) Sri Lanka - Cephalothrips monilicornis (1) Sri Lanka -
Bactrocera kandiensis (2) Sri Lanka - Frankliniella intonsa (1) Vietnam -
Ceratitis capitata (5) Egypt - Frankliniella occidentalis (3) Canary Islands -
Ceratitis capitata (2) Zimbabwe - Haplothrips sp. (4) Thailand -
Ceratitis cosyra (7) Cameroon - Scirtothrips aurantii (5) Swasiland -
Ceratitis rosa (1) Cameroon - Scirtothrips dorsalis (1) Malaysia -
Dacus ciliatus (2) Pakistan - Thrips parvispinus (2) Uganda -
Drosophila ananassae (4) Cameroon - Thrips tabaci (5) Israel -
Rhagoletis cerasi (2) Armenia -

Table 3. LAMP assay performances under on-site conditions at the
POE at Zurich Airport. In order to investigate LAMP assay performances
for individual fruit fly species groups, results of the combined fruit
fly assay were stratified for the B. dorsalis group and B. latifrons/
Z. cucurbitae

Tp (min) Tw (O
LAMP assay Nip (mean +SD) (mean +SD)
B. dorsalis group? 6 338+116 82.0+0.3
B. latifrons/Z. cucurbitae 4 56.1 +5.6 822+04
B. tabaci 13 384 +103 819+04
T. palmi 8 38.0+125 80.1+04

Ntp, number of true-positive samples; Tp, time to positive; Ty, melting
temperature; SD, standard deviation.

@Includes B. cacuminata, B. carambolae, B. dorsalis, B. papayae, and
B. philippinensis.

organisms. However, comparative analyses of publicly available
sequence information such as from GenBank may estimate how
well the on-site evaluation results reflect the genetic diversity of
larger data sets and the risk of producing false-negative results
upon implementation of the methodology. For the following
analyses, B. latifrons and Z. cucurbitae were treated as a single

taxonomic unit, enabling estimates of the genetic diversity
covered by the primer set of the combined LAMP assay.

The haplotype diversity (+ SD) of on-site evaluation samples
was found to be similar for all four species groups and ranged
from 0.667 +0.204 for B. latifrons/Z. cucurbitae to 0.679 +0.122
for T. palmi (Table 4A). Compared with haplotype diversity values
calculated for GenBank sequences (B. dorsalis group, N =995;
B. latifrons/Z. cucurbitae, N=1010; B. tabaci, N =2476; and
T. palmi, N =243), values of on-site evaluation samples ranged
in the same order of magnitude (Tables 4A and B). The highest
haplotype diversity (0.832 +0.004) was found for B. tabaci Gen-
Bank sequences (Table 4B). Nucleotide diversity (+ SD) and MNPD
(+ SD) of the airport samples were found to range roughly
in the same order of magnitude as nucleotide diversity val-
ues from GenBank sequences (Tables 4A and B). An exception
was observed for the joint analysis of the two species B.
latifrons and Z. cucurbitae (identified with the LAMP assay
targeting both genetically well-separated species), where
tenfold higher values (z =0.106+0.033; MNPD=10.0+5.8)
were detected compared with the GenBank sequences
(7 =0.019+0.002; MNPD=1.8+1.0) (Tables4A and B). The
highest values of nucleotide diversity (0.139 +0.070) and MNPD
(9.8 +4.5) for GenBank sequences were found for B. tabaci
(Table 4B).
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and (B) sequences retrieved from the GenBank database

Table 4. Variability and genetic diversity measures of concatenated LAMP primer binding sites from (A) samples tested during on-site evaluation

LAMP assay N Np h Hyq £SD 7 +SD MNPD + SD L

A B. dorsalis group? 6 2 3 0.733 +0.155 0.011 +£0.002 1.1+038 103
B. latifrons/Z. cucurbitae® 4 15 2 0.667 + 0.204 0.106 + 0.033 10.0 +5.8 94
B. tabaci 13 29 6 0.769 +0.103 0.086 + 0.022 86+43 101
T. palmi 8 8 3 0.679 +0.122 0.026 +0.023 23+14 100

B B. dorsalis group? 995 32 45 0.647 +0.016 0.012 + 0.001 1.2+08 103
B. latifrons/Z. cucurbitae® 1010 37 31 0.579 +£0.012 0.019 + 0.002 1.8+1.0 94
B. tabaci 2476 70 119 0.832 +0.004 0.139 +0.070 9.8 +4.5 101
T. palmi 243 43 24 0.628 + 0.030 0.049 + 0.004 49+24 100

N, number of individuals tested; Np, number of polymorphic sites; h, number of haplotypes; Hy, haplotype diversity; z, nucleotide diversity; MNPD,
mean number of pairwise differences; L, sequence length (bp) of analysed sequences SD, standard deviation.

@ Includes B. cacuminata, B. carambolae, B. dorsalis, B. papayae, and B. philippinensis.

b B. latifrons and Z. cucurbitae were treated as one taxon, because both are identified by the same LAMP assay.

Despite high nucleotide diversity values in the primer binding
sites, the designed LAMP primers containing degenerated bases
were found to match 100% to all GenBank sequences of B. tabaci
and the B. dorsalis group when tested in silico. For T. palmi, one
mismatch (C/T) was found at position 17 (from the 3’ end) of the
B3 primer and two mismatches (C/T) at positions 17 and 20 of the
F3 primer (data not shown). Furthermore, primer mismatches at
positions 9 (C/T) and 15 (C/G) of the B3 primer were found when
analysing GenBank sequences of B. latifrons/Z. cucurbitae (data
not shown). All described mismatches of T. palmi and B. latifrons/
Z. cucurbitae found during in silico analyses have been observed
in few individual samples during on-site evaluation at the POE at
Zurich Airport without any impact on LAMP performance (data not
shown).

4 DISCUSSION AND CONCLUSION

From a quarantine perspective, molecular diagnostics methods
for the rapid identification of intercepted specimens are crucial
to prevent the introduction and spread of morphologically indis-
tinguishable pest species.'®*? An ideal identification assay should
be fast, reliable, easy to handle, affordable and suitable for on-site
application.3? This paper reports the successful development and
on-site implementation of a LAMP-based system allowing the
rapid identification (within 1 h) of three important and frequently
intercepted quarantine insect species groups at a POE in Switzer-
land. The identification system was implemented to be performed
by plant health inspectors with minimal laboratory training. The
LAMP assays can be performed using simple and affordable equip-
ment and the results are easy to interpret.

DNA amplification-based technologies such as the LAMP
method can only identify specific target DNA sequences.®® A
comprehensive knowledge of the target sequence diversity
is therefore crucial to ensure diagnostic reliability.3* Unfortu-
nately, available information is usually very limited for newly
emerging quarantine organisms, even more so as import plant
commodities originate from all over the world (Table 2). Rare
false-negative LAMP results as a consequence of unknown single
nucleotide polymorphisms (SNPs) at the primer binding sites
are thus to be expected for all DNA amplification-based diag-
nostic tests and any identification system needs to take this
into account.

In view of these points, the LAMP identification system for
the POE at Zurich Airport was designed as a two-stage process
(Fig. 1B). First, in the case of a positive LAMP result, the plant health
inspectors can directly take action to prevent the introduction of
the quarantine insect species. Second, in the case of a negative
LAMP result, samples are sent to a reference laboratory where
they are analysed by DNA barcoding. This procedure ensures
maximum diagnostic sensitivity, which is needed to avoid the
import of quarantine insect organisms and supports the further
development of the LAMP assays in the case of the emergence of
unknown insect biotypes.

In a first evaluation step, only four samples (1.4%) from a total
of 282 analysed insect specimens gave false-negative results; all
other results were correct. Sequence analyses of the false-negative
samples revealed several new variant SNPs at the primer binding
sites. Primer sets were therefore slightly adapted to accommodate
these new variants and the modified LAMP assays were success-
fully revalidated using all available samples.

The evaluation of the LAMP-based identification system at the
POE at Zurich Airport demonstrated that the LAMP assays are reli-
able for on-site diagnostics (Table 1B). Indeed, out of 37 analysed
insect specimens, only two samples (5.4%) gave false-negative
results and no false-positive results were identified (Table 1B).
DNA sequences of both samples that gave false-negative results
were found to be identical to DNA sequences from true-positively
tested specimens (Figs STA and C). Furthermore, both samples
gave true-positive results when re-tested by the LAMP method
in the Agroscope reference laboratory (data not shown). This
observation suggests that the two identification failures may have
been caused by a handling issue during the LAMP assay prepa-
ration. However, because negative LAMP results are routinely
re-tested by DNA barcoding in the designed identification system,
the import of quarantine insect species would be prevented in
both cases.

Future adjustments to further enhance the diagnostic sensitiv-
ity could include testing specimens in duplicate and/or includ-
ing an internal positive control (IPC). The latter measure would
allow monitoring of each individual reaction separately and could
consist of non-target control DNA spiked into the initial lysis
solution.

During on-site evaluation, all specimens suspected to be
B. tabaci were correctly confirmed (Table 1B). This demonstrates
how well the plant health inspectors are trained in pre-identifying
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regulated insect quarantine organisms. A basic morphological
knowledge is indeed crucial to select the appropriate LAMP
assay for the identification of suspicious insects. In the case of
the B. tabaci assay, because of the lack of any negative result
during on-site evaluation, it was not possible to calculate diag-
nostic specificity and negative predictive value. Monitoring the
test performance of this assay will therefore be an ongoing
process.

In a comparative analysis, sequences generated during on-site
evaluation were compared to all corresponding sequences cur-
rently available from the GenBank database in order to assess
whether the observed genetic variability in the primer binding
sites reflects the diversity of larger data sets. The nucleotide diver-
sity values of the primer binding sites from the analysed B. dorsalis
group, B. tabaci, and T. palmi specimens were found to range in
the same order of magnitude as the values calculated for DNA
sequences from the GenBank database (Table 4). In contrast, the
nucleotide diversity value (0.106) and MNPD (10.0) calculated for
the B. latifrons/Z. cucurbitae airport specimens were ten times
higher than the values calculated for sequences from the GenBank
database. The reason for the observed discrepancy is probably the
low sample size, because only two specimens of each of these two
genetically well-differentiated species were analysed (Table 4 and
Fig. STA). Yet, the results of the comparative analysis have to be
interpreted with caution because of the relatively small sample
size of the on-site evaluation samples as well as the fact that B.
latifrons and Z. cucurbitae were treated as a single taxonomic unit.
Furthermore, the composition of the GenBank entries for a partic-
ular species could also be biased because of overrepresentation of
certain biotypes as a consequence of focal studies in specific areas.

The results of in silico primer specificity analyses revealed that
the designed LAMP primers are suitable to detect all known
haplotypes from numerous countries of origin of B. tabaci, T. palmi
and several species of regulated fruit flies of the genera Bactrocera
and Zeugodacus. The issue of the high within-taxon nucleotide
diversity has been addressed by the application of degeneracy
in primers, as well as the combination of multiple primer sets
in the case of B. tabaci. Analysing the available sequences from
the GenBank database, no primer mismatches were found either
for the B. dorsalis group or for B. tabaci. Only a few mismatches
distant from the 3’ end were found for some sequences of T. palmi
and B. latifrons/Z. cucurbitae. As all observed mismatches were
represented in the insect data set that was successfully analysed
during the on-site evaluation at Zurich Airport, they seem to have
no influence on the test performance of developed LAMP assays.

Further efforts towards improving the on-site identification
system will focus on (i) expanding the range of diagnostic
LAMP assays and (ii) developing on-site sequencing capabil-
ities to eliminate the need for diagnostic core laboratories.
Small next-generation sequencing-based systems such as the
Oxford Nanopore technology are valuable candidates for on-site
DNA/RNA sequencing.®3¢ Eventually, a sequencing-based tech-
nology may completely replace diagnostic assays which would
eliminate the need for continuous development and evalua-
tion of genetic tests. Furthermore, provided that sequencing is
deep enough, information on characteristics such as pesticide
resistance genes in arthropods or antibiotic resistance genes in
bacteria may be acquired during the same process that identifies
the species. Finally, accumulating sequence information of all
intercepted specimens, together with the information on the
geographical origin, will enable us to reconstruct invasion history
in ‘real time’, thus deepening our understanding of how invasive

species spread around the globe, enabling the development of
new, more sustainable insect pest management strategies.

The successful molecular training of the plant health inspectors
during the implementation of the LAMP-based identification sys-
tem can be seen as a first step towards the future introduction of
a sequencing-based on-site identification system. However, until
novel sequencing technologies are ready to use for on-site appli-
cation, the implemented LAMP assays represent fast and reliable
identification tools for quarantine insect species.
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