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SUMMARY

Heterochromatin-dependent gene silencing is cen-
tral to the adaptation and survival of Plasmodium fal-
ciparum malaria parasites, allowing clonally variant
gene expression during blood infection in humans.
By assessing genome-wide heterochromatin pro-
tein 1 (HP1) occupancy, we present a comprehen-
sive analysis of heterochromatin landscapes across
different Plasmodium species, strains, and life cycle
stages. Common targets of epigenetic silencing
include fast-evolving multi-gene families encoding
surface antigens and a small set of conserved
HP1-associated genes with regulatory potential.
Many P. falciparum heterochromatic genes are
marked in a strain-specific manner, increasing the
parasite’s adaptive capacity. Whereas heterochro-
matin is strictly maintained during mitotic prolifera-
tion of asexual blood stage parasites, substantial
heterochromatin reorganization occurs in differenti-
ating gametocytes and appears crucial for the
activation of key gametocyte-specific genes and
adaptation of erythrocyte remodeling machinery.
Collectively, these findings provide a catalog of het-
erochromatic genes and reveal conserved and
specialized features of epigenetic control across
the genus Plasmodium.
Cell Host & Microbe 23, 407–420, M
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INTRODUCTION

Malaria is caused by unicellular eukaryotes of the genus Plasmo-

dium that belongs to an ancient group of obligate endoparasites

known as Apicomplexa. The Plasmodium genus comprises a

few hundred species infecting birds, reptiles, or mammals, and

their radiation is estimated to have occurred about 130 million

years ago (Perkins, 2014). Members of the Vinckeia subgenus

parasitize non-primate mammals, among which rodents and

bats are the most abundant. This group includes parasites of

rodents such as Plasmodium berghei, Plasmodium yoelii, Plas-

modium Chabaudi, and Plasmodium vinckei, which serve as

important models to interrogate Plasmodium biology. Parasites

belonging to the subgenera Plasmodium and Laverania infect

humans or other primates. Five species are known to naturally

infect humans, namely Plasmodium vivax, Plasmodium ovale,

Plasmodium malariae, Plasmodium knowlesi (all members of

the Plasmodium clade), and Plasmodium falciparum (Lavera-

nia clade).

Malaria parasites of mammals are transmitted between their

intermediate hosts by female Anopheles mosquitoes. Their life

cycle is complex, involving several stage transitions and replica-

tion phases as well as colonization of different cell types and tis-

sues. In the bloodstream, parasites invade red blood cells

(RBCs) and undergo intracellular multiplication via schizogony,

which involves progression through the ring and trophozoite

stages followed by multiple nuclear divisions before a single

cytokinesis event leads to the production of up to 32 merozoites

ready to invade other RBCs. Repeated rounds of these cycles
arch 14, 2018 ª 2018 The Author(s). Published by Elsevier Inc. 407
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are responsible for all malaria-related morbidity and mortality.

For malaria transmission to occur, mosquitoes must ingest

male and female gametocytes with their blood meal. These sex-

ual precursors emerge at a low rate from the proliferating pool of

blood stage parasites and are essential to complete sexual

reproduction and subsequent sporozoite formation in the mos-

quito vector. Upon injection into the skin through a mosquito

bite, sporozoites migrate to the liver, undergo intra-hepatic schi-

zogony, and release over 10,000 merozoites that commence

blood stage infection.

Proteins involved in functions at the host-parasite interface

have been key to the evolutionary success of malaria parasites

(Swapna and Parkinson, 2017). Genes encoding such factors

comprise up to 15% of all parasite genes and belong to various

dynamically evolving multi-gene families (Reid, 2015). Charac-

teristic features of these gene families are that they (1) primarily

encode proteins exported to the RBC; (2) display high levels of

sequence polymorphism between paralogs and across strains,

and substantial differences in copy number between species;

(3) mostly locate to subtelomeric gene arrays (with the exception

of P. knowlesiwhere they occur throughout the genome); and (4)

are often species- or clade-specific (Pain et al., 2008; Reid,

2015). A prime example of species-specific gene families is the

60-member var gene family in P. falciparum. Each var gene en-

codes a variant of the major surface antigen P. falciparum eryth-

rocyte membrane protein 1 (PfEMP1) that mediates adhesion of

infected RBCs (iRBCs) to several host receptors (Smith et al.,

2013). Members of gene families represented in multiple species

include the Plasmodium interspersed repeat (pir) genes (Cun-

ningham et al., 2010), fam-a, -b, -c genes (Otto et al., 2014),

Plasmodium helical interspersed subtelomeric (phist) genes

(Sargeant et al., 2006; Warncke et al., 2016), or reticulocyte-

binding-like (rbl) genes (Gunalan et al., 2013). Independent of

their size and species distribution, these gene families provide

a fertile ground for genetic diversification and are a driving force

of evolutionary adaptation.

A number of studies conducted in P. falciparum showed that

these multi-gene families are located in heterochromatin (Flueck

et al., 2009; Lopez-Rubio et al., 2009; Salcedo-Amaya et al.,

2009). Heterochromatin is characterized by trimethylation of

lysine 9 on histone H3 (H3K9me3) and the consequent binding

of heterochromatin protein 1 (HP1), a conserved regulator of het-

erochromatin formation and heritable silencing (Lomberk et al.,

2006). P. falciparum encodes a single HP1 protein termed

PfHP1 (Perez-Toledo et al., 2009; Flueck et al., 2009). In asexual

blood stage parasites, PfHP1/H3K9me3 demarcate large het-

erochromatic domains in all subtelomeric regions and in a few

internal regions of some chromosomes (Flueck et al., 2009;

Lopez-Rubio et al., 2009; Salcedo-Amaya et al., 2009). These

heterochromatic domains are virtually confined to non-syntenic
Figure 1. HP1 Localization and Genome-wide HP1 Occupancy in Six D

(A) IFAs showing HP1 localization (green) in P. falciparum (a-PfHP1 antibodies), P

P. yoelii (a-PbHP1 antibodies) trophozoites. Nuclei were stained with DAPI (blue

(B) Log2-transformed ChIP/input ratio tracks from schizont stages of six Plasmo

(antisense strand) boxes.

(C) Relative composition of heterochromatic genes in six Plasmodium species, cla

and ‘‘other.’’ Numbers indicate the total number of high-confidence heterochrom

See also Figures S1–S3; Tables S1 and S2.
regions and include over 400 genes, almost all of which are

members of multi-gene families (Flueck et al., 2009). As a conse-

quence, these genes are subject to clonally variant expression,

providing the parasites with a strong potential for phenotypic

diversification and rapid adaptation for instance through anti-

genic variation or expression of alternative invasion ligands or

nutrient transporters (Rovira-Graells et al., 2012; Voss et al.,

2014). In addition, a few single genes are also associated with

PfHP1, some of which have orthologs in other Plasmodium spe-

cies (Flueck et al., 2009). One of these loci encodes the transcrip-

tion factor AP2-G, the master regulator of gametocytogenesis

(Kafsack et al., 2014; Sinha et al., 2014). PfHP1-dependent

silencing of pfap2-g prevents sexual commitment, while activa-

tion of this locus triggers sexual conversion and subsequent

gametocyte differentiation, thus facilitating parasite transmis-

sion to the mosquito vector (Kafsack et al., 2014; Sinha et al.,

2014; Brancucci et al., 2014; Coleman et al., 2014).

These and other studies provided clear evidence that epige-

netic regulation, particularly heterochromatin formation, is cen-

tral to adaptation and survival of malaria parasites. To date,

however, heterochromatin organization has almost exclusively

been investigated in P. falciparum strain 3D7 blood stage schiz-

onts. It is currently unknown whether the heterochromatin

landscape differs between P. falciparum strains, whether other

Plasmodium spp. display similar heterochromatin landscapes,

or to what extent HP1 contributes to life cycle stage transitions

and parasite differentiation.

RESULTS

Conserved and Species-Specific Aspects of the
Heterochromatin Landscape across the
Plasmodium Genus
To investigate evolutionary aspects of heterochromatin organi-

zation, we profiled genome-wide HP1 occupancy in multiple

Plasmodium species by chromatin immunoprecipitation se-

quencing (ChIP-seq). For P. falciparum we used our recently

generated polyclonal rabbit a-PfHP1 antibody (Brancucci

et al., 2014). Guided by a phylogenetic tree constructed from

HP1 orthologs (Figure S1), we generated additional polyclonal

rabbit antibodies against PvHP1 (to study HP1 in P. vivax and

P. knowlesi) and PbHP1 (to study HP1 in P. berghei, Plasmodium

chabaudi, and P. yoelii). Immunofluorescence assays (IFAs) us-

ing these antibodies visualized punctate signals in the nuclei of

all species that are reminiscent of the perinuclear chromosome

end clusters observed in P. falciparum (Brancucci et al., 2014)

(Figures 1A and S1). In western blot analyses these antibodies

detected a protein of the expected size of HP1 in each species

(for P. vivax western blot analysis was not performed due to

lack of a suitable parasite sample) (Figure S1).
ifferent Plasmodium Species

. vivax, and P. knowlesi (a-PvHP1 antibodies), and P. chabaudi, P. berghei, and

). Scale bars, 2.5 mm.

dium species. Coding sequences are shown as blue (sense strand) and red

ssified into multi-gene families or groups of ‘‘unknown,’’ ‘‘unknown exported,’’

atic genes.
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Figure 2. Conserved Single-Copy Genes Associated with HP1 in

More Than One Species

(A) HP1 enrichment values for conserved syntenic orthologs in six Plasmodium

species. Asterisks denote high-confidence heterochromatic genes (p >

0.99999).

(B) HP1 enrichment tracks over the ap2-g locus in six Plasmodium species.
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(C) HP1 enrichment tracks over the cap380 locus in six Plasmodium species.

See also Tables S1 and S2.
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Using these antibodies we mapped HP1 occupancy in schiz-

onts of P. falciparum strain 3D7, P. berghei ANKA, P. chabaudi

chabaudi AS, P. yoelii yoelii YM, and P. knowlesi clone A1-C.1

(Moon et al., 2013), as well as P. vivax field isolates. In all species

HP1 predominantly localizes to subtelomeric heterochromatic

domains on all chromosomes and to a few internal regions on

some chromosomes (Figures 1B and S2). The only exception is

P. knowlesi, where subtelomeric occupancy is much less pro-

nounced but numerous chromosome-internal HP1-demarcated

domains are observed (Figures 1B and S2). We next calculated

HP1 enrichment values for each gene and employed a binomial

Gaussian mixture model to call HP1-associated genes with high

confidence (Figure 1C and Table S1). HP1 occupancy in P. fal-

ciparum is largely restricted to the var, rif, stevor, phist, pfmc-

2tm, and other gene families encoding known or predicted

exported proteins in accord with a previous report (Flueck

et al., 2009). In P. vivax most HP1-occupied genes belong to

the vir family, and members of the cir, bir, and yir families

make up the majority of HP1-associated genes in P. chabaudi,

P. berghei, and P. yoelii, respectively. The dispersed HP1-

demarcated domains in P. knowlesi capture the kir and SICAvar

families and the interstitial telomere repeat sequences (ITSs) that

are linked to these loci throughout the genome (Pain et al., 2008)

(Figures 1C and S3; Table S1). Most other HP1-associated

genes inP. vivax,P. knowlesi, and the three rodent-infecting spe-

cies are members of gene families encoding other known or pre-

dicted exported proteins including phist, stp1, fam-a, fam-b, and

fam-c genes (Figure 1C and Table S1) (Reid, 2015). Moreover,

several species possess small heterochromatic gene families

involved in RBC invasion such as the pc235, pb235, and py235

genes encoding rhoptry proteins (P. chabaudi, P. berghei,

P. yoelii) (Iyer et al., 2007), or in metabolism such as lpl genes en-

coding lysophospholipases (P. falciparum, P. vivax, P. knowlesi,

P. chabaudi, and P. yoelii) and acs genes encoding acyl-coen-

zyme A synthetases (P. falciparum and P. chabaudi).

All species also contain a few HP1-associated genes encod-

ing proteins involved in the regulation of gene expression,

vesicular transport, cell division, RBC invasion, and sexual

development or transmission (summarized in the category

‘‘other’’; Figure 1C and Table S1). Notably, while the multi-

gene families have no or limited orthology, most of these genes

have orthologs including some with conserved synteny across

species. The extent of HP1 enrichment at these loci varied

across species and most were bound by HP1 only in one

species (Tables S1 and S2). However, six conserved syntenic

orthologs were associated with HP1 in more than one species

(Figure 2A). Four of them encode putative transcriptional or

post-transcriptional regulators of gene expression, namely the

ApiAP2 TFs AP2-G (Kafsack et al., 2014; Sinha et al., 2014)
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(B) HP1 enrichment tracks over the six genes showing >2.5-fold increased HP1 occupancy in P. knowlesi clone A1-C.1 compared with A1-H.1.

See also Table S3.
and AP2-SP3/AP2-Tel (Modrzynska et al., 2017; Sierra-Miranda

et al., 2017), an RNA-binding protein, and a CCCH-type zinc

finger (ZnF) protein that is only conserved in P. vivax and

P. knowlesi. Interestingly, ap2-g was the only gene with clear

HP1 enrichment in all species (Figure 2B), underscoring its

crucial role in controlling the switch to sexual differentiation (Kaf-

sack et al., 2014; Sinha et al., 2014; Brancucci et al., 2014; Cole-

man et al., 2014). ap2-sp3/ap2-tel was bound by HP1 in P. vivax

and the three species infecting rodents. The two genes encoding

the ZnF and RNA-binding proteins and a gene encoding a

conserved Plasmodium protein of unknown function were signif-

icantly enriched only in the P. vivax/knowlesi clade (Figure 2A).

cap380, encoding an oocyst capsule protein essential for oocyst

development in P. berghei (Srinivasan et al., 2008), is associated

with HP1 in P. vivax, P. knowlesi, P. berghei, and P. chabaudi,

and partially marked in P. falciparum, but not in P. yoelii

(Figure 2C).

In summary, in all Plasmodium species examined most HP1-

enriched genes belong to species-, clade- or pan-specific

multi-gene families with documented or probable functions in

antigenic variation, immune evasion, or host cell invasion. In

addition, each species contains a small number of HP1-associ-

ated single-copy genes, many of which are conserved in other

Plasmodium spp. and have known or predicted roles in funda-

mental parasite biology.

P. knowlesi Parasites Proliferating in Macaque or
Human RBCs Display Altered PkHP1 Occupancy at
Several Loci
P. knowlesi parasites have been adapted to continuous in vitro

culture in human RBCs (Moon et al., 2013; Lim et al., 2013).

We reasoned that the adaptation to growth in human RBCs

may have involved epigenetic changes. We therefore compared
the PkHP1 binding profiles of P. knowlesi clones A1-C.1 (see

above) and A1-H.1, which have been adapted to long-term

in vitro culture inMacaca fascicularis and human RBCs, respec-

tively (Moon et al., 2013). Only 12 genes were differentially

marked by PkHP1 between the two clones (R2.5-fold change

in PkHP1 occupancy) (Table S3). The six loci with higher

PkHP1 enrichment in human RBC-adapted parasites encode a

KIR protein, a lysophospholipase, a PHIST protein, and three

tryptophan-rich antigens (TRAGs) (Figure 3A and Table S3).

The six genes with reduced PkHP1 occupancy in human RBC-

adapted parasites encode two members of the SICAvar family,

a protein of unknown function, a predicted exported protein,

the secreted ookinete protein PSOP7, and a putative histone

RNA hairpin-binding protein (Figure 3B and Table S3). Of note,

TRAG proteins interact with RBC receptors and have proposed

roles in invasion (Tyagi et al., 2015; Zeeshan et al., 2015), and

PHIST proteins play central roles in RBC remodeling (Warncke

et al., 2016). Furthermore, the P. knowlesi gene encoding a Plas-

modium exported protein of unknown function (PKNH_0734900)

has an ortholog in P. vivax, a parasite that naturally infects hu-

mans. Hence, these epigenetic changes may indeed represent

signatures of positive selection during adaptation but replicate

in vitro selection experiments, and further characterization

of candidates is needed to test this intriguing possibility

experimentally.

Heterochromatin Organization Is Variable between
Different P. falciparum Strains
We next profiled HP1 occupancy in P. falciparum schizont

stages of strain NF54 (Delemarre and van der Kaay, 1979), the

NF54-derived clone 3D7 (Walliker et al., 1987), and the recently

culture-adapted Ghanaian strain Pf2004 (Elliott et al., 2007;

Brancucci et al., 2015) and Cambodian strain NF135 (Teirlinck
Cell Host & Microbe 23, 407–420, March 14, 2018 411
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et al., 2013). To allow direct comparison of PfHP1 occupancy,

we mapped all ChIP-seq reads against the 3D7 genome

(PlasmoDB v26). The four strains displayed largely similar het-

erochromatin organization but distinct PfHP1 occupancy was

still evident, predominantly at the border of heterochromatic do-

mains (Figure 4A). Importantly, mapping the Pf2004 ChIP-seq

reads against the matching Pf2004 genome revealed that

many changes in PfHP1 occupancy occurred in syntenic regions

(Figure S4), demonstrating that differences at heterochromatin

borders are not solely due to genetic rearrangements.

For identification of genes with altered PfHP1 occupancy,

ChIP/input enrichment values were Z-score transformed and

grouped using k-means clustering (Figure 4B and Table S4). Of

all heterochromatic genes (clusters 1–11; 279 genes), one-third

displayed variable PfHP1 occupancy across strains (clusters

5–11; 88 genes). Interestingly, most of these genes localize close

to heterochromatin boundaries (Figure 4B) and show variation in

expression between laboratory lines (Rovira-Graells et al., 2012)

(Table S4). While most var, stevor, and rifin genes were stably

marked by PfHP1, members of other gene families such as phist,

fikk, or surfin and genes encoding unknown exported proteins

were over-represented among the variably marked genes (Fig-

ures 4C and 4D; Table S4). Pseudogenes were also more abun-

dant in this class, suggesting that they may provide ‘‘buffer

zones’’ for heterochromatin reorganization. Variable PfHP1

occupancy was also observed for most PfHP1-associated sin-

gle-copy genes and small gene families (category ‘‘other’’) (Fig-

ure 4D). This set includes genes encoding proteins implicated in

erythrocyte invasion (eba-181) (Gilberger et al., 2003), RBC re-

modeling in gametocytes (geco) (Morahan et al., 2011), mosquito

midgut invasion (warp) (Yuda et al., 2001), sporozoite maturation

or egress (ccp1, crmp4) (Simon et al., 2009; Douradinha et al.,

2011), or liver stage development (lsa1) (Mikolajczak et al.,

2011). Notably, however, four such genes (ap2-g, clag3.2,

dblmsp2, and another gene encoding a DBL-domain-containing

protein) showed stable PfHP1 enrichment in all strains (Fig-

ure 4C), suggesting that stable heterochromatin inheritance at

these loci provides a selective growth advantage in vitro. Indeed,

depletion of HP1 from the pfap2-g locus leads to cell cycle exit

and sexual differentiation (Brancucci et al., 2014). dblmsp2 en-

codes a putative invasion factor expressed only in a small frac-

tion of schizonts (Amambua-Ngwa et al., 2012). clag3.2 and its

paralog clag3.1 encode related variants of the surface transport

channel PSAC (Nguitragool et al., 2011); parasites express either

one of the two variants and some preferentially express clag3.1

in vitro (Cortes et al., 2007; Comeaux et al., 2011). Collectively,

these observations highlight a high degree of variability in hetero-
Figure 4. Strain-Specific Differences in Heterochromatin Organization

(A) Log2-transformed ChIP/Input ratio tracks from P. falciparum strains Pf2004, N

end and the distal end of chromosome 12 are depicted as representative exam

strand) boxes.

(B) Heatmap based on k-means clustering of Z-score-transformed ChIP/input r

occupancy are marked in turquoise. Chromosomemaps depict the position of var

(brown tracks; average Z-score-transformed ChIP/input ratios across the strains

(C) Relative composition of invariably marked heterochromatic genes (clusters

and ‘‘other.’’

(D) Relative composition of variably marked heterochromatic genes (clusters 5

and ‘‘other.’’

See also Figure S4 and Table S4.
chromatin organization that likely contributes to phenotypic vari-

ation of malaria parasites. Interestingly, by analyzing gene

expression data from field isolates (Mok et al., 2015) we found

that variably marked heterochromatic genes display a signifi-

cantly higher degree of expression variation compared with

euchromatic genes and, to a lesser extent, also to invariably

marked genes, suggesting that this relation may be relevant

in vivo (Figure S4 and Table S4).

Heterochromatin Organization Is Invariable between
Different Stages of Asexual Intra-erythrocytic
Development
To assess whether and to what extent PfHP1-dependent gene

expression contributes to the regulation of gene expression dur-

ing the intra-erythrocytic developmental cycle (IDC), wemapped

PfHP1 occupancy inP. falciparum 3D7 ring stages, trophozoites,

and schizonts. The profiles were highly similar in all three stages

(Figure 5A). PfHP1 enrichment values of individual genes were

highly correlated and we did not identify any genes with signifi-

cantly altered PfHP1 occupancy across the IDC (Figure 5B and

Table S5). Comparison of our data with an RNA sequencing

(RNA-seq) dataset (Kensche et al., 2016) confirmed that most

PfHP1-associated genes are expressed at low levels during

the IDC (Flueck et al., 2009) and that most clonally variant genes

are PfHP1 target genes (Rovira-Graells et al., 2012) (Figure 5C).

Interestingly, genes with lower PfHP1 occupancy showed some-

what higher expression, and this set includes many experimen-

tally confirmed clonally variant genes (Rovira-Graells et al.,

2012). var genes appear to be special in this regard since they

show moderate expression despite high PfHP1 occupancy

levels. In summary, these results reveal that PfHP1-mediated

silencing does not contribute in any major way to the temporal

regulation of gene expression during the IDC.

The Switch from Asexual Proliferation to Sexual
Differentiation in P. falciparum Is Accompanied by
Marked Changes in the Heterochromatin Landscape
We performed PfHP1 ChIP-seq experiments on Pf2004 schiz-

onts, stage II/III gametocytes, and stage IV/V gametocytes.Map-

ping the PfHP1 ChIP-seq reads against both the 3D7 and Pf2004

reference genomes highlighted clear differences in PfHP1 occu-

pancy between asexual and sexual stages that were particularly

evident from the expansion of subtelomeric heterochromatic

domains in gametocytes (Figures 6A, 6B, and S5).

Calculation of PfHP1 enrichment values followed by Z-score

transformation and k-means clustering identified 104 genes with

altered PfHP1 occupancy between schizonts and gametocytes
in P. falciparum Schizonts

F135, NF54 and 3D7 schizonts. Chromosome 8 and zoom-ins of its proximal

ples. Coding sequences are shown as blue (sense strand) and red (antisense

atios calculated for each gene. Clusters containing genes with variable HP1

iably marked genes (turquoise) in relation to HP1-demaracted heterochromatin

calculated in 1,000-bp windows).

1–4), classified into multi-gene families or groups of ‘‘unknown exported’’

–11), classified into multi-gene families and groups of ‘‘unknown exported’’
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Figure 5. Genome-wide PfHP1 Localization Is Invariable across the IDC

(A) Log2-transformed ChIP/Input ratio tracks from P. falciparum 3D7 ring, trophozoite, and schizont stages. Chromosome 3 is depicted as a representative

example. Coding sequences are shown as blue (sense strand) and red (antisense strand) boxes.

(B) Pairwise comparisons of PfHP1 coverage of individual genes between the three IDC stages. r, Pearson correlation values.

(C) Scatterplots displaying for each gene the maximum transcript level during the IDC (Kensche et al., 2016) (gray dots) in relation to HP1 occupancy in schizonts

(green dots). Genes were sorted according to HP1 occupancy. Genes with clonally variant expression (Rovira-Graells et al., 2012) aremarkedwith a red circle. var

genes are indicated as blue dots.

See also Table S5.
(clusters 5–8) (Figure 6B and Table S6). Of these, only 15 genes

showed reduced PfHP1 occupancy in gametocytes (cluster 5).

This set includes pfap2-g (Kafsack et al., 2014), the gameto-

cyte-specific gene pfgeco (Morahan et al., 2011), and seven

additional genes at the distal end of chromosome 14 that include

five known markers of early gametocytogenesis (pfg14_744,

pfg14_748, PF3D7_1476600, PF3D7_1477400, gexp17) (Eksi

et al., 2005, 2012; Silvestrini et al., 2010) (Figures 6A, 6B, and

S5; Table S6).

Clusters 6–8 contain 89 genes specifically bound by PfHP1 in

gametocytes (Figures 6A, 6B, and S6; Table S6). Intriguingly, this

set is enriched for genes encoding proteins implicated in RBC re-

modeling. Of particular interest is the subtelomeric region at the

left arm of chromosome 2 where the heterochromatic domain is

extended by almost 50 kb in gametocytes. This differentially

marked region includes three genes encoding proteins involved

in knob formation, namely the knob-associated heat-shock pro-

tein 40 (KAHsp40) (Acharya et al., 2012), PfEMP3 (Pasloske et al.,
414 Cell Host & Microbe 23, 407–420, March 14, 2018
1993), and the knob-associated histidine-rich protein (KAHRP)

(Pologe and Ravetch, 1986). In addition, five members of the

fikk family, which encode exported serine-threonine protein ki-

nases implicated in host cell remodeling (Nunes et al., 2007;

Kats et al., 2014), are enriched in PfHP1 in gametocytes.

Increased PfHP1 occupancy is also observed at the gene encod-

ingMESA, an exported protein of unknown function that binds to

the RBC membrane skeleton protein 4.1 (Waller et al., 2003) and

at 15 phist genes. In summary, these data suggest that hetero-

chromatin remodeling contributes in a major way to the estab-

lishment of a gametocyte-specific transcriptional program. It

should be noted, however, that the majority of genes differen-

tially expressed between asexual and sexual blood stages are

not marked by HP1 in either stage (Young et al., 2005; Flueck

et al., 2009), suggesting that sequence-specific transcription

factors such as AP2-G and AP2-G2 (Kafsack et al., 2014; Sinha

et al., 2014; Yuda et al., 2015) are the main drivers of stage-spe-

cific gene expression during sexual differentiation.
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Figure 6. Differences in Heterochromatin Organization between Asexual and Sexual P. falciparum Blood Stage Parasites

(A) Log2-transformed ChIP-seq ChIP/input ratio tracks from P. falciparum Pf2004 schizonts and stage II/III and stage IV/V gametocytes. The proximal end of

chromosome 2 is depicted as an example for an expanded heterochromatic domain in gametocytes. Genes involved in knob formation (kahsp40,

PF3D7_0201800; pfemp3, PF3D7_0201900; kahrp, PF3D7_0202000) are marked in orange. Early gametocyte markers PF3D7_1476500, PF3D7_1476600,

PF3D7_1477300 (pfg14_744/phist), PF3D7_1477400 (phist), PF3D7_1477700 (pfg14_748/phista), and PF3D7_1478000 (gexp17) at the distal end of chromo-

some 14 have reduced PfHP1 occupancy in gametocytes and are marked in purple.

(B) Heatmap based on k-means clustering of Z-score-transformed ChIP/input ratios calculated for each gene. Examples of genes with reduced (cluster 5) or

increased (clusters 6–8) HP1 occupancy in gametocytes are highlighted in purple and orange, respectively. Chromosome maps depict the position of genes with

reduced (purple) or increased (orange) HP1 occupancy in gametocytes in relation to PfHP1-demarcated heterochromatin (green tracks and blue inverted tracks

are Z-score-transformed ChIP/input ratios in schizonts and stage IV/V gametocytes, respectively, calculated in 1,000-bp windows).

See also Figure S5 and Table S6.
DISCUSSION

We show that heterochromatin formation at chromosome ends

and their perinuclear clustering is a conserved feature of chro-

matin organization across the Plasmodium genus. Furthermore,

in all six species examined heterochromatin primarily embeds

members of the various species-, clade-, or pan-specific multi-

gene families with known or predicted roles in antigenic variation

and other host-parasite interrelations, independent of chromo-

somal location. While in P. berghei, P. chabaudi, P. yoelii, and

P. vivax heterochromatin is mostly confined to chromosome
ends, P. falciparum features some additional intra-chromosomal

heterochromatic islands, and in P. knowlesi chromosome-inter-

nal HP1-demaracted domains are scattered throughout the

genome. These differences in heterochromatin distribution

mirror the differences in the genome-wide localization of gene

families between the species. These observations, in particular

the intriguing association of PkHP1 with the numerous individual

kir andSICAvar loci (Figure S3), lends support to the idea that un-

known DNA elements linked to sequences of gene family mem-

bers may be directly involved in the formation and/or local

containment of heterochromatin. The ITS elements found at kir
Cell Host & Microbe 23, 407–420, March 14, 2018 415



and SICAvar loci are interesting first candidates to be tested for

such putative functions.

Some conserved single-copy genes are subject to HP1-

dependent gene silencing in at least one of the species analyzed.

Heterochromatinization of these genes may be used to prevent

their expression during certain phases of the life cycle and/or

to express them in a clonally variant manner to facilitate alterna-

tive phenotypes conducive to parasite adaptation. Even though

some of these genes display only subtle HP1 enrichment and

may represent false-positive hits, this list constitutes a valuable

resource for the exploration of genus-, clade-, or species-spe-

cific heterochromatic genes with functions in key biological pro-

cesses (Table S2). Here, we focused our attention on the six

syntenic orthologs that are heterochromatic in more than one

species. Remarkably, next to ap2-g this set includes three other

genes with likely roles in regulating gene expression. Of these,

AP2-SP3/AP2-Tel has recently been studied in P. falciparum

and P. berghei. In P. falciparum, this factor binds the telomeric

tract (Sierra-Miranda et al., 2017), and disruption of ap2-sp3/

ap2-tel impairs parasite proliferation (Balu et al., 2010). In P. ber-

ghei, however, AP2-SP3/AP2-Tel is dispensable for intra-eryth-

rocytic growth and sexual development but essential for

sporozoite maturation (Modrzynska et al., 2017). These rather

conflicting findings may be explained by functional divergence

of AP2-SP3/AP2-Tel in different malaria parasites. Consistent

with this hypothesis, we found that ap2-sp3/ap2-tel is marked

by HP1 in P. vivax and the three species infecting rodents, but

not in P. falciparum and P. knowlesi. Another interesting HP1

target gene encodes a putative CCCH-type ZnF protein in

P. vivax (PVP01_0604500) and P. knowlesi (PKNH_0603500).

Proteins carrying these domains typically bind RNA and control

gene expression by regulating mRNA turnover (Fu and Black-

shear, 2017). Hence, this factor may act in a similar way to regu-

late important processes specifically in the P. vivax/P. knowlesi

clade, and it will be interesting to find out in which life cycle

stage(s) this may take effect.

A previous study reported a substantial degree of variegated

gene expression in P. falciparum and showed that most genes

affected are located in heterochromatin (Rovira-Graells et al.,

2012). Their results also suggested that the transcriptional states

of individual genes are stably inherited during in vitro culture. Our

results are consistent with these findings. First, up to one-third of

all heterochromatic genes showed variable PfHP1 occupancy

between strains, which likely contributes to differential gene

expression. Second, we observed a complete lack of variation

in PfHP1 occupancy between the different IDC stages and found

only 12 differentially marked genes between two clones of

P. knowlesi that have been cultured independently in RBCs

from two different hosts for over 200 generations (Moon et al.,

2013). Together, these findings suggest that heterochromatin

is faithfully maintained and that heritable changes occur rather

infrequently during asexual proliferation in vitro.

In many multicellular eukaryotes, epigenetic mechanisms are

employed in a developmental context to progressively silence

groups of genes no longer required in differentiated cells (Becker

et al., 2016). We found that in a somewhat analogous fashion,

many genes display altered HP1 occupancy between asexually

reproducing and sexually differentiating parasites. Importantly,

since these cell populations were generated from the same
416 Cell Host & Microbe 23, 407–420, March 14, 2018
strain in one continuous in vitro culture experiment, the observed

changes directly reflect the dynamics of heterochromatin re-

structuring associated with the cell fate switch. Besides ap2-g,

a few other early gametocyte-specific genes already showed

reduced HP1 occupancy in stage II/III gametocytes, suggesting

that their derepression occurred alongside that of ap2-g during

sexual commitment or in the subsequent gametocyte ring

stages. On the contrary, a larger group of genes devoid of HP1

in schizonts became heterochromatinized during gametocyte

differentiation. Strikingly, many of these genes encode RBC re-

modeling factors. The most compelling example is related to

the knob structures, parasite-induced aggregates underneath

the erythrocyte membrane that are crucial for the PfEMP1-

dependent adherence of iRBCs to endothelial cells and their

consequent sequestration in the microvasculature (Boddey

and Cowman, 2013). Although stage I to IV gametocytes also

sequester, primarily in the bone marrow (Joice et al., 2014), their

cytoadhesive properties are markedly different and reflected in

the absence of knobs in gametocyte-infected erythrocytes (Sin-

den, 1982; Tiburcio et al., 2013). Our findings suggest that the

mechanism responsible for preventing expression of these

structures in gametocytes is based on HP1-dependent silencing

of kahrp and other genes linked to knob formation. Given that

many additional genes implicated in host cell remodeling also

become associated with HP1 in gametocytes, we speculate

that P. falciparum gametocytes use heterochromatin spreading

as a general mechanism to inactivate host cell remodeling

machinery that is crucial for the survival of asexual parasites

but incompatible with the distinct biology of differentiating

gametocytes.

Qualitative comparison between our data and genome-wide

H3K9me3ChIP-seq profiles obtained fromP. falciparum oocysts

and salivary gland sporozoites (Gomez-Diaz et al., 2017) sug-

gests that further expansion of heterochromatic domains in

these life cycle stages might lead to silencing of yet another

set of genes during development in the mosquito (Figure S5).

Collectively, our findings reveal that distinct changes in hetero-

chromatin organization accompany developmental stage transi-

tions during parasite transmission, reflecting the different

biology, environmental niches, and requirements for rapid adap-

tive responses associated with each life cycle stage. Such

silencing mechanisms must be reversed at some point to enable

re-expression of affected genes during the life cycle stages

wherein their expression is required. Two recent studies pro-

vided evidence that epigenetic reprogramming during mosquito

passage may reset virulence gene expression in P. chabaudi

(Brugat et al., 2017; Spence et al., 2013). Based on our results,

HP1 likely plays a central role in such a process, and it will be

interesting to build on the tools and knowledge generated here

to investigate this intriguing possibility in more detail.

In conclusion, we demonstrate that the HP1-dependent

silencing of genes implicated in antigenic variation, invasion, or

sexual conversion is evolutionarily conserved in malaria para-

sites. We further identify a number of genes that are marked by

HP1 specifically in one or a few species only. These may play

crucial roles in the adaptive control of species- or clade-specific

processes. Our results also reveal that gametocyte differentia-

tion is accompanied by changes in heterochromatin distribution

that potentially affect the expression of more than 100 genes.



This raises the exciting possibility that despite their large evolu-

tionary distance, malaria parasites employ a strategy similar to

that of metazoans to regulate expression of cell-type-specific

genes via heterochromatinization.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-Plasmodium falciparum HP1 Brancucci et al., 2014 N/A

Rabbit polyclonal anti-Plasmodium berghei HP1 This paper N/A

Rabbit polyclonal anti-Plasmodium vivax HP1 This paper N/A

Alexa Fluor 488-conjugated Goat anti-Rabbit IgG ImmunoJackson Cat#111-545-003; RRID: AB_2338046

Alexa Fluor 488-conjugated Goat anti-Rabbit IgG Thermo Fisher Scientific Cat#A-11008; RRID: AB_143165

Bacterial and Virus Strains

E. coli Rosetta 2 (DE3) EMD Millipore Cat#71397-3

Biological Samples

Plasmodium vivax clinical isolates Shoklo Malaria Research Unit,

Thailand

N/A

Plasmodium vivax thin blood smear Swiss TPH / PNGIMR N/A

Chemicals, Peptides, and Recombinant Proteins

Plasmodium berghei HP1 This paper N/A

Plasmodium vivax HP1 This paper N/A

Dynabeads Protein A Thermo Fisher Scientific Cat#10008D

Dynabeads Protein G Thermo Fisher Scientific Cat#10009D

Nycodenz Axis-Shield Cat#1002424

Formaldehyde solution 36.5-38% Sigma-Aldrich Cat#F8775

ProLong Antifade mountant with DAPI Thermo Fisher Scientific Cat#P36931

VECTASHIELD mounting medium containing DAPI Vector Laboratories Cat#H-1200

cOmplete�, Mini Protease Inhibitor Cocktail Sigma-Aldrich Cat#11836153001

Critical Commercial Assays

NEXTflex� ChIP-Seq Barcodes - 24 Bio Scientific Cat#NOVA-514122

KAPA HiFi HotStart ready mix KAPA Biosystems Cat#KM2602

Agencourt AMPure XP Beckman Coulter Cat#A63880

NextSeq 500/550 High Output v2 kit (75 cycles) Illumina Cat#FC-404-2005

Deposited Data

ChIP-Seq data This paper GEO: GSE102695

Pf2004 draft genome assembly Pf3K consortium and the

Wellcome Trust Sanger Institute

ftp://ftp.sanger.ac.uk/pub/project/

pathogens/Plasmodium/falciparum/PF3K/

SecondSetReferenceGenomes/

DraftAnnotation/Pf2004/.

Experimental Models: Cell Lines

Parasite strain: Plasmodium falciparum 3D7 Walliker et al., 1987 Alan Cowman, WEHI, Melbourne, Australia

Parasite strain: Plasmodium falciparum Pf2004/164tdT Brancucci et al., 2015 N/A

Parasite strain: Plasmodium falciparum NF54 Delemarre and van der

Kaay, 1979

Robert Sauerwein, Radboudumc, Nijmegen, NL

Parasite strain: Plasmodium falciparum NF135 Teirlinck et al., 2013 Robert Sauerwein, Radboudumc,

Nijmegen, NL

Parasite strain: Plasmodium knowlesi A1-H.1 Moon et al., 2013 Mike Blackman, Francis Crick Institute,

London, UK

Parasite strain: Plasmodium knowlesi A1-C.1 Moon et al., 2013 Mike Blackman, Francis Crick Institute,

London, UK

Parasite strain: Plasmodium berghei ANKA BEI Resources (MR4) N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Parasite strain: Plasmodium chabaudi chabaudi AS Cross and Langhorne, 1998 Jean Langhorne, Francis Crick Institute,

London

Parasite strain: Plasmodium yoelii yoelii YM BEI Resources (MR4) N/A

Experimental Models: Organisms/Strains

Mouse: BALB/c (female) In Vivos Pte Ltd. Singapore NA

Oligonucleotides

Pb_F: aaaagatttcatatgacaggatcagatg This paper N/A

Pb_R: ttccctcgagcaccgttctatatctaagtc This paper N/A

SUMO_F: tttcatatgcatcatcatcatcatcacgggtcggactcag

aagtcaatc

This paper N/A

SUMO_R: cctaggatccggcgccaccaatctgttctctgtg This paper N/A

Pv_F: actggatccgatgaagagtttgaaatagg This paper N/A

Pv_R: tgtgctcgagtacttaggccgttcggtatcg This paper N/A

Recombinant DNA

pET20b(+) EMD Millipore Cat#69739-3

pET_PbHP1-6xHis This paper N/A

pETA-HS This paper N/A

pETA-HS-PvHP1 This paper N/A

pETA-Strep This paper N/A

pETA_Strep-PvHP1-6xHis This paper N/A

Software and Algorithms

Clustal Omega Sievers et al., 2011 https://www.ebi.ac.uk/Tools/msa/clustalo/

MEGA7 Kumar et al., 2016 http://www.megasoftware.net/

download_form

Olympus DP manager software (v2.2.1.195) Olympus N/A

ImageJ Schneider et al., 2012 https://imagej.net/Downloads

Nikon Elements Advanced Research Nikon N/A

Leica IM1000 software Leica N/A

Fiji Schindelin et al., 2012 https://imagej.net/Fiji

jvenn Bardou et al., 2014 http://jvenn.toulouse.inra.fr/app/index.html

BWA (v0.7.12-r1039) Li and Durbin, 2009 https://insidedna.me/tool_page_assets/

pdf_manual/bwa.pdf

SAMtools (v1.2) Li et al., 2009 http://www.htslib.org/download/

BEDTools (v2.20.1) Quinlan and Hall, 2010 http://bedtools.readthedocs.io/en/latest/

content/installation.html

SignalMap Software v2.0 Roche http://sequencing.roche.com/en/products-

solutions/by-category/target-enrichment/

software/signal-map-software.html

UCSC Genome Browser UCSC Genome Browser https://genome-store.ucsc.edu/

Rstudio (v3.3.2) RStudio https://www.rstudio.com/products/

rstudio/download/

Other

Plasmodipure filters EuroProxima Cat#8011Filter25u

HisTrap HP GE Healthcare Cat#17-5248-01

HiTrap Protein A HP GE Healthcare Cat#17-0403-01

HiTrap NHS activated HP column GE Healthcare Cat#17-0716-01

StrepTrap HP GE Healthcare Cat#28-9136-30

Amicon Ultra Centrifugal Filter 10KDa EMD Millipore Cat#UFC801024

E-Gel Size Select agarose gel Thermo Fisher Scientific Cat#G661012

Non-woven fabric filters ZXBio.net N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Glycerolyte Solution 57 Fenwal Cat#FWL4A7831

BD Vacutainer� Plastic Blood Collection Tubes with

Sodium Heparin: Conventional Stopper

Fisher Scientific Cat#BD367874

BD Vacutainer� Plastic Blood Collection Tubes with

K2EDTA: Tube Stopper

Fisher Scientific Cat#BD367844
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents should be directed to and will be fulfilled by the Lead Contact, Till S. Voss (till.voss@

swisstph.ch).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse Model
Mice used in this study (BALB/c mice; age 6-8 weeks; weight 25-30 g) were maintained in accordance with the NACLAR (National

Advisory Committee for Laboratory Animal Research) guidelines under the Animal & Birds (Care and Use of Animals for Scientific

Purposes) Rules of Singapore with approval from the Institutional Animal Care and Use Committee (IACUC) of Nanyang Technolog-

ical University (NTU) of Singapore (Approval number: ARFSBS/NIE A002). All animals used in this study were obtained from InVivos

Pte Ltd and subsequently housed under SPF conditions at NTU. P. berghei, P. chabaudi and P. yoelii infections for obtaining para-

sites for chromatin extraction were performed on female BALB/c mice (age 6-8 weeks; weight 25-30g). Mice were infected with an

initial inoculum of 5x105 parasites andwere exsanguinated by cardiac puncture when parasitaemia levels reached between 10-20%.

P. falciparum Parasites
P. falciparum parasites were cultured at 37�C at 5% haematocrit based on the original protocol published by Trager and Jensen

(Trager and Jensen, 1978). Growth synchronization was achieved by repeated sorbitol treatments (Lambros and Vanderberg,

1979). 3D7 parasites were cultivated with AB+ human RBCs in RPMI 1640/25 mM Hepes standard culture medium supplemented

with 0.5%Albumax II. NF54 and NF135 parasites were cultivated with O+ human RBCs in RPMI 1640/25mMHepes standard culture

medium supplementedwith 10%human serum. Pf2004/164tdTomparasites (Brancucci et al., 2015) were cultivatedwith AB+ human

RBCs in RPMI 1640/25 mM Hepes standard culture medium supplemented with 10 % human serum. Pf2004/164tdTom gameto-

cytes were generated by inducing sexual commitment as described (Brancucci et al., 2015). After re-invasion cultures were treated

with 50mM N-acetylglucosamine (Fivelman et al., 2007) for three consecutive days to eliminate asexual parasites.

P. knowlesi Parasites
P. knowlesi A1-H.1 parasites were grown at 37�C in O+ human RBCs obtained from the United Kingdom National Blood Transfusion

Service. P. knowlesi A1-C.1 parasites were grown in M. fascicularis blood provided by NIBSC (UK), which was collected by venous

puncture into K2 EDTA BD Vacutainers (Fisher Scientific) as described previously (Moon et al., 2013). Samples of M. fascicularis

blood used for parasite culture were provided by the National Institute for Biological Standards and Control. The rationale and pro-

cedures for venepuncture and blood sample collection were reviewed by the local Animal Welfare and Ethical Review Body (the Insti-

tutional Review Board) of the National Institute for Biological Standards and Control and performed under licence (PPL70/8506)

granted by the United Kingdom Home Office as governed by United Kingdom law under the Animals (Scientific Procedures) Act

1986. Animals were handled in strict accordance with the ‘‘Code of Practice Part 1 for the housing and care of animals (21/03/

05)’’ available at https://www.gov.uk/research-and-testing-using-animals. The work also met the National Centre for the Replace-

ment Refinement and Reduction of Animals in Research (NC3Rs) guidelines on primate accommodation, care, and use (https://

www.nc3rs.org.uk/non-human-primate-accommodation-care-and-use), which exceed the legal minimum standards required by

the United Kingdom Animals (Scientific Procedures) Act 1986, associated Codes of Practice, and the US Institute for Laboratory

Animal Research Guide. Parasite cultures were synchronised by centrifugation through a density cushion of Nycodenz (Axis-Shield)

as previously described (Moon et al., 2013).

P. vivax Parasites
The clinical P. vivax isolates examined in this study were collected under the following approved ethical guidelines and protocols:

OXTREC 45-09 and OXTREC 17-11 (Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK),

MUTM 2008-215 from the Ethics committee of the Faculty of Tropical Medicine (Mahidol University, Bangkok, Thailand) and

MRAC No. 16.01 from the Medical Research Advisory Committee of Papua New Guinea. To obtain P. vivax parasites for chromatin

extraction eight clinical isolates were collected from malaria patients attending clinics run by the Shoklo Malaria Research Unit, Mae
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Sot, Thailand. Five milliliters of whole blood were collected in lithium heparin collection tubes by venepuncture from each patient

using Sodium Heparin BD Vacutainers (Fisher Scientific). After leukocyte depletion using non-woven fabric filters (ZXBio.net) these

samples were cryopreserved in glycerolyte 57 solution (Fenwal) and stored in liquid nitrogen (Borlon et al., 2012). Frozen samples

were thawed using a series of NaCl gradients (12%, 1.6% and 0.9%) and matured ex vivo for 40 hours as described (Borlon

et al., 2012; Russell et al., 2011).

METHOD DETAILS

P. falciparum Sample Collection and Chromatin Preparation
Chromatin from 3D7 ring stages (8-16 hpi), trophozoites (32-30 hpi) or schizonts (40-48 hpi) (approximately 0.75-1.5x109 parasites

each) and from Pf2004/T164dTom schizonts, stage II/III gametocytes (day four after re-invasion) or stage IV/V gametocytes (day nine

after re-invasion) (approximately 2x108 parasites each) was prepared by crosslinking cultures with 1% formaldehyde (Sigma-Aldrich)

for 15min at 37�C. Crosslinking reactions were quenched by 0.125M glycine. Nuclei were isolated by releasing parasites from iRBCs

using 0.05% saponin followed by lysis in CLB (20 mM Hepes, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 0.65% NP-40, 1mM DTT, 1x

protease inhibitor (Sigma-Adrich), pH 7.9). Nuclei were washed and snap-frozen in CLB supplemented with 50% glycerol. Chromatin

from NF54 and NF135 schizont stages (approximately 2-4x109 parasites each) was prepared by passing the cultures through Plas-

modipure filters (EuroProxima) to remove white blood cells prior to formaldehyde crosslinking for 10 min at 37�C and quenching in

0.125 M glycine. Nuclei were isolated by releasing parasites from iRBCs using 0.05% saponin followed by gentle homogenisation

(pestle B, 15 strokes) in CLB2 (10 mM Tris-HCl, 3 mM MgCl2, 0.2% NP40, 1x protease inhibitor (Sigma-Adrich), pH 8.0) and centri-

fugation through a 0.25 M sucrose cushion (in CLB2) at 2000 rpm for 10 min at 4�C. Nuclei were snap-frozen in CLB2 supplemented

with 20% glycerol. Frozen nuclei were thawed and resuspended in sonication buffer (50mM Tris-HCl, 1% SDS, 10mM EDTA, 1x pro-

tease inhibitor (Sigma-Adrich), pH 8.0) and sonicated for 20-24 cycles of 30 sec ON/30 sec OFF (setting high, BioruptorTM Next Gen,

Diagenode). Chromatin fragment sizes ranged from 100-600 bp as determined by de-crosslinking a 50 ml aliquot and running the

purified DNA on a 1% agarose gel.

P. knowlesi Sample Collection and Chromatin Preparation
Cultures containing a schizont parasitaemia of around 5%were passed through Plasmodipure filters (EuroProxima) to remove white

blood cells prior to crosslinking for 10 min at 37�C in 1% formaldehyde (Sigma-Aldrich) and quenching in 0.125M glycine. Red blood

cells were removed by lysis on ice for 10 min with 0.15% saponin/PBS before washing the pellet in PBS and snap-freezing the para-

site pellets in liquid nitrogen. Nuclei were isolated by lysis in CLB, washed and aliquots corresponding to approximately 1x109 nuclei

were snap-frozen in CLB supplemented with 50% glycerol. Preparation of sheared chromatin was performed as described above for

P. falciparum.

P. berghei, P. chabaudi and P. yoelii Sample Collection and Chromatin Preparation
For each of the three parasite species, whole blood of infectedmice containing approximately 5x109 schizonts (threemice forP. yoelii

yoeliiYM, fourmice forP. chabaudi chabaudi AS, fivemice forP. bergheiANKA) was diluted in standardP. falciparum culturemedium

and passed through a Plasmodipure filter (EuroProxima) to remove white blood cells. The purified RBCs were collected by centrifu-

gation at 2’000 rpm for 5 min, resuspended in 30 ml culture medium and crosslinked at 37�C for 10 min in presence of 1% formal-

dehyde (Sigma-Aldrich). Crosslinking reactions were quenched by 0.125 M glycine. The crosslinked RBCs suspension was split into

three equal aliquots, centrifuged at 2’000 rpm for 5 min, supernatants were removed and the RBC pellets snap-frozen in liquid nitro-

gen. Nuclei were isolated by releasing parasites from iRBCs using 0.05%saponin followed by lysis in CLB (20mMHepes, 10mMKCl,

1 mM EDTA, 1 mM EGTA, 0.65% NP-40, 1mM DTT, 1x protease inhibitor (Sigma-Adrich), pH 7.9). Again, nuclei were washed and

aliquots corresponding to approximately 1x109 nuclei were snap-frozen in CLB supplemented with 50% glycerol. Preparation of

sheared chromatin was performed as described above for P. falciparum.

P. vivax Sample Collection and Chromatin Preparation
The P. vivax ex vivo schizont cultures were crosslinked at 37�C for 10 min in presence of 1% formaldehyde (Sigma-Aldrich) and sub-

sequently the reactions were quenched by 0.125 M glycine. The crosslinked RBCs were centrifuged at 200 g for 5 min, supernatants

were removed and the RBC pellets snap-frozen in liquid nitrogen. The eight samples were thawed and pooled and nuclei isolated by

releasing parasites from iRBCs using 0.05% saponin followed by lysis in CLB. Nuclei were washed and snap-frozen in CLB supple-

mented with 50% glycerol. Preparation of sheared chromatin was performed as described above for P. falciparum.

Phylogenetic Analysis of Plasmodium HP1 Orthologs
Protein sequences of Plasmodium HP1 orthologs were downloaded from PlasmoDB v33 and used to perform a multiple sequence

alignment using Clustal Omega (Sievers et al., 2011) with default parameters. Phylogenetic tree construction was done with MEGA7

(Kumar et al., 2016) using the Neighbor-joining method and 1’000 bootstrap replicates.
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Generation and Affinity Purification of a-PbHP1 and a-PvHP1 Antibodies
All recombinant proteins were expressed in Rosetta2(DE3) cells (EMD Millipore) using auto-induction (Studier, 2005). The sequence

encoding PbHP1 was amplified from gDNA using primers Pb_F (aaaagatttcatatgacaggatcagatg) and Pb_R (ttccctcgagcaccgttcta

tatctaagtc) and cloned into pET20b(+) (EMD Millipore) using NdeI and XhoI restriction sites in order to express PbHP1 fused to a

C-terminal 6xHis tag (pET_PbHP1-6xHis). Recombinant PbHP1-6xHis was purified using aHisTrapHP column (GEHealthcare) using

buffer NiB (50 mM H3PO4, 0.5 M NaCl, 20 mM imidazole, pH 7.4) supplemented with 8 M urea for lysis, binding and washing, and

buffer NiE (50mM H3PO4, 0.5 M NaCl, 225 mM imidazole, pH 7.4) containing 8 M urea for elution. The elution was diluted 1:4 with

H2O and the eluted proteins were precipitated with trichloroacetic acid (TCA). PvHP1 was expressed as an N-terminally tagged

6xHis-SUMO fusion protein (HS-PvHP1). The parental expression vector pETA-HSwas generated by introducing a sequence encod-

ing a fusion tag consisting of a 6xHis stretch followed by Saccharomyces cerevisiae SUMO, amplified from gDNA using primers

SUMO_F (tttcatatgcatcatcatcatcatcacgggtcggactcagaagtcaatc) and SUMO_R (cctaggatccggcgccaccaatctgttctctgtg) between

the NdeI and BamHI sites of pET20(b)+ (EMD Millipore), yielding a vector similar to the one described by Malakhov and colleagues

(Malakhov et al., 2004). The pvhp1 insert was cloned into pETA-HS by ligating a BamHI/XhoI-digested PCR product amplified from

gDNA using primers Pv_F (actggatccgatgaagagtttgaaatagg) and Pv_R (tgtgctcgagtacttaggccgttcggtatcg) (pETA-HS-PvHP1). HS-

PvHP1 was purified using a HisTrap HP column (GE Healthcare) and buffers NiB for lysis, binding and washing, and buffer NiE for

elution. The elution was subject to buffer exchange with NiB supplemented with 1 mM Tris-(2-carboxyethyl)-phosphin (TCEP) and

the HS-PvHP1 fusion protein was digested using recombinant SUMO protease (L403-K621 of S. cerevisia ULP1; GB1-ULP1-

6xHis). The cleaved tag and SUMO protease were subtracted using a HisTrap HP column (GE Healthcare) and the purified untagged

PvHP1 protein was precipitated with TCA.

Purified recombinant PbHP1-6xHis and untagged PvHP1 were used to immunize rabbits (Pacific Immunology). Total rabbit IgG

from anti-PbHP1 and anti-PvHP1 immune sera were purified using HiTrap Protein Protein A HP columns (GE Healthcare) using a

mild arginine elution method similar to the one described by Arakawa and colleagues (Arakawa et al., 2004), with the exception

that a linear combined pH and arginine gradient elution was used instead of stepwise elution. Rabbit sera were diluted 1:3 using

buffer IgGA (750mM L-arginine, 150mMH3PO4, 150mM citric acid, pH 7.3), bound to 5ml HiTrap Protein A HP columns (GE Health-

care) and washed with five column volumes (CVs) of buffer IgGA. Antibodies were eluted using a linear gradient (eight CVs) of buffers

IgGA to IgGB (2 M L-arginine, 150 mM H3PO4, 150 mM citric acid, adjusted to pH 3.7 using HCl). The antibodies eluted in a symmet-

rical peak (maximum at 1.4 M arginine and pH 5). Purified antibodies were subject to buffer exchange with PBS.

Affinity purification of a-PbHP1 antibodies was done as previously described for a-PfHP1 antibodies (Brancucci et al., 2014) with

the exception that the PbHP1-6xHis antigen was bound to the nickel column in buffer NiB containing 2 M urea. For the PvHP1 an-

tigen, we first generated the parental pETA_Strep vector facilitating expression of N-terminally Strep(II)-tagged and C-terminally

6xHis-tagged fusion proteins by replacing the NdeI/BamHI fragment in pET20b(+) with an annealed double-stranded oligonucleo-

tide (Strep_F (tatggctagctggagccacccgcagttcgaaaaag) and Strep_R (gatcctttttcgaactgcgggtggctccagctagcca)) encoding Met-Ala-

Ser-Strep(II). Next, the same PCR product that was used to generate HS_PvHP1 (see above) was cloned into the pETA_Strep vector

using BamHI and XhoI to obtain pETA_Strep-PvHP1-6xHis. The Strep(II)-PvHP1-6xHis fusion protein was purified using a HisTrap

HP column (GE Healthcare) and the same buffers as used for purification of HS-PvHP1 (see above) followed by a StrepTrap HP

column (GE Healthcare) using buffer NiB containing 1 mM EDTA for washing or 2.5 mM desthiobiotin for elution. The purified protein

was subject to buffer exchange with coupling buffer (0.2 M NaHCO3, 0.5 M NaCl, pH 8.3). Next, the protein was coupled to a

HisTrap NHS-activated HP column (GE Healthcare) following the supplier’s instructions. a-PvHP1 IgG was diluted 1:5 in buffer

IgGA and bound to the Strep(II)-PvHP1-6xHis column. The column was washed with 20 CVs of buffer IgGA and eluted with buffer

IgGB. Both, a-PvHP1 and a-PbHP1 antibodies were finally subject to buffer exchange with PGS (20 mM H3PO4, 30 mM KOH, 25%

glycerol, 250 mM Na2SO4, pH 6.8) and concentrated to 0.4-0.7 mg/ml using an Amicon Ultra spin filter with a 10K cutoff (EMD

Millipore).

Fluorescence Microscopy
IFAs for P. falciparum were performed as described previously (Brancucci et al., 2014). IFAs for P. berghei, P. chabaudi and P. yoelii

were performed with acetone:methanol (9:1)-fixed cells using rabbit a-PbHP1 (1:250) and Alexa Fluor 488-conjugated a-rabbit IgG

(1:500) (ImmunoJackson). Slides were viewed under Olympus IX71 fluorescence microscope using a 100x oil immersion objective

and equipped with an Olympus DP30BW camera. Images were acquired via the Olympus DP manager software (v2.2.1.195) and

processed using ImageJ (v1.440) (Schneider et al., 2012). IFAs for P. knowlesi were performed using blood smears fixed with 4%

paraformaldehyde for 30 min followed by three washes in PBS and permeabilisation in 0.1% Triton-X100 for 10 min. Slides were

blocked overnight at 4�C in 3% BSA/PBS and then labelled with rabbit a-PvHP1 (1:600) and Alexa Fluor 488-conjugated a-rabbit

IgG (1:5’000) (Thermo Fisher Scientific). The smear wasmounted in ProLong Antifade mountant with DAPI (Thermo Fisher Scientific).

Slides were viewed with a Nikon Ti E inverted microscope using a 100x oil immersion objective and imaged with an ORCA Flash 4.0

CMOS camera (Hamamatsu). Images were acquired and processed using the Nikon Elements Advanced Research software pack-

age. IFAs for P. vivax were performed using methanol-fixed thin blood smears. Slides were blocked using 3% BSA/PBS and then

labeled with a-PvHP1 (1:500) and Alexa Fluor 488- conjugated a-rabbit IgG (1:500) (Thermo Fisher Scientific) antibodies in 3%

BSA/PBS. Slides were mounted using VECTASHIELD mounting medium containing DAPI (Vector Laboratories). Images were taken
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at 100-fold magnification on a Leica DM 5000B microscope with a Leica DFC 345 FX camera, acquired via the Leica IM1000 soft-

ware, and processed using Fiji (Schindelin et al., 2012). For each experiment, images were acquired and processed with identical

settings.

Western Blot
P. berghei, P. chabaudi and P. yoelii schizonts were enriched using a 50-60% Histodenze (Sigma-Aldrich) gradient. Parasites were

released from iRBCs by saponin lysis, resuspended in Urea extraction buffer (EMDMillipore) and separated by SDS-PAGE. Proteins

were detected using rabbit a-PbHP1 (1:2’000) antibodies. P. knowlesi A1-H.1 schizonts were enriched on a density cushion of 55%

Nycodenz (Axis-Shield) stock solution (27.6% (wt/vol) Nycodenz in 10 mM Hepes, pH 7.0) in RPMI-1640 medium. RBCs were lysed

using 0.15% saponin/PBS and the resultant parasite pellet was diluted 1:100 in Urea extraction buffer (40 mM Tris-HCl, 1 mM EDTA,

8 M Urea, 5% SDS, 1x protease inhibitor cocktail (Sigma-Adrich), 1% b-mercaptoethanol), mixed with SDS sample buffer and sepa-

rated by SDS-PAGE alongside a similarly treated uninfected RBC control. PkHP1 was detected with rabbit a-PvHP1 anti-

bodies (1:5’000).

Chromatin Immunoprecipitation
For each ChIP reaction, sonicated chromatin containing 500 ng of DNA was incubated in incubation buffer (0.75% SDS, 5% Triton-

X100, 750 mM NaCl, 5 mM EDTA, 2.5 mM EGTA, 100 mM Hepes, pH 7.4) with either 1 mg rabbit a-PfHP1 (for P. falciparum), 1 mg

rabbit a-PvHP1 (for P. vivax and P. knowlesi) or 1 mg rabbit a-PbHP1 (for P. berghei, P. chaubaudi and P. yoelii) as well as 10 ml protA

and 10 ml protG Dynabeads suspension (Thermo Fisher Scientific).

For each sample four ChIP reactions were prepared and incubated overnight at 4�Cwhile rotating. Beads were washed twice with

wash buffer 1 (0.1% SDS, 0.1% DOC, 1% Triton-X100, 150 mMNaCl, 1 mM EDTA, 0.5 mM EGTA, 20 mMHepes, pH 7.4), once with

wash buffer 2 (0.1% SDS, 0.1% DOC, 1% Triton-X100, 500 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 20 mM Hepes, pH 7.4), once

with wash buffer 3 (250 mM LiCl, 0.5% DOC, 0.5% NP-40, 1 mM EDTA, 0.5 mM EGTA, 20 mM Hepes, pH 7.4) and twice with

wash buffer 4 (1 mM EDTA, 0.5 mM EGTA, 20 mM Hepes, pH 7.4). Each wash was performed for 5 min at 4�C while rotating. Sub-

sequently, immunoprecipitated chromatin was eluted in elution buffer (1% SDS, 0.1M NaHCO3) at room temperature. The eluted

chromatin samples and the corresponding input samples (sonicated input chromatin containing 500 ng DNA) were de-crosslinked

in 1% SDS/0.1 M NaHCO3/1 M NaCl at 45�C overnight while shaking. For each parasite strain or species the separate ChIP samples

were combined and the DNA was purified using QIAquick MinElute PCR columns (Qiagen).

High-Throughput Sequencing
For each sequencing library 2-10 ng of ChIP or input DNA were end-repaired, extended with 30 A-overhangs and ligated to barcoded

NextFlex adapters (Bio Scientific) as described previously (Hoeijmakers et al., 2011). Libraries were amplified (98�C for 2 min; four

cycles 98�C for 20 sec, 62�C for 3 min; 62�C for 5 min) using KAPA HiFi HotStart ready mix (KAPA Biosystems) and NextFlex primer

mix (Bio Scientific) as described (Kensche et al., 2016). 225-325 bp fragments (including the 125 bp NextFlex adapter) were size-

selected using a 2% E-Gel Size Select agarose gel (Thermo Fisher Scientific) and amplified by PCR for eight or ten cycles (Table

S7) under the same condition as described above. Library purification and removal of adapter dimers was performed with Agencourt

AMPure XP beads in a 1:1 library:beads ratio (BeckmanCoulter). ChIP-seq libraries were sequenced for 75 bp single-end reads using

the NextSeq 500/550 High Output v2 kit (Illumina) on the Illumina NextSeq 500 system.

QUANTIFICATION AND STATISTICAL ANALYSIS

High-Throughput Sequencing Data Analysis
Using BWA samse (v0.7.12-r1039) (Li and Durbin, 2009) sequencing reads were mapped against the respective reference genomes

available on PlasmoDB v26, namely P. berghei ANKA, P. chabaudi chabaudi, P. yoelii yoelii YM, P. falciparum 3D7, P. knowlesiH and

P. vivax P01 (PlasmoDB v29). Reads from the P. falciparum Pf2004 ChIP-seq libraries were additionally mapped against a Pf2004

genome assembly, which was obtained after long-read PacBio sequencing in the framework of the Pf3K reference project.

Mapped readswere filtered tomapping qualityR15 (SAMtools v1.2) (Li et al., 2009) and only uniquelymapped reads (3.4-22million

reads for a-HP1 ChIP samples and 6.5-55 million reads for input samples) were used for further analysis (Table S7). ChIP-seq data

were visualized in the UCSCGenome browser (https://genome-store.ucsc.edu/). All libraries were normalized to the number of map-

ped reads per million (RPM) and bedgraph files were generated using BEDtools (v2.20.1) (Quinlan and Hall, 2010). For log2 ratio

tracks a-HP1 ChIP values were divided by input values and log2-transformed using BEDtools (v2.20.1) (Quinlan and Hall, 2010).

Within the UCSC genome browser tracks were smoothened and the windowing function was set as ‘mean’.

To calculate the HP1 coverage for individual genes, tags were counted in a 1000 bp window (ATG ± 500 bp) for each coding

sequence and offset by +1 to avoid division by zero while calculating fold changes in coverage. a-HP1 ChIP-seq and input tag counts

were normalized to the number of reads per kb per million mapped reads (RPKM). ChIP-seq enrichment values were calculated as

a-HP1 ChIP [RPKM]/input [RPKM]. Genes encoded by the mitochondrial or apicoplast genomes and nuclear genes with low mapp-

ability (input RPKM < 5) were excluded from downstream analysis.
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To visualize the genome-wide HP1 coverage in schizont stages of the six Plasmodium species (P. berghei, P. yoelii, P. chaubaudi,

P. knowlesi, P. vivax, P. falciparum) the respective reference genomes were divided into 1000 bp windows using BEDtools (v2.20.1)

(Quinlan and Hall, 2010). For each window ChIP-seq enrichment values were calculated as described above, log2-transformed and

visualized using the software SignalMap v2.0 (www.sequencing.roche.com). Windows with less than five tag counts in the ChIP-seq

and/or the input sample were set to ’0’ and defined as regions with low mappablity. To identify and compare the sets of heterochro-

matic genes across the six Plasmodium species ChIP-seq enrichment values were calculated and assigned to either a ‘heterochro-

matic’ or ‘euchromatic’ compartment. To do so, we fitted a bivariate Gaussian mixture model to the data and calculated the

probabilities (p) for genes to belong to either one of the two compartments using the modelling tool ‘normalmixEM‘ from the R pack-

age ‘mixtools’. For further analysis genes with p > 0.99999 for the ‘heterochromatic’ compartment were considered high confidence

heterochromatic genes. Genes with 0.99999 > p > 0.95 were considered potential heterochromatic genes and genes with p < 0.95

were placed in the ‘euchromatic’ compartment. To look for orthologs and syntenic orthologs, high confidence heterochromatic

genes (p > 0.99999) for each species were imputed into PlasmoDB v33. For instance, the orthologs (syntenic/non-syntenic) for

P. falciparum heterochromatic genes (403 genes) were transformed into orthologs of P. berghei ANKA, P. yoelii yoelii YM, P. chau-

baudi chabaudi, P. knowlesi strain H and P. vivax P01 using the function ‘transform by orthology’ in PlasmoDB. Similarly, the ortho-

logs for heterochromatic genes in P. vivax (834 genes), P. knowlesi (355 genes), P. berghei (192 genes), P. chabaudi (369 genes) and

P. yoelii (907 genes) were individually transformed into orthologs of the five other Plasmodium species. Ortholog sets (syntenic/non-

syntenic) among the species were identified using jvenn (Bardou et al., 2014) and assigned according to the species identifier pf, pv,

pk, pb, pc or py (Tables S1 and S2).

To investigate the association between heterochromatic region and distribution of kir and SICAvar genes as well as interstitial telo-

mere repeat sequences (ITSs) PkHP1 coverage in P. knowlesi schizont stages was depicted as described above. Coding sequences

of kir/kir-like and SICAvar genes were depicted according to their genomic coordinates within the P. knowlesi H genome (PlasmoDB

v26). ITSs were identified by searching the P. knowlesi genome for occurrences of GGGTTTA or GGGTTCA repeats on both strands

using regular expression. The number of these sequences were counted at every 100 bpwindow andwindowswith three ormore hits

were considered (imperfect repeats with mismatches were not considered). To compare PkHP1 occupancy between two clones of

P. knowlesi (A1-H.1 and A1-C.1) the ratio between PkHP1 occupancy values (ChIP/Input) were calculated for each gene. Based on

visual inspection of the UCSCGenome browser tracks we considered 2.5-fold difference as a marked and likely influential change in

in PkHP1 occupancy. Genes with low mappability (input RPKM < 5) in at least one of the clones were excluded from downstream

analyses.

To allow direct comparison of HP1 gene coverage across different P. falciparum strains (3D7, Pf2004, NF135 and NF54) PfHP1

ChIP-seq reads from all four strains were mapped against the P. falciparum 3D7 reference genome (PlasmoDB v26). ChIP-seq reads

from strain Pf2004 schizonts were additionally mapped against the Pf2004 reference genome (Table S7). Note that although match-

ing reference genomes do exist for NF54 and NF135 (Plas_falc_NF54_v1 and Plas_falc_NF135_5_C10_v1; http://protists.ensembl.

org) the assembly and annotation of these reference genomes are fragmented and not sufficiently informative for analysis of hetero-

chromatin organisation. Genes with low mappability (input RPKM < 5) in at least one of the strains were excluded from downstream

analyses. For the remaining genes ChIP-seq enrichment values were z-score transformed, k-means clustered and depicted as heat-

map using the R package ‘pheatmap’. To visualize the averageHP1 occupancy for all strains investigated in this study (Figure 4B), the

3D7 reference genome was divided into 1000 bp windows using BEDtools (v2.20.1) (Quinlan and Hall, 2010). For each window ChIP-

seq enrichment values were calculated as described above, z-score transformed, averaged across the strains and visualized using

the software SignalMap v2.0 (www.sequencing.roche.com). Coding sequences of the genes in k-means clusters 5 to 11 were de-

picted according to their location within the P. falciparum 3D7 genome (PlasmoDB v26).

For the comparison of intra-erythrocytic stages, ChIP-seq enrichment values were calculated using ChIP RPKM values of ring

stages (8-16 hpi), trophozoites (24-32 hpi) or schizonts (40-48 hpi) and input RPKM values obtained from the schizont sample.

The relation between PfHP1 gene coverage and transcript abundance was visualized by sorting PfHP1 ChIP-seq enrichment values

for each gene in schizont stages from high to low, plotted against the corresponding transcript abundance value (RPKM). For the

latter, directional RNA-seq data from eight intra-erythrocytic stages (Kensche et al., 2016) were aligned against the annotated P. fal-

ciparum 3D7 transcriptome (PlasmoDB v26) and filtered for uniquely mapped reads and mapping quality R 15. Reads were sepa-

rated according to the strand they mapped to (sense strand FLAG16; antisense strand FLAG0). Reads aligning to the sense strand

were used for further analysis. For each transcript (excludingmitochondrial RNA and apicoplast RNA) tags were counted, offset by +1

and normalized to the number of reads per kb per million mapped reads. For each gene the maximum transcript abundance value

(RPKM) observed during intra-erythrocytic development was plotted in the scatter plot and var genes as well as genes displaying

clonally variant expression (Rovira-Graells et al., 2012) were specifically highlighted.

To assess differences in PfHP1 occupancy between Pf2004 schizonts, stage II/III gametocytes and stage IV/V gametocytes ChIP-

seq reads were mapped against the P. falciparum 3D7 genome (PlasmoDB v26) and the P. falciparum Pf2004 reference genome

(Table S7). Genes with low mappability (input RPKM < 5) in at least one of the stages were excluded from downstream analysis.

For the remaining genes ChIP-seq enrichment values were z-score transformed, k-means clustered and depicted as a heatmap us-

ing the R package ‘pheatmap’. To visualize the genome-wide PfHP1 occupancy for schizont stages and stage IV/V gametocytes

(Figure 6C) the P. falciparum 3D7 reference genome was divided into 1000 bp windows using BEDtools (v2.20.1) (Quinlan and

Hall, 2010). For each window ChIP-seq enrichment values were calculated as described above, z-score transformed and visualized

using the software SignalMap v2.0 (www.sequencing.roche.com). Coding sequences of the genes in k-means clusters 5 and 6 to 8
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were depicted according to their location within the P. falciparum 3D7 genome (PlasmoDB v26). Additionally, we visually compared

our Pf2004 PfHP1 ChIP-seq data with the midgut oocyst and salivary gland sporozoite H3K9me3 ChIP-seq datasets generated by

Gómez-Dı́az and colleagues (Gomez-Diaz et al., 2017) using the UCSC genome browser (https://genome-store.ucsc.edu/). Midgut

oocyst and salivary gland sporozoite H3K9me3 ChIP-seq and input data (GEO accession numbers GSM1981878, GSM1981880,

GSM1981883, GSM1981885) were aligned to the P. falciparum 3D7 reference genome (PlasmoDB v26) (Table S7) and processed

as described above to generate bedgraph log2 H3K9me3-ChIP/Input ratio files.

DATA AND SOFTWARE AVAILABILITY

The accession number for the ChIP-seq data reported in this paper is GEO: GSE102695. The sequence and annotation of the

Pf2004 genome is available at ftp://ftp.sanger.ac.uk/pub/project/pathogens/Plasmodium/falciparum/PF3K/SecondSetReference

Genomes/DraftAnnotation/Pf2004/.
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