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Abstract We investigate the social value of medical interventions at the end of life that

tend to have a high cost-benefit ratio. We model the optimal allocation of health resources

across a continuum of diseases that differ by severity and treatment options, and extend it

to allow for learning spillovers between treatments. We calibrate our model to admissions

to intensive care units in Switzerland. Cancer treatments associated with learning spillovers

that decrease the mortality for non-cancer patients by 1 percentage point justify a cost-

benefit ratio per additional life-year of 1.78.

Keywords: End of life; allocation of health resources; learning spillovers.

JEL Classification Numbers: I10.

∗We thank Stefan Felder, Florian Kuhlmey, Christian Rutzer, Stephanie Armbruster, Brenda Gannon
and the participants of the 1st EUHEA PhD-supervisor conference in Manchester for valuable comments.
†University of Basel, Faculty of Business and Economics, Peter-Merian-Weg 6, 4002 Basel, Switzerland.

E-mail: matthias.minke@unibas.ch and b.hintermann@unibas.ch



1 Introduction

Expenditures for medical treatments are not evenly distributed over patients’ lives, but

are concentrated at the beginning and the end.1 Given the increase in health care expendi-

tures (HCE) towards the end of life, some authors suspect a misallocation of resources that

would otherwise be available for alternative uses within or outside the health care sector

[Leaf, 1977; Ginzberg, 1980; Lundberg, 1993]. This claim is based on a comparison of the

costs of terminal care and the monetized benefits of a life extension implied by the value of

a statistical life year (VSLY).2

In a recent article, French et al. [2017] argue against this view of wasteful spending. They

confirm the high health costs at the end of life, but find that these costs accrue in the last

several years of life (rather than the last) and are not due to expensive but futile efforts that

prolong life by a few weeks, but the treatment of chronic diseases.

There are also theoretical arguments for why health expenditure at the end of life is not

necessarily too high. For one, it is not clear whether the VSLY is a useful measure to value a

life extension at the end of life, as the valuation of a life year may depend on the remaining life

expectancy [Hammitt, 2007]. Furthermore, the empirical literature defines end-of-life costs

those that accrue during a given time period before death. One should be cautious about

making normative inferences based on end-of-life HCE computed from this ex-post point of

view, because a significant share of these expenditures may be associated with treatments

that, on average, are quite effective.3 In contrast, if we think about end-of-life HCE from an

1In the USA, 25-29% of Medicare expenditures occur during the patients’ final year [Lubitz and Riley,
1993; Riley and Lubitz, 2010; Hogan et al., 2001] Polder et al. [2006] find that approximately 10% of health
care expenditures over the whole life cycle take place in the last year of life in the Netherlands. Zweifel et al.
[1999] report decedent-survivor cost ratios for all insured persons in Switzerland between 5.3 and 10.6, with
an upsurge in HCE in patients’ final months of life. In general, lifetime health expenditures typically follow
a U-shaped curve; see, e.g., Alemayehu and Warner [2004]).

2Using data of kidney dialysis patients, Lee et al. [2009] estimate costs as ranging between USD 65,000
and USD 490,000 per quality-adjusted life year, depending on the patients’ individual characteristics, with
an average value of USD 129,000 for one life year in perfect health. Depending on the type of intervention,
the costs of end-of-life care can be far greater.

3If a treatment has an 80%-chance of averting death, the costs associated with the remaining 20% will be
labeled “end-of-life” from an ex-post-view, even though this is clearly not a treatment that would be labeled
futile considering the survival rate. Alternatively, consider a two-step process that consists of diagnosis
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ex-ante view, which is more appropriate in the context of a cost-benefit analysis, we would

define those expenditures as “end-of-life” that are associated with treatments which do not

significantly alter survival prospects or wellbeing.4

In this paper, we provide an additional argument for why the wasteful-spending view

may not be correct. We develop a theoretical model in which a social planner allocates

resources across consumption and health. To our knowledge, our model is the first to allow

for heterogeneous treatment options and a continuum of health states across the population.

This yields an expression for the marginal cost of saving a statistical life year (MCSLY) from

an ex-ante perspective, which in the baseline model is equalized across treatment options

and is equal to the VSLY.

We propose learning externalities as a rationale for why the benefits from seemingly futile

medical treatments may exceed the VSLY associated with the treated patients themselves.

We posit that learning externalities arise from the treatment of diseases that are currently

not well understood and thus cannot be cured, but which constitute the medical frontier.

By applying health care in (currently) hopeless cases, practitioners learn and eventually,

via incremental improvements, can treat a condition sufficiently, thus shifting the medical

frontier outwards.

Our model is motivated by the observation that life expectancy has increased significantly

over time, and that technological progress has been a major cause underlying this increase

[Cutler, 2008; Lakdawalla et al., 2010]. However, because we all die at some point, a decrease

in the mortality rate associated with a particular disease leads to a shift in the cause of death

to other diseases (or different stages of the same disease) over time. We capture this dynamic

feature in a static framework by assuming that the treatment effectiveness of the end-of-life

disease group, the composition of which will evolve over time, remains low regardless of the

followed by treatment. Diagnosis involves acquiring costly information about a patient’s survival prospect.
Even if hopeless cases are ultimately not treated, the costs of determining that they are hopeless will count
towards end-of-life HCE in an ex-post context.

4For a discussion on the cost of dying, the distinction between a retrospective and a prospective view on
these costs and an empirical review of health care utilization in the last year of life, see Scitovsky [1994].
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technical progress in the rest of the health sector, and that this technological progress is

partly driven by the application of treatments in the end-of-life sector.

Our model formulation is also consistent with a situation where learning in the context of

one disease may produce knowledge that turns out to be useful in the treatment of others. For

example, Gelijns and Rosenberg [1994] report positive learning spillovers from using of beta

blockers in cardiovascular conditions that improved the treatment effectiveness in more than

twenty other diseases. Romley et al. [2011] study the effect of hospital spending on inpatient

mortality in California from 1999 to 2008 and find a significant negative relationship between

end-of-life expenditures and overall hospital mortality for six major diagnosis groups, thus

providing indirect evidence for the existence of learning spillovers.

There are other reasons why a cost-benefit analysis of end-of-life HCE based on a sim-

ple comparison between treatment costs and VSLY may be misleading. In a paper that is

conceptually related to ours, Philipson et al. [2010] study the option value inherent in a treat-

ment that reflects the probability of surviving until a new medical treatment is innovated,

which may give rise to risk-loving behavior with treatment decisions at the end of life. The

total value of terminal treatment for HIV patients, including the ”value of hope”, was found

to be well above the value implied by standard VSLY estimates. Similarly, Wessling [2013]

finds experimental support for risk-loving behavior at the end of life if there is a positive

exogenous chance of surviving until a better cure is developed.

We illustrate our model using health care data from Switzerland. We focus on admis-

sions to intensive care units (ICUs) and separate diseases into cancer (which constitutes our

“end-of-life” sector) vs. all other diseases. We calibrate the free model parameters using

ICU admission rates, survival rates, treatment costs, overall health expenditure, aggregate

income and an estimate for the VSLY from the literature. The model is solved for different

magnitudes of learning spillovers that arise from the treatment of cancer cases. We find

that the presence of learning spillovers that lead to a decrease in non-cancer mortality by

one percentage point (relative to the situation without spillovers) implies that the optimal
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MCSLY associated with cancer treatments exceeds the VSLY by 78%. This result increases

as the costs of regular and end-of-life HCE diverge.

In the next section, we provide some background about progress in the medical sector,

which motivates our theoretical model in Section 3. In Section 4, we calibrate the free

parameters of our model using Swiss data and assess the quantitative importance of spillover

effects numerically. Section 5 offers concluding remarks.

2 Medical progress and learning by doing

Our theoretical model is motivated by three stylized facts: First, life expectancy has

increased in many countries; second, there is a continuous shift in the principal causes of

death over time; and third, learning by doing is an essential component of medical progress.

Figure 1 shows the evolving pattern in the leading causes of death over the last four

decades in Switzerland and Germany; similar patterns exist in other OECD countries.5 The

lower-right panel of the Figure shows standardized mortality rates for all causes per 100,000

persons and year, which have declined significantly during the last 40 years, reflecting the

increased life expectancy. For Swiss men (women), the standardized mortality rate declined

from 1,230 (800) in 1970 to around 650 (420) in 2004. Similarly, the standardized mortality

rate for the whole population has dropped roughly by half, from 1,200 in 1980 to less than

700 in 2012 in Germany. Mortality rates continue to decline, although the graph suggests

that the speed of the reduction may be slowing down.

The remaining three panels show the contribution of the most common mortality causes as

a share of total deaths over time. Although the standardized mortality rates have decreased

for all of these causes, their relative importance has changed significantly since the early

1970. Figure 1 shows that cancer remains to be the leading cause of death with an increasing

distance to coronary heart disease..

5Becker et al. [2005] show that life expectancy and disease-specific mortality rates vary significantly
between industrialized and developing countries; however, an increase in life expectancy has been observed
everywhere in the past 50 years.
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Figure 1: Standardized mortality rates and disease shares
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Source: Cause-specific deaths (ICD-10) from the Swiss Federal Statistical Office, based on deaths in
1970-2004 [Swiss Federal Statistical Office, 2014], and from Germany Federal Office of Statistics based on
deaths in 1980-2012 [German Federal Statistical Office, 2013].

There is general agreement that decreased mortality rates are the result of improved

living conditions, prevention, behavioral changes and enhanced medical treatments. The

Figure suggests that these factors affect different types of diseases in different ways, because,

although the standardized death rate as a whole is declining, its composition changes. For

example, when comparing cancer and coronary heart disease (CHD), it is likely that a

healthier life style and better treatment have been more successful in reducing CHD mortality

than cancer mortality.

For US data, Cutler [2008] attributes approximately 50 percent of the survival improve-

ment for cancer to advancements in treatment and screening, and similar estimates have

been reported by Lakdawalla et al. [2010]. Advances in treatment have also been instrumen-

tal in preventing deaths from cardiovascular diseases beginning with the invention of bypass

surgery in the 1980s, angioplasty, and cardiac catheterization in the 1990s [see Cutler and

McClellan, 2001].
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Medical progress, like any technological process, is incremental. Even breakthrough

discoveries typically depend on a history of painstaking and lengthy research during which

many attempts at achieving an intermediate goal fail. Furthermore, medical progress is not

confined to research and development: In order for effective treatments to be developed and

improved, they have to be applied and refined by practitioners. Moreover, different patients

may respond differently to a particular treatment, which implies that learning takes place

as a treatment is applied to more patients. Gelijns and Rosenberg [1994] provide a detailed

discussion of the dynamics of technological innovation and the role of learning by doing on

behalf of practitioners.

These observations (increase in life expectancy, relative shift in causes of death and

learning) imply that a medical condition that is considered “end of life” at one point in

time, because survival rates are very low even with treatment, does not necessarily retain

this status over time. Due to a combination of research and learning by doing, successful

treatments can be developed that significantly improve survival rates. An important example

is the treatment of cancer. The survival rate has significantly increased for many cancer

types, such that some patients survive for years with a diagnosis that in the past used to

lead to death within weeks or months [Jemal et al., 2017]. However, as suggested by the

increasing mortality share from cancer shown in Figure 1, cancer patients tend to die later

of the same (or a different) cancer, and patients that survive a different disease increasingly

die of cancer. There is biomedical evidence for a positive association between life expectancy

and cancer prevalence [DePinho, 2000], and the lifetime risk of being diagnosed with cancer

increased significantly over time [Ahmad et al., 2015].

We build on this observation of a unbalanced manifestation of medical progress. More

specifically, we argue that both the decreasing relative importance of cardiovascular diseases

and the increasing importance of cancer are two sides of the same coin in the sense that

improvements in the ability to deal with, for instance, cardiovascular conditions has enabled

people to live long enough to develop cancer. Similar arguments apply to other diseases:
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Curing one means succumbing to the next. In this sense, medicine is a victim of its own

success, or as Zweifel et al. [2005] pointed out: Medical innovation is sometimes a Sisyphean

task.6 In our theoretical model, we capture this idea by keeping the treatment effectiveness

of the least curable group of diseases constant, whereas the treatment effectiveness of all

other groups increases over time. Although medical progress may lead to a better treatment

or even a cure for a particular disease, there will always be another disease (or disease stage)

“waiting down the road” which cannot be treated effectively.

A fundamental assumption of our model is that treating these diseases, although not

currently very effective in terms of life extension, is an important engine of medical progress

because it generates knowledge that can be used also in non-end-of-life contexts. For the

case of significant improvements of survival for diseases that previously led to death within

a short time span, this assumption is in some sense tautological: It is precisely the success

in treatment, partially due to treatment efforts before the breakthrough, that moves these

diseases out of the end-of-life and into the “regular” health sector. However, there are many

instances where a treatment success in one health context turned out to be useful in different

contexts as well, such as the beta blockers originally used for cardiovascolar conditions and

ultimately used in a series of other diseases Gelijns and Rosenberg [1994]. In our model,

we aim to capture both “intra”- and “inter”-disease spillovers and generally assume that

knowledge gained in an end-of-life context can be applied in the regular health sector.

Success stories in cancer treatment include the use of chemotherapy to treat Hodgkin

Lymphoma, which significantly increased survival for many different types of cancer [DeVita

and Chu, 2008]. Subsequently, the use of chemotherapy was further improved using trial

and error in different contexts. One particular success of a recombination of chemotherapy

ingredients pertains to testicular cancer, which was associated with a 5-year survival rate

of around 5 percent in the early 1970’s. A new chemotherapy regimen increased survival

6To describe this in more technical terms, improvements in medical technology shift the survival curve
upwards, but the magnitude of the shift declines at very high ages such that the point where the expected
survival probability approaches zero remains roughly constant, even as life expectation (the integral below
the survival curve) increases.
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rates to 64 percent [Hanna and Einhorn, 2014]. This treatment was later refined to the BEP

regimen, which further increased survival and is currently also used to treat ovarian cancer.7

Another example is the advent of targeted drug therapies, which were initially developed

in the context of treating patients with chronic myelogenous leukemia (and increased the

survival rate for this cancer to almost 90 percent), but are now being used for treating

other cancers and even other diseases such as stroke [Pray, 2008]. Likewise, the use of

supportive care medicine such as anti-nausea drugs has increased quality of patients’ lives

[Cubeddu et al., 1990], and is now in widespread use for many different types of cancer

and other diseases.8 Other diseases where drugs originally developed for cancer treatment

are being used include rheumatoid arthritis and HIV [Chabner and Roberts Jr., 2005]. A

different manifestation of learning by doing is indicated by the positive association between

the volume and the quality of care for surgical procedures [Phillips and Luft, 1997], or

between spending and inpatient mortality [Romley et al., 2011].

3 Model

In the following, we develop a model of the optimal allocation of resources across con-

sumption and different types of health expenditures. We start with our baseline model,

followed by an extension that includes learning spillovers associated with the treatment of

diseases that are currently not well understood.

3.1 Baseline

There is a continuum of health conditions, indexed by their untreated survival rate x ∈

[0, 1], which is distributed across the population according to the probability density function

7BEP stands for the three main ingredients bleomycin, etoposide and platinum; for different
uses of BEP, see MacMillan, http://www.macmillan.org.uk/cancerinformation/cancertreatment/

treatmenttypes/chemotherapy/combinationregimen/bep.aspx, last accessed on July 27, 2017.
8These and other milestones in cancer treatment are discussed on the American Soci-

ety of Clinical Oncology’s website, https://www.asco.org/research-progress/cancer-progress/

top-5-advances-modern-oncology, last accessed on July 27, 2017.

9

http://www.macmillan.org.uk/cancerinformation/cancertreatment/treatmenttypes/chemotherapy/combinationregimen/bep.aspx
http://www.macmillan.org.uk/cancerinformation/cancertreatment/treatmenttypes/chemotherapy/combinationregimen/bep.aspx
https://www.asco.org/research-progress/cancer-progress/top-5-advances-modern-oncology
https://www.asco.org/research-progress/cancer-progress/top-5-advances-modern-oncology


f(x). The untreated mortality rate is given by m(x) = 1 − x. There is only one period,

and the timing is as follows: (1) Health types are assigned at the beginning of the period,

(2) health expenditure (i.e., treatment) is determined by the planner, (3) the mortality risk

materializes, and (4) survivors enjoy utility of consumption.

We separate health conditions into two groups, H and L, with shares πj, j ∈ H,L and

πH + πL = 1. These groups differ with respect to the available treatment options, rep-

resented by a treatment effectiveness parameter with αj ∈ (0, 1), where αH > αL.9 This

means that conditions that are associated with the same untreated mortality rate can differ

with respect to their curability. One can think of αj as reflecting the combination of the

biomedical characteristics (both of the condition and the patient) and the state of medical

knowledge associated with the respective subset of diseases. Throughout the paper, we dis-

tinguish between the terms health condition and disease: Whenever we refer to the term

health condition we mean the value of x which is associated with the untreated mortality

rate m(x) = 1 − x, whereas we use the term disease to describe the pair (x, αj), which

captures both the quality of the health condition in terms of the untreated mortality and

the effectiveness of the available treatment.

We assume that for each group j there exists exactly one treatment, which is associated

with a unit cost of h > 0.10 The mortality rate for a health condition x that belongs to

group j is given by

m̃(x, αj) =


m(x), if untreated

(1− αj)m(x), if treated.

(1)

9The model is easily generalized to j = 1, ..., J , with
∑J

j=1 πj = 1. In the interest of tractability and to
match the theory with the calibration exercise, we focus on two types only.

10We assume that the same unit treatment cost applies to all diseases. Allowing for disease-specific
treatment costs hj would not change the results qualitatively as long as the cost associated with group L is
not significantly smaller than that associated with group H (if hL << hH , the planner would want to treat
a higher share of the type L diseases than of type H diseases, which is counter-intuitive). In our application,
we use two different treatment costs for cancer and non-cancer treatments. Note also that throughout the
paper, we treat h as exogenous. One could hypothesize that directed technical change is aimed at lowering
the cost of particular treatments such that hj becomes endogenous, but this is beyond the scope of our
paper.
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Choosing the treatment’s effectiveness to be proportional to the untreated mortality en-

sures that the mortality rate after treatment will be between 0 and 1. It further implies that,

for a given class of treatment effectiveness j, the marginal product of expanding treatment,

∂(1−αj)m(x)

∂x
, is decreasing in the untreated survival probability.11

Individuals enjoy utility from a composite consumption good c according to a utility

function that is increasing, continuous, concave and twice differentiable, and which depends

on the state s:

U(c; s) =


u(c) ≥ 0 for s = alive,

0 for s = dead.

(2)

Utility when alive is strictly positive for a positive level of consumption. A fully informed

utilitarian social planner maximizes social welfare W by choosing the proportion of the pop-

ulation that receives treatment within each group j, subject to technology and resource

constraints. The planner will prioritize treatments for those individuals who have a high un-

treated mortality risk: the reduction in the mortality risk αjm(x) associated with treatment

j is decreasing in the health state x, while the marginal costs of extending expected survival

is increasing. Formally, the planner chooses a per-capita consumption level c and treatment

cut-offs x = {xL, xH}, to solve

max
c,x

W = u(c) · S(x) s.t. y = cS(x) + hZ(x) (3)

S(x) : = 1−
∑
j=H,L

πj

( xj∫
x

(1− αj)m(x)f(x) dx+

x∫
xj

m(x)f(x) dx

)
(4)

11In most of the existing literature, diminishing returns in health expenditure are incorporated by assuming
increasing costs [e.g., Ellis, 1998] or decreasing effectiveness as a function of the amount of treatment for a
particular patient [Grossman, 1972; Hall and Jones, 2007]. Yet another approach is used in Ma [1994], where
hospitals face a continuum of patients with varying costs of treatment (but the same treatment effectiveness).
Our approach of holding treatment costs fixed but endogenizing the share of diseases that receives treatment
(and thus the marginal effectiveness of treatment) is qualitatively similar in that it allows for a diminishing
marginal productivity in the health sector overall. Allowing both treatment effectiveness and treatment costs
to vary continuously across patient types would add significant complexity to the model, but with no clear
gain in intuition.
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Z(x) : =
∑
j=H,L

πj

∫ xj

x

f(x) dx. (5)

Aggregate income y is exogenous and is either consumed or spent on health care. S ∈ [0, 1]

can be interpreted as the expected survival rate of the population. Throughout the paper, we

denote the optimal solution by an asterisk, such that x∗j denotes the cut-off health conditions

(=survival rate) for group j: Individuals with health a condition that is weakly worse than x∗j

receive treatment, whereas those with better health do not. Z is the sum of treatments that

take place in each of the groups L and H. The total treatment cost includes costs incurred for

people who die despite the treatment. After substituting the households’ budget constraint

(and thus eliminating c as a choice variable), the optimality conditions for an interior solution

{x∗L, x∗H} are given by

u(c∗)
∂S(x∗)

∂xj
= −u′(c∗)∂c

∗

∂xj
S(x∗) for j = L,H (6)

c∗ =
y − hZ(x∗)

S(x∗)
. (7)

At the optimum, the marginal benefit of expanding treatment for a given technology (i.e.,

the utility gain associated with an increase in survival) is equal to the marginal decrease in

consumption that is due to a shift of resources to the health sector. This decrease includes

the direct health care costs h and the fact that per capita consumption declines in the number

of survivors.12 Combining (4)-(7) leads to

u(c∗)

u′(c∗)
− c∗ =

h

αjm(x∗j)
for j = L,H. (8)

The left-hand side of (8) is the value of life, which is equal to the monetized utility of

life net of consumption costs. This is positive whenever life is strictly preferred over death

12As pointed out by Meltzer [1997], the costs of HCE should not only include the direct costs of treatment,
but also the indirect and future costs.
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for any non-zero consumption level and when utility is concave in consumption [see Rosen,

1988]: These two assumptions are maintained throughout the paper. The right-hand side is

the marginal cost of extending life using health technology j. If we think of the time frame

of our model as representing one year, expression (8) states that, at the optimum, the VSLY

has to be equal to the MCSLY.

The optimal ratio of the cut-off mortality rates for treatment groups L and H is inversely

proportional to the ratio of the respective treatment effectiveness:13

m(x∗L)

m(x∗H)
=
αH
αL

(9)

𝑚𝑚 

𝑚𝑚 𝑥𝑥𝐻𝐻  𝛼𝛼𝐻𝐻 

𝑚𝑚(𝑥𝑥𝐻𝐻∗ ) 
 

𝑚𝑚(𝑥𝑥𝐿𝐿∗) 

𝑚𝑚�  

1 

45° 

1 

0 

𝑚𝑚(𝑥𝑥𝐿𝐿) 𝛼𝛼𝐿𝐿 

Figure 2: Optimal treatment cut-offs by group

Figure 2 plots the treated mortality rate m̃ against the untreated mortality rate m for two

treatment groups L and H. The treated and untreated mortality rates are equal up to the

optimal cut-off mortalities m(x∗L) and m(x∗H), beyond which patients will receive treatment

in each group. At the cutoffs, the function m→ m̃ shifts downwards discretely by αLm(x∗L)

and αHm(x∗H), respectively, and the respective slopes decrease from unity to (1 − αL) and

(1 − αH). Condition (9) states that the shift in the treated mortality must be equal for

13In the general case with j = 1, ..., J , the condition becomes m(x∗j )/m(x∗i ) = αi/αj .
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both technologies. Furthermore, a greater difference in treatment effectiveness between two

groups implies a greater horizontal distance between the respective cut-off mortalities.

3.2 Learning externalities

As motivated in section 2, we assume that learning by doing in the L sector affects the

treatment effectiveness in “regular” health contexts, which in our model comprises the H

sector. These spillovers represent either improvements in the survival rate associated with

a previously untreatable disease (which moves it from L to H ), or inter-disease spillovers

where knowledge gained in one context is helpful in another. Assuming that the learning

spillovers are effective immediately allows us to represent this process in a static framework

and thus abstract from modeling the dynamics of population and income over time. We

restrict learning to take place in the L sector even though learning presumably takes place

throughout in the health sector. However, there is arguably more to be learned in the context

of treating diseases that are currently not well understood, and which therefore are located

at the technological frontier. To generate our results, the learning spillovers from applying

treatments the L sector have to be larger than those originating in the H sector.

We further impose that learning in L only affects the treatment effectiveness in H, but not

in L. This is motivated by observation that the composition of end-of-life diseases changes

over time, as discussed in the context of Figure 1. Intuitively, technological progress pushes

diseases away from the frontier over time, while at the same time new diseases or disease

combinations appear, which then constitute the new frontier diseases [see Jones, 2003, for a

similar rationale]. With this stationary representation of a dynamic process, we aim to cap-

ture the main interactions that govern the allocation of resources across different treatment

options subject to learning-by-doing, while keeping the model as simple as possible.14 Al-

lowing learning spillovers to increase the treatment effectiveness in L would lead to a further

14Kuhn et al. [2011] develop an overlapping generations model that incorporates both positive (learning)
and negative (congestion) spillovers in health care. Their model explicitly incorporates dynamic aspects of
spillovers and thus goes beyond the reduced-form treatment in our paper. However, it does not distinguish
between different types of treatments, which is essential for our analysis.
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extension of treatment in the L sector in the social optimum, but this effect would likely

not be large, considering that the benefit from spillovers are proportional to the treatment

effectiveness. Figure 3 presents our stylized model of spillovers schematically.

Figure 3: Static representation of dynamic learning. At time t0, diseases are divided into
those for which an effective treatment exists (a), and those that are currently not well
understood (b1-b3). Medical progress renders disease group b1 treatable in period t1. At
the same time, new diseases appear (c1-c2). In the next period, some of these new diseases
have become treatable as well (c1), along with previously existing untreatable diseases (b2).
The straight arrows represent learning spillovers in the dynamic setting. In our model, we
focus on spillovers originating in L that affect diseases that are currently (solid arrows) or
eventually in H (shaded arrows) but suppress all other learning (clear arrows). The static
representation of this dynamic learning process is indicated by the curved arrows at the
top of the figure, which contain the (dynamic) effect of the corresponding straight arrows.
Among these, we focus on the shaded arrow labeled γLH .

Let the effectiveness of type H treatments be given by

αH = ᾱ + γxLπL, (10)

where γ captures from the low effectiveness group spilling over to the high effectiveness

group (corresponding to γLH in Figure 3). Increasing the cut-off health condition xL implies

an increasing number of persons treated in group L, and also an increase in the treatment
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effectiveness in group H beyond some default effectiveness ᾱ.

The first-order necessary conditions with respect to the cut-off survival rates xH and xL

can be expressed as (derivation provided in the Appendix):

u(c∗)

u′(c∗)
− c∗ =

h

αHm(x∗H)
=

h

αLm(x∗L) + γπHµH/x∗L
(11)

µ∗H ≡
∫ x∗H

0

(1− x)f(x)dx (12)

For group H (first equality), this first-order condition is the same as in (6). However,

for group L (second equality), there is an additional term in the denominator due to the

spillovers generated by applying treatments in this group that increases the survival rate

of the individuals treated in group H, and which directly depends on the strength of the

spillovers parameter γ and on µ∗H , which can be interpreted as the expected untreated mor-

tality of the treated in the H-group.15 The higher this expected mortality, the greater is the

benefit from learning spillovers.

The presence of learning spillovers implies that the MCSLY, if computed only with ref-

erence to an extension of life in group L, optimally exceeds the MCSLY in group H (which

is equal to the VSLY):

h

αLm(x∗L)
>

h

αHm(x∗H)
=
u(c∗)

u′(c∗)
− c∗ if γ > 0 (13)

In other words, the full benefit of applying treatment in group L includes a positive

spillover to group H, and neglecting this spillover by setting MCSLYL=MCSLYH would

lead to an inefficiently low use of technology L.

15To see this, note that∫ x∗
H

0

(1− x)f(x)dx =

∫ x∗
H

0

f(x)dx−
∫ x∗

H

0

xf(x)dx = F (x∗H)− E[x|x ≤ x∗H ] · F (x∗H)

µ∗H = F (x∗H)E[m(x)|x ≤ x∗H ]

The first term is the share of people within sector H that receives treatment, and the second term represents
the expected (untreated) mortality within this group.
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We are not able to derive a closed-form solution for the optimal treatment cut-offs without

imposing very restrictive assumptions on preferences and the distribution of untreated health

conditions. However, applying the implicit function theorem allows us to the derive the effect

of increasing the spillover parameter on the treatment cut-off xL.

Proposition 1 The introduction of spillovers from γ = 0 to some small γ > 0 increases the

cut-off of the treatment option L if the following conditions hold with respect to the marginal

number of treated πLf(x∗L) at the optimum:

πLf(x∗L) <
πHµ

∗
H

x∗Lm(x∗H)
, and (14)

πLf(x∗L) < −(u− u′c∗)u′

u′′c∗u

S∗

x∗Lm(x∗L)αL
. (15)

Both conditions together are sufficient conditions, whereas either one of them must hold as

a necessary condition.

Proof. By the implicit function theorem, the derivative of the optimal cut-off x∗L with

respect to the spillover parameter γ is given by

∂x∗L
∂γ

=
−WxLγWxHxH +WxLxHWxHγ

WxLxLWxHxH −W 2
xLxH

, (16)

where subscripts indicate partial derivatives. At the optimum, the denominator is the de-

terminant of the Hessian matrix and is thus positive, such that it suffices to determine the

sign of the numerator. In the Appendix, we show that −WxLγWxHxH +WxLxHWxHγ can be

written as a sum of two components. The first component is positive if (14) holds, and the

second component is positive if (15) holds.

An increase in γ increases both the marginal benefit (the left-hand side of (6), which

is the marginal increase in survival) and the the marginal cost (the right-hand side, which

represents the marginal decrease in consumption for the survivors) associated with treatment

in group L. If the sufficient conditions in the proposition hold, the former effect dominates
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the latter. To interpret the sufficient conditions, it is helpful to impose some structure on

preferences. For u(c) = cσ with 0 < σ < 1, which we employ in our numerical section

below, it follows that − (u−u′c)u′
u′′cu

= 1, such that the second sufficient condition simplifies to

πLf(x∗L) < S∗

x∗Lm(x∗L)αL
. Intuitively, it is optimal to increase the cut-off xL in response to an

increase in γ if the marginal number of patients that have to be treated to induce learning

effects, πLf(x∗L), is not too large relative to the share of the population that is treated with

technology H and the optimal survival rate is high. Both conditions are likely to hold in

advanced countries, as these countries typically have the means to treat the vast majority

of health conditions quite effective (πH � πL) and therefore exhibit a high life expectancy.

Spillovers could therefore serve as a rationale to explain the substantial share of end-of-life

expenditures in such countries.

Proposition 2 The introduction of spillovers from γ = 0 to some small γ > 0 will increase

the optimal level of treatment in sector L relative to that in sector H, and thus expand the

optimal share end-of-life expenditures within total HCE, if the following sufficient condition

holds:

µ∗H > x∗Lm(x∗H)f(x∗H) (17)

Proof: See Appendix.

Spillovers make survival cheaper in the sense that treatments in group H become more

effective at given unit treatment costs.16 Given that the planner allocates more resources

to the health sector, it is thus a priori not clear whether it is optimal to spend relatively

more in sector H or L. The sufficient conditions ensure that the benefit from engaging in

treatments in L is sufficiently large, relative to the costs, in order to justify an increase of the

end-of-life share in HCE. In our numerical illustration below (and in fact with all parameter

16We treat the unit cost of treatment as fixed. Alternatively, one could assume that technological progress
decreases the unit cost of treatment while keeping the effectiveness constant. In both cases (and any convex
combination of the two), spillovers lower the cost of reducing the expected mortality in group H.
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constellations that we tried), the sufficient conditions of both propositions hold.

4 Numerical illustration

In order to assess the robustness and quantitative relevance of our analytical result, we

simulate the model numerically. We stress, however, that we provide no empirical evidence

in favor or against our model. The aim of the current section is to illustrate our results

based on realistic assumptions about the distribution of mortality, treatment shares and

overall (opportunity) costs of health expenditure.

We calibrate our model to the situation of intensive care unit (ICU) admissions in Swiss

hospitals; i.e., we define the treatment decision as either being admitted to an ICU or not.

The reason why we restrict our attention to ICU admissions is that it corresponds best to

our model where the only aim of treatment is a reduction of the expected mortality.17

We divide diseases into two types: Cancer (type L) and all other diseases (type H),

motivated by the stylized facts shown in Figure 1. We model the survival probability using

a beta distribution with shape parameters a and b:

f(x) =

{
xa−1(1−x)b−1

B(a,b)
0 ≤ x ≤ 1

0 otherwise,
(18)

where B(a, b) =
∫ 1

0
ta−1(1− t)b−1 dt is a normalizing constant which ensures that F (1) = 1.

This distribution allows for significant flexibility. The combination a = b = 1 is the special

case of the uniform distribution.

17In a previous version of our model, we focused on all hospital admissions. However, many inpatient treat-
ments primarily aim to increase quality rather than quantity of life. A model based on all hospital admissions
therefore falsely attributes the low mortality rate of many treatments to a high treatment effectiveness, even
though the mortality would have been low even in the absence of treatment. This leads to a significant
overestimation of the parameters αj that govern the treatment effectiveness. Focusing on ICU admissions
largely avoids this problem, although at the cost of excluding life-extending treatments where the patients
are not transferred to the ICU. A possible alternative would involve defining a list of disease/treatment com-
binations where the main goal is the increasing survival. However, given the complexity and heterogeneity
of diagnoses and treatments, this is not easy to do in a transparent and reproducible way.
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4.1 Model parameters

In a first step, we look for suitable values for the shape parameters a and b of the density

function f(x). We approximate the distribution of untreated mortality rates by combining

age-specific mortality rates with the age distribution of the Swiss population in 2014.18

Figure 4 shows a kernel density estimate of the age distribution (left axis) and the age-

specific mortality rate (right axis) in Switzerland. The age distribution displays the typical

pattern of an industrialized country, with the bulk of persons being concentrated around age

50, followed by a steep decrease in the density per year of age. The mortality rate is close

to zero for all ages below 70 (it exceeds the value of 1% only after age 68), and increases

exponentially in old age.
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Figure 4: Age distribution and mortality rates in Switzerland

We link the age distribution with the age-specific mortality rate to obtain a distribution

of (treated) mortality rates by assuming that all individuals of a given age face the average

mortality rate of their age group. We then fit a beta model with shape parameters a and

18A caveat of this procedure is that observed mortality rates are the outcome of many exogenous and
endogenous factors, including treatment, such that these are really the treated rather than the untreated
mortality rates per age group. Nonetheless, we hypothesize that the qualitative shape of the distribution of
untreated mortality rates (which is unobservable) is similar to the observed post-treatment mortality rates.

20



b and support [0, 1]. The fitted shape parameters are â = 41.45 and b̂ = 0.34, so that

f(x) = x40.45(1−x)−0.66

0.74167
for 0 ≤ x ≤ 1. This describes a monotonically increasing, left-skewed

distribution with an expected survival rate of E[x] = a
a+b

= 0.992, which corresponds to

the survival rate of all persons (including treatment for those below the cut-offs x∗j) in

the context of our model. We use this ex-post distribution of mortality as a qualitative

measure for the shape of the distribution of ex-ante health conditions, namely that the vast

majority of persons in the population is subject to virtually no or only a modest risk of

dying, whereas a small number of persons face a substantial mortality risk. This suggests

that we can focus on the case where f ′(x) > 0 over the entire support of the distribution of

health conditions.19 We fix b = 1 and calibrate the shape parameter a such that the share of

the treated population in our model, Z, matches the empirical hospitalization rate. Figure

5 illustrates the sensitivity of the probability density functions to the value of a.
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Figure 5: Untreated survival probabilities for different values of a, with b = 1

The remaining model parameters are chosen as follows:

Disease shares: As discussed above, we focus on cancer vs. non-cancer based on the

ICD-10 main diagnosis code. According to the National Institute for Cancer Epidemiology

19For the beta distribution, f ′(x) = 1
B(a,b) · [(a − 1)x(a−2)(1 − x)(b−1) − x(a−1)(b − 1)(1 − x)b−2], which

implies that f ′(x) ≥ 0 if a ≥ 1 and b ≤ 1.
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and Registration (NICER), the cancer prevalence in Switzerland amounted to 3.9% in 2015.20

We therefore set πL = 0.039 and πH = 0.961.

Health technology: To determine the values of αL and ᾱ, we use their relationship with

the survival rates of the treated, computed based on data from the Swiss Medical Statistics

of Hospitals (MedStat) [Swiss Federal Statistical Office, 2016]. We compute the in-hospital

survival rates for cancer and non-cancer patients who were assigned to the ICU in 2014.

Given the endogenously determined levels of xL and xH , this allows us to calibrate αL and

αH (and consequently ᾱ):

Sj(x|x ≤ xj) =

(
1−

∫ xj
0

(1− αj)m(x)f(x) dx

F (xj)

)
for j = L,H (19)

We calibrate the model towards the survival rates as computed from the data: SL(x|x ≤

xL) = 0.8601 and SH(x|x ≤ xH) = 0.9103.

Preferences: We assume a utility function of form u(c) = cσ. We calibrate σ such that

the marginal cost of saving a statistical life year (MCSLY) equals the value of a statistical

life year (VSLY) in the absence of treatment, as indicated by (8). Given this calibration,

our model only allows us to make statements about the divergence between the MCSLY for

cancer and non-cancer treatments, but not about the level of HCE in general.

We derive the VSLY from the VSL estimate for Switzerland of CHF 10 million as reported

by Baranzini and Ferro Luzzi [2001], based on an estimate of the risk wage premium for Swiss

workers. An average worker faces roughly 40 years of residual life expectancy.21 We then

calculate the value of a statistical life year (VSLY) under the assumption that it is constant

over time, and given a discount rate of θ:22

V SL =
43∑
t=0

V SLY

(1 + θ)t
(20)

20See www.nicer.org/assets/files/statistics/prevalence/prev counts props all.pdf last accessed Sep. 2016.
21The average age of the Swiss labor force in 2014 is approximately 41.4 years, and residual life expectancy

at age 41 is about 43 years assuming, for simplicity, a female labor market participation of 50%.
22For a discussion about the relationship between VSL and VSLY, see Hammitt [2007].
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Using a discount rate of 2%, the resulting VSLY is CHF 143,879.23 For the calibration,

we keep the MCSLYH at this amount for all levels of the spillover.

Treatment share: Of the 1,013,920 persons who were admitted at least once to a Swiss

hospital in 2014, 7.12 % were admitted to an ICU [Swiss Federal Statistical Office, 2016].

Based on a population of 8.2 million in that year, this equals a treatment share of Z = 0.9%.

Treatment costs: We approximate treatment costs using reimbursements categorized by

their diagnosis-related group (DRG). Although in the theory section, we restrict the analysis

to a single h for tractability, the treatment costs can be allowed to differ across (but not

within) groups without major changes to the model. In our application, we therefore use

two different treatment costs for cancer and non-cancer patients. The average reimbursement

paid out for the treatment of cancer patients who were admitted to an ICU in 2014 amounted

to CHF 25,173, while the respective reimbursement for non-cancer ICU patients amounted

to CHF 19,130 [Swiss Federal Statistical Office, 2016].

Income: We use per-capita income of y= CHF 78,432 (2014 data).

Spillover parameter: The spillover γ is not observable, and it is not obvious what value

would be appropriate. We therefore set γ = 0 in the baseline calibration, and recompute the

model for a range of values for γ to assess its effect on the key model outcomes.

4.2 Results

We calibrate the model such that: (i) it solves the two first-order conditions and the

budget constraint, (ii) it reproduces the observed treatment share (5) and the conditional

survival rates given by (19), and (iii) the MCSLY matches the VSLY in the absence of

spillovers. For given values of b and γ, we then have seven equations in seven unknowns:

σ, a, c, xL, xH , ᾱ, and αL. Finding the latter two, ᾱ and αL, involves the numerical solution

of a fixed point problem: the αj (for j = L,H) determine the optimal xj, which, together

23CHF 10 million is the lower bound reported in Baranzini and Ferro Luzzi [2001], whereas the upper
bound is CHF 15 million. This would result in a VSLY of CHF 215,819. Using the upper rather than
the lower bound (or an average) would change the resulting MCSLYs proportionately, but leave all results
qualitatively unchanged.
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with αj, determine the survival rate Sj. The existence and uniqueness of the solution is

ensured by the monotonicity of f(x) and m(x).

Table I summarizes the key outcomes of the numerical solution for three levels of the

spillover parameter γ. The optimal cut-off for treatment, xH , and its implied share of treated

persons, F (xH), is not sensitive to the level of spillovers we choose for the calibration. The

marginal effect of learning spillovers on the optimal cut-off on treatment in group L is positive

and thus consistent with Proposition 1; it is also larger than for group H.

The levels of the calibrated values of αH and αL reflect the simulated difference in the

treatment effectiveness of the two treatment technologies, which stems from the observed

difference between SH(x|x ≤ xH) and SL(x|x ≤ xL).24 The numbers in the benchmark case

(where γ = 0) imply that the treatment of non-cancer diseases is on average 1.22 times more

effective in terms of the mortality reduction.

Table I: Model results

γ = 0 γ = 1 γ = 2 γ = 4

xH 0.8179 0.8179 0.8179 0.8179
xL 0.7345 0.7672 0.7800 0.7946
αL 0.5271 0.4709 0.4452 0.4122
ᾱ 0.5842 0.5542 0.5233 0.4601
αH 0.5842 0.5842 0.5842 0.5842

F (xL) 0.0008 0.0021 0.0031 0.0047
F (xH) 0.0093 0.0092 0.0092 0.0091
a 23.25 23.30 23.30 23.35

MCSLYH 179849 179849 179849 179849
MCSLYL 179849 229626 256958 297379

σ 0.3119 0.3119 0.3119 0.3119

Parameter values: b=1; πL=0.039; πH=0.961;
hL=25,173; hH=19,130; y=78,432; Z=0.009.

Table I also displays the marginal cost of saving a statistical life year (MCSLY), which is

computed by dividing the unit treatment costs by the mortality reduction at the margin for

each technology; i.e., h/αH(1− xH) and h/αL(1− xL). For γ > 0, however, the equality no

24Note that here for identification of the the two α-parameters we need to have the same distribution of
untreated health conditions F (x) in the two groups.
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longer holds, because it is optimal to expand expenditure in sector L due to the additional

learning benefits that accrue in sector H.25 The increase in the MCSLYL is a measure of

society’s willingness to forgo resources in order to induce learning effects for a given level of

spillovers.

To interpret γ, recall that αH = ᾱ+ γπLxL. Increasing the spillover parameter therefore

increases αH by ∆αH = ∆γπLxL. An increase from γ = 0 to some γ̃ > 0 can be translated

into an average increase in survival of the treated persons in group H, formulated as follows:

∆SH = S̃H(x|x ≤ x̃H , γ̃)− SH(x|x ≤ xH , γ = 0)

=
(
1−

∫ xH
0

(1− ᾱ− γπLxL)m(x)f(x) dx

F (xH)

)
−
(
1−

∫ xH
0

(1− ᾱ)m(x)f(x) dx

F (xH)

)
. (21)
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Figure 6: ICU Marginal cost of saving a statistical life year (MCSLY)

Figure 6 shows the relative marginal costs of a life extension as a function of γ (solid line,

25Note that this qualitative result would hold even if we allowed for learning spillovers to originate in
sector H as well, as long as they are lower than those that originate from applying treatment in sector L.
The parameter γ can therefore be understood to represent the degree by which spillovers in L exceed those
generated in H.
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left axis), along with the resulting increase in survival probability for non-cancer patients

(dashed line, right axis).26 Suppose that cancer treatments are associated with learning

spillovers with a magnitude of γ = 3.1, which lead to an increase in the survival rate for

non-cancer patients of 1 percentage point (relative to the absence of learning spillovers). At

this level of spillovers, the optimal ratio of the marginal cost of life extension is equal to

1.78, indicating that it is socially optimal to spend 78 % more on the margin for treatments

in group L than in group H.

Last, we investigate the robustness of the relationship of the ratios of the MCSLYs to

the choice of different parameter values. We do so by reproducing figure 6, but instead of

varying the spillover parameter γ, we vary the distribution parameter a and the level of

the costs for treatment L, hL. We do so while keeping the implied increase in the average

survival rate of the treated in group H constant at ∆SH(x ≤ xH) = 1%. In each panel, the

vertical line marks the result of our calibration exercise. Note that the ratio of the MCSLY

is independent of the preference parameter σ, as this appears in the MCSLY of both types

of diseases and drops out.

Figure 7 show the results of this exercise. The ratio of MCSLY, which governs the shape

of the distribution of health states, is not sensitive to the parameter a (left panel) around

the value of 23 to which we calibrated our model. For a <10, the ratio of MCSLY diverge by

much more than our results suggest, but such a low a is inconsistent with observed mortality

rates at least in OECD countries, where most of the population is healthy.

However, the ratio of MCSLY’s that is socially acceptable given that ∆SH(x ≤ xH) = 1%

increases in the unit cost for cancer treatments (right panel). In the figure, the unit costs

for noncancer treatments is held constant at CHF 19,130, and we allow the cost for cancer

treatments to range from between one to five times this value. The graph shows that if

end-of-life treatments are much more expensive than“regular” treatments, the optimal ratio

26For this calculation, we hold all model parameters fixed at their calibrated levels based on γ = 0. We
compute the counterfactual survival rate if γ were to be increased, which is qualitatively different from the
calibration exercise in Table 1, where we recalibrate all values for different γ, because we do not know the
level of the “true” γ.
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Figure 7: ICU Marginal cost of saving a statistical life year (MCSLY)

of MCSLYL/MCSLYH increases significantly. Since the value for hL we used in our model

is close to that of hL (because ICU admissions are costly for both cancer and noncancer

patients), the optimal MCSLY-ratio associated with higher cost-ratios could significantly

exceed the values in Figure 6. For example, if the treatment cost for cancer is four times

the treatment cost of noncancer (i.e., around 80,000), the optimal MCSLY-ratio would be

3.4 rather than 1.78. In contrast, if medical costs are equal between cancer and noncancer,

then the ratio would be 1.6.

5 Conclusions

In this paper, we develop a theory of the allocation of resources across consumption and

health when the members of the population differ with respect to their health status and

suitability to treatments with different productivity. We then extend the model to allow

for learning spillovers accruing from the application of treatments in the sector with the

low treatment effectiveness, which we label“end-of-life” because many patients die despite

treatment. These spillovers improve the treatment effectiveness in the general health sector,
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but not in the end-of-life sector itself. The extended model can be interpreted as a static

representation of a dynamic process, in which curing one disease entails that patients subse-

quently die from another disease, such that the composition of the end-of-life sector changes

over time. We show that under quite general conditions, the presence of learning spillovers

leads to an increase in the optimal intensity of end-of-life treatments. Furthermore, we show

that in the presence of learning spillovers, the MCSLY of using the ineffective technology

(with reference only to the life years saved of the involved patients) exceeds the MCSLY of

the technology that generates no (or fewer) spillovers.

We illustrate our model using data from the Swiss health care system and focus on

admissions to intensive care units. We use cancer as the group of end-of-life diseases, whereas

the remainder of the health sector comprises all other diseases. We find that the presence of

learning spillovers which lead to a modest increase in survival within the group of non-cancer

patients induce the optimal cost-benefit ratio of cancer treatments to significantly exceed the

VSLY. Our results are conceptual in nature, and we make no claim that we can measure the

strength of learning spillovers applying end-of-life treatments. Although there are indications

that learning is important in the health sector, the magnitude of the spillovers is very difficult

to quantify, and they will furthermore vary over different treatments and diseases within the

end-of-life sector.

Our model stresses the role of technology and learning spillovers in determining the

allocation of resources for different types of health care and overall consumption. We employ

a social planning model and thus abstract from factors such as moral hazard or asymmetric

information. The amount of resources spent on the different treatment options is determined

by their relative effectiveness. Learning spillovers add to this effectiveness and therefore

change the composition of resource use. The main message from our model is that if spillovers

are present when treating end-of-life diseases, spending more on them than what would be

expected based on the VSLY may in fact be socially optimal.

We do not claim that the Swiss health system is in fact optimal nor that informational
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problems are negligible. The main purpose of the calibration to the Swiss system using a

social planning model is to narrow the reasonable range within which the model parameters

can be expected to be located, which is particularly important in the light of the fact that

the effect of adding spillovers is ambiguous when allowing for the entire parameter space.

We furthermore make no claim that the treatment effectiveness is the only determinant of

the allocation of resources, but argue that technology is a particularly important aspect.

Although other factors such as aging of the society and longevity, increased income, and

insurance-induced moral hazard are important, they are unlikely to explain the increase

in health spending across almost all countries despite substantial institutional differences

[Newhouse, 1992]. In contrast, technological change affects countries in a similar way.

In terms of policy implications, our results show that in the absence of learning, the

marginal cost of extending life by a statistical life year (MCSLY) should equal the value of a

statistical life year (VSLY) for all types of treatments. Simply being closer to death does not

justify an increase in health expenditure. This suggests that the recent concern about an

increase in costly yet seemingly futile treatments at the end of life is warranted. Basic health

insurance should therefore cover health expenditures at the end of life (and in general) to the

point where the benefits justify the costs, whereas excess coverage should be contingent on

supplemental insurance. However, our calibrated model implies that even moderate levels

of learning spillovers accruing from applying treatments in seemingly hopeless cases may

lead to a substantial increase of the optimal MCSLY, relative to the VSLY. This provides

a caveat to the rationing argument: When limiting the expenditure for certain treatments,

regulators should not only take into account the benefits that accrue to the individuals that

are treated, but also any benefits accruing to the population in the long run due to learning.

If learning effects are likely to be important in a particular health context, then it will be

optimal to allow for treatment costs to exceed the VSLY by a significant margin, and this

margin increases with the difference in treatment costs across the two groups.

To operationalize the implications of our model, one would have to find a method for
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an unbiased assessment of particular treatments with respect to their potential to generate

learning benefits. This will likely require the collaboration of health professionals, represen-

tatives of health insurance firms, and the government. Even though it is clearly impractical

to carry out such an analysis for all diseases and treatments, this could be done for the subset

of diseases for which medical coverage is contentious from a cost-benefit point of view, and

where learning effects are to be expected.

Possible extensions of this model include an explicit treatment of the dynamics, which

would relax the assumption that the share of end-of-life diseases is constant, but which in

turn would require that the growth dynamics of both the population and the economy have

to modeled. Moreover, it would be interesting to depart from the social planner model and

instead investigate different existing health care systems and the resulting incentives for an

under- or over-provision of health interventions at the end of life.
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A Appendix

Optimality condition with spillovers

Substituting S and αH into (3), the welfare function becomes

W (c, xL, xH) =u(c) · S = u(c)

[
1− πL

(∫ xL

0

(1− αL)(1− x)f(x) dx+

∫ 1

xL

(1− x)f(x) dx

)

− πH

(∫ xH

0

(1− (ᾱ + γxLπL))(1− x)f(x) dx+

∫ 1

xH

(1− x)f(x) dx

)]
,

subject to the budget constraint and the definition for Z as in (5). The first-order necessary

conditions are given by

WxH = u(c∗)πHα
∗
Hm(x∗H)f(x∗H)− u′(c∗)

(
c∗πHα

∗
Hm(x∗H)f(x∗H) + hπHf(x∗H)

)
= 0

WxL = u(c∗)πLαLm(x∗L)f(x∗L)− u′(c∗)
(
c∗πLαLm(x∗L)f(x∗L) + hπLf(x∗L)

)
+ γπLπH

∫ x∗H

0

(1− x)f(x) dx ·
[
u(c∗)− u′(c∗)c∗

]
= 0.

Substituting µH ≡
∫ x∗H
0

(1− x)f(x) dx and combining leads to eq. (11).

Proof of Proposition 1

We are interested in the signs of partial derivatives of the optimal treatment cut-off xL

with respect to the spillover parameter γ. Using the implicit function theorem, we can express

both derivatives in terms of the second derivatives of the objective function W (xL, xH):

∂xL
∂γ

=
−WxLγWxHxH +WxLxHWxHγ

WxLxLWxHxH −W 2
xLxH

. (A.1)

The denominator in (A.1) is the determinant of the Hessian matrix of the two-dimensional

optimization problem, which is positive by assumption. It therefore suffices to determine the
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sign of the numerator. Suppressing the asterisks for convenience, the first-order conditions

for the planner’s problem are

WxH = u′(c)
∂c

∂xH
S + u(c)

∂S

∂xH
= 0 (A.2)

WxL = u′(c)
∂c

∂xL
S + u(c)

∂S

∂xL
= 0. (A.3)

Taking the derivatives w.r.t. xH , xL and γ, the terms in (A.1) are given by

WxHxH = u′′
(
∂c

∂xH

)2

S + u
∂2S

∂x2H
+ u′

(
∂2c

∂x2H
S + 2

∂c

∂xH

∂S

∂xH

)

= u′′
(
∂c

∂xH

)2

S + u
∂2S

∂x2H
+ u′

(
−h∂

2Z

∂x2H
− ∂c

∂xH

∂S

∂xH
− c ∂

2S

∂x2H
− ∂c

∂xH

∂S

∂xH
+ 2

∂c

∂xH

∂S

∂xH

)

= u′′
(
∂c

∂xH

)2

S +
∂2S

∂x2H
(u− u′c)− u′h∂

2Z

∂x2H
(A.4)

WxHxL = u′′
∂c

∂xL

∂c

∂xH
S + u

∂2S

∂xH∂xL

+ u′

(
− ∂c

∂xH

∂S

∂xL
− c ∂2S

∂xH∂xL
− ∂c

∂xL

∂S

∂xH
+

∂c

∂xH

∂S

∂xL
+

∂c

∂xL

∂S

∂xH

)

= u′′
∂c

∂xL

∂c

∂xH
S +

∂2S

∂xH∂xL
(u− u′c) (A.5)

WxHγ = u′′
∂c

∂γ

∂c

∂xH
S + u

∂2S

∂xH∂γ
+ u′

(
− ∂c
∂γ

∂S

∂xH
− c ∂2S

∂xH∂γ
− ∂c

∂xH

∂S

∂γ
+

∂c

∂xH

∂S

∂γ
+
∂c

∂γ

∂S

∂xH

)

= u′′
∂c

∂γ

∂c

∂xH
S +

∂2S

∂xH∂γ
(u− u′c) (A.6)

WxLγ = u′′
∂c

∂γ

∂c

∂xL
S + u

∂2S

∂xL∂γ

+ u′

(
c

S

∂S

∂γ

∂S

∂xL
− c ∂2S

∂xL∂γ
− ∂c

∂xL

∂S

∂γ
+

∂c

∂xL

∂S

∂γ
− c

S

∂S

∂γ

∂S

∂xL

)

= u′′
∂c

∂γ

∂c

∂xL
S +

∂2S

∂xL∂γ
(u− u′c). (A.7)
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Substituting (A.4)-(A.7) into (A.1) and rearranging, we get

−WxLγWxHxH+WxLxHWxHγ = −u′′(u− u′c)S

(
∂2S

∂xL∂γ

(
∂c

∂xH

)2

− ∂2S

∂xH∂γ

∂c

∂xH

∂c

∂xL

)

−

(
∂2S

∂x2H
(u− u′c)− u′h∂

2Z

∂x2H

)(
u′′S

∂c

∂γ

∂c

∂xL
+ (u− u′c) ∂2S

∂xL∂γ

)
. (A.8)

We start by determining the sign of the first line in (A.8). The term (u−u′c) = u′(u/u′−c)

is positive whenever utility is concave and life is strictly preferred over death (Rosen, 1988),

such that the sign of the first line is equal to the sign of the parenthesis. Substituting for

the partial derivatives (listed below for convenience) and µH ≡
∫ x∗H
0

(1−x)f(x)dx, we obtain

−u′′(u− u′c)S

(
∂2S

∂xL∂γ

(
∂c

∂xH

)2

− ∂2S

∂xH∂γ

∂c

∂xH

∂c

∂xL

)

=− u′′(u− u′c)

[
πHπLµH

(
−πHf(xH)

S
(h+ cαH(1− xH))

)2

− xLπHπL(1− xH)f(xH)

(
−πHf(xH)

S
(h+ cαH(1− xH))

)(
−πLf(xL)

S
(h+ cαL(1− xL))

)]

=− u′′(u− u′c)
(
πHf(xH)

S

)2 (
h+ cαH(1− xH)

)2 [
πHπLµH − xL(1− xH)π2

Lf(xL)
]
,

where we use the equality αH(1− xH) = αL(1− xL) from the FONC (evaluated at γ = 0).

The sign of this term depends on the content of the square brackets and is positive if

πLf(xL) <
πHµH

xL(1− xH)
. (A.9)

Conditional on A.9 being true, a sufficient condition for proposition 1 to hold is that the

second line in A.8 is non-negative. This is the case if the parentheses in the second line have

a different sign (such that together with the minus sign, the expression is positive). We start
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with the first parenthesis in the second line of (A.8):

∂2S

∂x2H
(u− u′c)− u′h∂

2Z

∂x2H
= πHαH((1− xH)f ′(xH)− f(xH))(u− u′c)− u′hπHf ′(xH)

= −πHαH(u− u′c)f(xH) < 0 (A.10)

where we have substituted the first-order condition u′h = (u− u′c)αH(1− xH).

Last, we turn to the second parenthesis in the second line in A.8:

(
u′′S

∂c

∂γ

∂c

∂xL
+ (u− u′c) ∂2S

∂xL∂γ

)

=

(
u′′

u− u′c
S
∂c

∂γ

∂c

∂xL
+

∂2S

∂xL∂γ

)
(u− u′c)

=

(
u′′c

u− u′c
xLπHπLµH

πLf(xL)

S
(h+ cαL(1− xL)) + πHπLµH

)
(u− u′c)

= πHπLµH

[
u′′cu

(u− u′c)u′
xLπLαL(1− xL)f(xL)

S
+ 1

]
(u− u′c),

where we used the equality πLf(xL)
S

(h+ cαL(1− xL)) = u
u′
πLαL(1−xL)f(xL)

S
from the first-order

condition. The sign of this expression is determined by the term within the square bracket.

It follows that the sufficient conditions for ∂xL
∂γ

> 0 are given by

πLf(xL) <
πHµH

(1− xH)xL
and (A.11)

πLf(xL) < −(u− u′c)u′

u′′cu

S

xL(1− xL)αL
� (A.12)

Proof of Proposition 2

In order for the extension in L to exceed that in H, and thus for the health care sector

to expand in relative terms, it must be that −WxLγWxHxH +WxLxHWxHγ > −WxHγWxLxL +
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WxLxHWxLγ, or

− u′′(u− u′c)S

[
∂2S

∂xL∂γ

(
∂c

∂xH

)2

− ∂2S

∂xH∂γ

∂c

∂xH

∂c

∂xL

]

−

(
∂2S

∂x2H
(u− u′c)− u′h∂

2Z

∂x2H

)(
u′′S

∂c

∂γ

∂c

∂xL
+ (u− u′c) ∂2S

∂xL∂γ

)
>

− u′′(u− u′c)S

[
∂2S

∂xH∂γ

(
∂c

∂xL

)2

− ∂2S

∂xL∂γ

∂c

∂xL

∂c

∂xH

]

−

(
∂2S

∂x2L
(u− u′c)− u′h∂

2Z

∂x2L

)(
u′′S

∂c

∂γ

∂c

∂xH
+ (u− u′c) ∂2S

∂xH∂γ

)

It can first be noted, that the LHS of the above inequality is positive by Proposition 1

(∂xL
∂γ

> 0). We can therefore proceed by splitting this problem into two parts, that is, we

compare the terms in brackets and the terms in parentheses on each side of the inequality.

Then the above inequality is necessarily true if both of the following conditions hold:

− u′′(u− u′c)S

[
∂2S

∂xL∂γ

(
∂c

∂xH

)2

− ∂2S

∂xH∂γ

∂c

∂xH

∂c

∂xL

]
>

− u′′(u− u′c)S

[
∂2S

∂xH∂γ

(
∂c

∂xL

)2

− ∂2S

∂xL∂γ

∂c

∂xL

∂c

∂xH

]
(A.13)

−

(
∂2S

∂x2H
(u− u′c)− u′h∂

2Z

∂x2H

)(
u′′S

∂c

∂γ

∂c

∂xL
+ (u− u′c) ∂2S

∂xL∂γ

)
>

−

(
∂2S

∂x2L
(u− u′c)− u′h∂

2Z

∂x2L

)(
u′′S

∂c

∂γ

∂c

∂xH
+ (u− u′c) ∂2S

∂xH∂γ

)
(A.14)

Because −u′′(u−u′c)S > 0, it is sufficient to consider the terms within the brackets, such

that the inequality in A.13 holds if

∂2S

∂xL∂γ

(
∂c

∂xH

)2

− ∂2S

∂xH∂γ

(
∂c

∂xL

)2

>
∂c

∂xL

∂c

∂xH

(
∂2S

∂xH∂γ
− ∂2S

∂xL∂γ

)
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Substituting the partial derivatives, using αH(1 − xH) = αL(1 − xL), setting γ = 0 and

simplifying gives

πHπLµH

(
πHf(xH)

S

(
h+ cαHm(xH)

))2

− πHπLxLm(xH)f(xH)

(
πLf(xL)

S

(
h+ cαL −m(xL)

))2

>

πHf(xH)

S

(
h+ cαHm(xH)

) πLf(xL)

S

(
h+ cαLm(xL)

)
πHπL

(
xLm(xH)f(xH)− µH

)
⇐⇒ µH

(
πH(f(xH)

)2 − xLm(xH)f(xH)(πLf(xL))2 > πHf(xH)πLf(xL)
(
xLm(xH)f(xH)− µH

)
⇐⇒ µH

((
πH(f(xH)

)2
+ πHf(xH)πLf(xL)

)
> xLm(xH)f(xH)

((
πL(f(xL)

)2
+ πHf(xH)πLf(xL)

)
⇐⇒ µH · πHf(xH) > xLm(xH)f(xH) · πLf(xL)

⇐⇒ πH · µH > πLf(xL) · xLm(xH)

Since the last line is identical to the first sufficient condition derived for Proposition 1,

it follows that A.13 holds if the sufficient conditions for Proposition 1 are met.

We now derive the sufficient condition under which the left-hand side in A.14 exceeds

the right-hand side (recall that if Proposition 1 holds, the LHS is positive). Substituting the

partial derivatives and setting γ = 0 leads to the following condition for Proposition 2 to

hold:

−
(
πHαH

(
(1− xH)f ′(xH)− f(xH)

)
(u− u′c)− u′hπHf ′(xH)

)
·[

u′′cπHπLxLµH · πLf(xL)A+ (u− u′c)πHπLµH
]
>

−
(
πLαL

(
(1− xL)f ′(xL)− f(xL)

)
(u− u′c)− u′hπLf ′(xL)

)
·[

u′′cπHπLxLµH · πHf(xH)A+ (u− u′c)πHπLxL(1− xH)f(xH)
]

(A.15)

where we substituted A ≡ h+cαL(1−xL)
S

= h+cαH(1−xH)
S

> 0 from (8).

The parenthesis on the LHS in (A.15) corresponds to A.10 in Proposition 1 and is there-

fore negative. Using equivalent operations, the parenthesis on the RHS in (A.15) becomes
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πLαL(u− u′c)f(xL). Simplifying leads to

πHαHf(xH)
[
u′′cxLµH · πLf(xL)A+ (u− u′c)µH

]
>

πLαLf(xL)
[
u′′cxLµH · πHf(xH)A+ (u− u′c)xL(1− xH)f(xH)

]
(A.16)

The term that pre-multiplies the bracket on the LHS is unambiguously larger than the

corresponding term on the RHS. Furthermore, the first term in each bracket is negative,

because u′′ < 0. Because πLf(xL) < πHf(xH), it follows that the first term in the brackets

on the LHS is smaller in absolute magnitude (i.e., closer to zero) than the corresponding

term on the RHS. For the inequality to hold, a sufficient condition is therefore that the

second term in brackets is larger on the LHS than on the RHS, or that

µH > xL(1− xH)f(xH) (A.17)

which corresponds to condition (17) in Proposition 2. �

Partial derivatives used for proofs

∂c

∂xH
= −

h ∂Z
∂xH

+ c ∂S
∂xH

S
= −πHf(xH)

S
(h+ cαHm(xH)) < 0

∂2c

∂x2H
= (h+ cαHm(xH))πH

(
2πHf(xH)2αHm(xH)

S2
+

f(xH)cαH
S(h+ cαHm(xh))

− f ′(xH)

S

)
∂c

∂αH
= − c

S

∂S

∂αH
< 0;

∂2c

∂α2
H

=
2c

S2

(
∂S

∂αH

)2

> 0

∂c

∂xL
= −

∂Z
∂xL

h+ c
(
∂S
∂xL

)
S

= −πLf(xL)

S
(h+ cαLm(xL))− πHπLγµH

S
< 0

∂2c

∂x2L
= −

(
h∂

2Z
∂x2L

+ ∂c
∂xL

∂S
∂xL

+ c ∂
2S
∂x2L

)
S −

(
h ∂Z
∂xL

+ c ∂S
∂xL

)
∂S
∂xL

S2
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∂2c

∂αH∂xL
= −

∂c
∂xL

S − ∂S
∂xL

c

S2

∂S

∂αH
> 0

∂c

∂γ
= − c

S

∂S

∂γ

∂2c

∂xH∂γ
= −

(
∂c
∂γ

∂S
∂xH

+ c ∂2S
∂xH∂γ

)
S −

(
∂Z
∂xH

h+ c ∂S
∂xH

)
πHπLxLµH

S2

∂2c

∂xL∂γ
= −

(
∂c
∂γ

∂S
∂xL

+ c ∂2S
∂xL∂γ

)
S −

(
∂Z
∂xL

h+ c ∂S
∂xL

)
∂S
∂γ

S2

∂2c

∂xL∂xH
= −


(

∂c
∂xH

∂S
∂xL

+ c ∂2S
∂xL∂xH

)
S −

(
∂Z
∂xL

h+ c ∂S
∂xL

)
∂S
∂xH

S2


∂Z

∂xH
= πHf(xH);

∂2Z

∂x2H
= πHf

′(xH)

∂Z

∂xL
= πLf(xL);

∂2Z

∂x2L
= πLf

′(xL)

∂S

∂xH
= πHαHm(xH)f(xH) > 0;

∂2S

∂x2H
= πHαH

(
m(xH)f ′(xH)− f(xH)

)
∂S

∂αH
= πHµH > 0;

∂2S

∂α2
H

= 0

∂2S

∂αH∂xH
= πHf(xH)m(xH);

∂2S

∂αH∂xL
= 0

∂S

∂xL
= αLπLm(xL)f(xL) + πHπLγµH > 0;

∂2S

∂x2L
= αLπL

(
m(xL)f ′(xL)− f(xL)

)
∂2S

∂xL∂xH
= f(xH)πH(1− xH)

∂αH
∂xL

∂S

∂γ
= πHπLxLµH ;

∂2S

∂αH∂γ
= 0

∂2S

∂xH∂γ
= πH

∂αH
∂γ

m(xH)f(xH);
∂2S

∂xL∂γ
= πHπLµH

∂αH
∂γ

= πLxL;
∂2αH
∂xL∂γ

= πL

∂αH
∂xL

= γπL;
∂2αH
∂x2L

= 0
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