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ABSTRACT: The accurate estimation of soil mercury lability is
crucial for risk assessment. In comparison to chemical
fractionation and speciation, isotopic dilution (ID) offers precise
definition of labile mercury fractions while maintaining the
natural equilibrium. We developed and applied an ID protocol
with 199Hg to estimate the soil mercury (Hg) isotopically
exchangeable (labile) pool or HgE using a range of industrially
contaminated soils in Switzerland. The measured HgE values
were consistent for the same soil against different spike levels
(50, 100, and 200% of native 199Hg), indicating that the spiked
and soil isotopes achieved required dynamic equilibrium at the
soil−water interface. Total soil Hg (THg; mg kg−1) was the best
predictor of HgE (mg kg−1) and %HgE and accounted for 96
and 63% of the variance, respectively. Nonetheless, despite the
wide range of THg values (0.37−310 mg kg−1) in the studied soils, Hg lability spanned a narrow range (∼12−25% of THg),
highlighting the large capacity of soils to sequester Hg in a very stable form. The “exchangeable pool” of Hg extracted by
CH3COONH4 and MgCl2 (<0.25 and <0.32% of THg, respectively) largely underestimated Hg lability in comparison to ID,
suggesting the potential usefulness of the ID approach.

1. INTRODUCTION

Mercury (Hg) is a global pollutant that has created public
concern because of its toxicity and substantial bioaccumula-
tion.1−3 The UNEP Minamata Convention on Mercury aims to
reduce Hg use and to curb global anthropogenic emissions of
Hg.3,4 However, legacy Hg in soils and sediments will continue
to pose significant risks through re-emission to the atmosphere
and the surrounding environments. For example, the land−
atmosphere flux may actually exceed the primary anthropogenic
emissions of Hg0 and thus prolongs its atmospheric
residence.5−7 Moreover, a considerable fraction of soil mercury
can potentially accumulate in crops8 or migrate to ground and
surface waters.9

Soil Hg mobility and bioavailability are largely linked to its
labile pool; therefore, accurate estimation of Hg lability is
pivotal. To date, chemical extraction methods are the most
popular way to liberate the labile fraction of soil Hg.
Nonetheless, they suffer numerous limitations, e.g., interspecies
conversion, re-adsorption, and redistribution of Hg between
soil phases.10,11 In addition, there is no universal protocol
available such as the sequential extraction procedure developed
by Tessier et al.12 for classic hard metals,10 and selecting the

type and sequence of extractants has always been an empirical
decision based on the nature of soil or the targeted Hg
species.10,11 Moreover, when compared to the uptake of Hg by
flora and fauna, good correlations were found between
bioavailable Hg and Hg from all soil fractions, indicating that
labile Hg is not exclusively bound to specific soil phases.13,14

Isotopic dilution (ID) assesses the labile metal pool in soils by
defining the fraction of metal that is isotopically exchangeable
or its “E-value”.15 Currently, ID is the most promising method
for estimating the potentially labile metal fraction regardless of
its speciation or soil phase.16 Isotopic dilution has been
successfully applied to determine the E-values of several
metals.15−29

To the best of our knowledge, ID protocols have never been
applied to try to measure the lability of soil Hg. Working with
Hg isotopes is a challenging task because of (i) the low
sensitivity of ICP-MS to Hg caused by its naturally occurring
seven isotopes and its high first ionization energy30 and (ii) the
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potential reduction of soluble Hg2+ to Hg0 and subsequent loss
via evaporation or adsorption to glassware and the ICP-MS
tubing system.31 In view of the need to accurately estimate the
availability of Hg in contaminated soils and to assess the
associated environmental risks, this study aims to develop and
apply a working ID protocol to quantify the pool size of labile
soil Hg and to provide preliminary insights into the factors that
likely control its mobility.

2. MATERIALS AND METHODS

2.1. Soil Sampling and Characterization. Three topsoil
cores (0−10 cm) were taken in nine residential areas in South
Switzerland where past industrial contamination with Hg is
suspected (more in section S.1.1). Soils were air-dried and
sieved to <2 mm, and soil properties, including pH, organic
carbon (Org-C), and total soil Hg (THg), were determined as
described in section S.1.1.

2.2. Preparation of Hg Stable Isotope Standards. The
enriched mercury standard (HgCl2, Trace Sciences Inc.,
certified isotopic abundances of 30% for 196Hg and 36.8% for
199Hg) was dissolved in 2% HNO3 and 1% HCl to prevent Hg
volatilization and improve its washout during analysis.30,31

2.3. Determination of Isotopically Exchangeable
(labile) Hg (HgE) in Soil. Our ID protocol was adapted
from several protocols developed for other heavy met-
als.17,18,20,25 For all soils, two sets of soil suspensions [2 g of
dry soils in 30 mL of 0.01 M Ca(NO3)2], each with four
replicates, were prepared and shaken for 72 h. Two of the four
replicates were then spiked with enriched 196Hg or 199Hg before
all tubes were again shaken for an additional 72 h. Spiking
solutions were prepared to deliver 50, 100, and 200% of native
196Hg or 199Hg to the soil suspension in three major groups
(section S.1.2). The volume of the acidic spike solution was
minimized to avoid altering the natural soil pH. Suspensions
were then centrifuged (3500 rpm for 25 min) and filtered with

Figure 1. Comparison of equivalence tests (Minitab 17 package) showing the differences between the mean HgE values, at all sampling locations,
measured by (A) 202Hg vs 200Hg, (B) 200Hg vs 201Hg, and (C) 202Hg vs 201Hg, as reference isotopes. Dashed lines represent the lower equivalence
limit (LEL) and upper equivalence limit (UEL) set at a ±5% difference. Horizontal lines show the confidence interval (95%) for the difference in
HgE measured by 202Hg, 201Hg, or 200Hg. Three soil samples were taken from each location, and two spiked and two unspiked replicates were
prepared for each sample.
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0.45 μm syringe filters. The 196Hg/200Hg, 196Hg/201Hg,
196Hg/202Hg, 199Hg/200Hg, 199Hg/201Hg, and 199Hg/202Hg
isotopic ratios, in the supernatants, were measured with an
Agilent 7700x ICP-MS instrument, and the isotopic abundances
of spike and reference isotopes in soil (unspiked soil
suspensions) were then inferred from their natural abundan-
ces20,24,32 (details in section S.1.3). The isotopically exchange-
able Hg pool or HgE (milligrams per kilogram) of each soil was
calculated from eq 1 (adapted from ref 20).
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where Msl and Msp are the average atomic masses of Hg in soil
and spike, respectively, Csp is the gravimetric concentration
(mg L−1) of 196Hg or 199Hg in the spike solution, Vsp is the
volume of the spike (L), Wsl is the soil weight (kg),

spIAsp and
rfIAsp are the spike and reference isotopes abundances in the
spike solution, respectively, spIAsl and

rfIAsl are their abundances
in soils (unspiked solutions), and R is the equilibrium ratio of
the spike to the reference isotope as measured by ICP-MS.
While HgE gives the absolute amount of isotopically

exchangeable Hg (HgE; mg kg−1), Hg lability (%HgE) is the
percentage of HgE to total soil Hg (THg).
For comparison with chemical extraction, “exchangeable” soil

Hg was extracted by ammonium acetate and magnesium
chloride10,33,34 (more details in section S.1.4).

3. RESULTS AND DISCUSSION

3.1. Soil Parameters. Key soil parameters are listed in
Table S1. All soils were slightly acidic or alkaline (pH 6.2−8.2)
with average Org-C content (2.6−4.5%). The total soil Hg
(THg) ranged on average from 0.37 to 310 mg kg−1 (more in
section S.2.1).
3.2. Selection of Spike and Reference Isotopes.

Mercury is a challenging element to analyze by ICP-MS
because, in addition to its seven stable isotopes and high first
ionization energy, soluble mercuric ions (Hg2+) can be readily
reduced to elemental mercury (Hg0) and lost from solution by
sorption to walls of containers and/or walls of the sample
introduction system.30 To eliminate cross-contamination and
the memory effect, all working solutions were prepared in a
0.5% ultrapure HCl matrix to keep Hg in its oxidized form and
thus improve its washout from the system;31 in addition, a
triple-step washing protocol (section S.1.3) was adopted.
Nevertheless, results still showed substantial cross-contami-
nation in the transition from 196Hg-spiked samples to the
periodic Hg standard. This was likely due to the very low
natural abundance of 196Hg in the periodic standard. As a result,
the natural isotopic ratio of the periodic Hg standard was
significantly distorted and led to fluctuation of the external
mass discrimination correction factors beyond acceptable levels
(0.59−0.93) (Table S2). In comparison, no significant cross-
contamination was observed for 199Hg, and the mass bias
correction factors were close to unity [±<0.02 (Table S2)],
rendering it more favorable as a spike isotope than 196Hg.
Usually, unless significant isobaric interference is predicted,

the “main” isotope is selected as a reference isotope for E-value
calculations (eq 1); this is normally either the most abundant
isotope or the closest to the average mass, e.g., 208Pb, 65Cu, and
114Cd.16,17,20 The values of HgE calculated using 201Hg (average
mass), 200Hg, and 202Hg (most abundant) were significantly

different [paired t test; p < 0.05 (Table S3)]. Nevertheless,
equivalence analysis (Minitab 17) showed that the differences
between HgE calculated by any two reference Hg isotopes were
within a range of ±5% of their means [95% confidence interval
(Figure 1)]; moreover, systematic shifts of the confidence
intervals toward the more abundant isotopes were evident
(Figure 1). In other words, the calculated HgE was directly
proportional to the natural abundance of the selected reference
isotope, which is most likely due to the higher sensitivity of
ICP-MS for heavier and more abundant isotopes.35 Accord-
ingly, the HgE values calculated using 199Hg as a spike isotope
and 202Hg as a reference isotope were regarded the most precise
of all.

3.3. Validation of the Hg E-Value. In principle, E-value
estimation is based on the assumption that the sorption
reaction of the spiked isotopes is reversible and that the
isotopes in soil solution and solid phases are in dynamic
equilibrium.15,16,28,29 Hamon et al.36 and Marzouk et al.25

demonstrated that the spiked isotopes may disturb the natural
isotopic equilibrium leading to a systematic variation in the
measured E-values at higher spike levels. Moreover, in elements
with several oxidation states, e.g., As and Se, interspecies
conversion may produce an error in the measured E-values,
leading to it no longer representing the “isotopically
exchangeable” pools.37,38 Because Hg is known to interact
significantly with organic matter3,4,39 and may undergo
interspecies conversion, e.g., evasion40,41 and methylation,1,42,43

validation of the measured HgE was essential.
We examined the validity of the proposed protocol by

comparing HgE in all soils at different spike levels. Results
showed that the apparent %HgE was consistent against
different 199Hg spike concentrations (Figure 2 and Table S4).

This indicates that the dominant process is the reversible
adsorption of Hg and that the potential chemical trans-
formations of the spiked Hg did not preclude the accurate
determination of HgE. This is also true for the expected
disturbance in the natural isotopic equilibrium at greater spike
levels, which seems to have a minimal effect on the measured
HgE.

3.4. Mercury Lability and Soil Properties. Across the
whole range of data, both HgE (milligrams per kilogram) and %
HgE showed good correlations (r = 0.96 and 0.63, respectively)
with THg, while they showed no significant correlation with

Figure 2. Hg lability (%HgE) in nine different soils from all sampling
locations. Black, light gray, and dark gray columns represent %HgE
estimated at 50, 100, and 200% ratios of spike to native 199Hg,
respectively. Error bars are standard errors between two spiked (for
each spike ratio) and two unspiked replicates. More data in Table S4.

Environmental Science & Technology Letters Letter

DOI: 10.1021/acs.estlett.7b00510
Environ. Sci. Technol. Lett. 2017, 4, 556−561

558

http://pubs.acs.org/doi/suppl/10.1021/acs.estlett.7b00510/suppl_file/ez7b00510_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.estlett.7b00510/suppl_file/ez7b00510_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.estlett.7b00510/suppl_file/ez7b00510_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.estlett.7b00510/suppl_file/ez7b00510_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.estlett.7b00510/suppl_file/ez7b00510_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.estlett.7b00510/suppl_file/ez7b00510_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.estlett.7b00510/suppl_file/ez7b00510_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.estlett.7b00510/suppl_file/ez7b00510_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.estlett.7b00510/suppl_file/ez7b00510_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.estlett.7b00510/suppl_file/ez7b00510_si_001.pdf
http://dx.doi.org/10.1021/acs.estlett.7b00510


any other soil parameter (Table S5). Stepwise regression,
performed by Minitab 17, confirmed that THg is solely the best
predictor of both HgE and %HgE accounting for 96 and 63% of
the variance, respectively (Table S6). Figures S1 and S2 show
that although a very good “power” relationship (R2 = 0.97)
between HgE and THg is evident, there is only a very broad
“logarithmic” relationship (R2 = 0.18) between THg and %
HgE. For HgE (mg kg−1), the strong correlation with THg is
expected because THg spanned 4 orders of magnitude while
falling within relatively narrow ranges of pH (6.2−8.2) and
Org-C (2.63−4.48%) (Table S1). The broad correlation of
THg with %HgE may reflect the fact that anthropogenic Hg
remains more mobile than geogenic Hg or indicates a greater
Hg reactivity due to weaker adsorption at higher THg.
However, this relationship could possibly be an artifact,
especially because THg is used to calculate %HgE. To
investigate this, we used the ‘lognorm.inv’ function in Microsoft
Excel to produce random distributions of THg and %HgE at
10000 values. In addition, %HgE was estimated against
ln(THg) assuming that HgE (mg kg−1) values are constant
around their means ± the standard deviation.44 Figure 3 clearly
shows that, opposite to the experimental data, the calculated
random relationships between THg and %HgE displayed
negative trends.

Overall, the observed range of %HgE [12.2−24.7 (Figure 4)]
was very narrow as opposed to the very wide range of THg
[0.37−310 mg kg−1 (Table S1)] and was considerably lower
than the labilities of other heavy metals, e.g., Cd (≤80%), Pb
(≤60%), and Zn (≤40%).17,18,20,23,24 The exceptional affinity of
Hg for soil organic matter among heavy metals is well-
documented.3,45 This highlights the extraordinarily large
capacity of top soils and sediments with low and/or average
organic content to scavenge high concentrations of Hg and
mitigate its environmental mobility.7,46−48

3.5. Comparison with Extraction Methods. Ammonium
acetate and magnesium chloride extractable Hg (exchangeable
Hg) in our soils could be detected only in VS1 soils with pools

of 0.01−0.25 and 0.01−0.32%, respectively, which is substan-
tially lower than the labile Hg estimated by ID for the same
location (19−33.7%). This very low extractability was in line
with previous findings (usually 0−5%)10,34,48 but was
substantially lower than those of Pb, Zn, and Cd (≤30% over
a similar pH range).17,23−25 This reveals the clear distinction
between Hg as a classic example of a soft metal that has high
affinity for soft ligands, e.g., S-bearing groups and organic
matter, as opposed to hard metals that tend to react with hard
ligands, such as O-bearing groups and Fe, Mn, and Al hydrous
oxides.3,47,49,50 Therefore, in the case of hard acids (hard metals
and protons), competition with Mg2+ and NH4

+ on negatively
charged oxygen sites may displace large amounts of sorbed
metals, especially in acidic soils. On the other hand, as a soft
metal attached to soft ligands, Hg will face no such
competition, and the amounts released to the soil solution
will be minimal over the whole natural soil pH range.47

3.6. Highlights, Limitations, and Outlooks. The soils
used in this study were sampled at sites relatively close to each
other that had been contaminated by one industrial Hg point
source. They were thus relatively homogeneous in their Hg
speciation, and this may have contributed to the apparent
consistency of HgE at different spike levels. Highly acidic/
alkaline soils or those soils enriched with Org-C that are
simultaneously highly mineralized with Hg are scarce, and the
investigation of HgE in pristine soils will require an analytical
system that offers greater detection limits, e.g., by using a cold
vapor introduction system and/or higher-resolution ICP-MS.
This may also help in overcoming the 196Hg carryover issues we
encountered, enabling its usage as a spike isotope at levels
much lower than that of 199Hg.
Nevertheless, our set of soils covered the pH (slightly acidic

to slightly basic) and Org-C (∼2−5%) ranges mostly found in
nature, and the results demonstrated clearly that, under
common circumstances, THg was the most decisive factor for
both HgE and %HgE and highlighted the great capacity of
surface soils and sediments to immobilize large quantities of
Hg. However, future work on Hg-contaminated soils with a
wider range of parameters and studies that link HgE to

Figure 3. Relationship between ln(THg) and experimentally measured
%HgE values displayed as gray circles. The dashed line is a linear
regression of the data. The dotted line represents linear regression of
10000 random pairs of %HgE and ln(THg) allocated using the
‘lognorm.inv(rand)’ function in Microsoft Excel. The two solid curves
assume that HgE values are fixed at the means of ln(HgE) ± the
standard deviation, thus resulting in a variation of %HgE with
ln(THg).

Figure 4. Values of %Hg lability (%HgE of total Hg) in all sampling
locations. The “box and whisker” plot shows medians (horizontal
lines) and means (black circles). The box demarcates the boundaries
of the second and third quartiles; the whiskers extend to the furthest
data point within 1.5 box heights (of the box). Locations are arranged
according to their mean %HgE values in ascending order. Each
sampling location is represented by three soil samples and four
replicates (two spiked and two unspiked). Numbers above or below
boxes are the average total Hg (THg) in each location (mg kg−1).
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bioavailable and reactive Hg (uptake by plants and animals,
migration, and evasion) will be of great importance.
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