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ABSTRACT 

Two donor-bridge-acceptor molecules with terminal triarylamine and Ru(bpy)3
2+ (bpy = 2,2’-

bipyridine) redox partners were synthesized and investigated by cyclic voltammetry, optical absorption, 

luminescence, and transient absorption spectroscopy. The two dyads differ only by the central bridging 

unit which was tetramethoxybenzene (tmb) in one case and un-substituted phenylene (ph) in the other 

case. Photo-irradiation of the Ru(bpy)3
2+ complex of the two dyads triggers intramolecular electron 

transfer from the triarylamine to the 3MLCT-excited metal complex, and this process occurs with time 

constants of 1.5 ns and 6.8 ns for the tmb- and ph-bridged dyads, respectively. Thermal electron transfer 

in the reverse direction then leads to disappearance of the photoproduct with a time constant of 10 ns in 

both dyads. The faster rate of photoinduced charge transfer in the tmb-bridged dyad can be understood 

in the framework of a hole tunneling model in which the electron-rich tmb bridge imposes a more 

shallow barrier than the less electron-rich ph spacer. Until now tmb-based molecular wires have 

received very little attention, and alkoxy-substituents have been mostly used for improving the solubility 

of oligo-p-phenylene vinylene (OPV) and oligo-p-phenylene ethynylene (OPE) wires. Our study 

illustrates how four alkoxy-substituents on a phenylene backbone can have a significant influence on the 

charge transfer properties of a molecular wire, and this is relevant in the greater context of a future 

molecular electronics technology. 

 

KEYWORDS 

Electron transfer, transient absorption spectroscopy, photochemistry, molecular electronics, 

electrochemistry 
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INTRODUCTION 

 

Long-range electron transfer can occur either via tunneling or hopping mechanisms.1-3 The latter 

requires redox-active units in the electron transfer pathway which can temporarily be reduced or 

oxidized, and such units have sometimes been called “stepping stones”.4-6 Even though in the tunneling 

regime the bridge is neither oxidized nor reduced, its electronic structure plays a key role in mediating 

electronic coupling between the donor and the acceptor.7-12 Many researcher have attempted to optimize 

molecular bridges in order to obtain fast electron or energy transfer over long distances (>10 Å).10, 11, 13-

36 In some of our own recent work we found that electron transfer from a phenothiazine donor to a 

photogenerated Ru(bpy)3
3+ species across a series of four p-xylene spacers proceeds with a time 

constant of ∼20 µs whereas equidistant charge transfer between the same donor and acceptor across four 

p-dimethoxybenzene units occurred ∼1000 times faster (Scheme 1).37 Dimethoxybenzene is oxidized 

significantly more easily than xylene, and consequently hole tunneling is associated with a more 

shallow barrier in the case of p-dimethoxybenzene than when p-xylene bridging units are present.8, 38, 39 

Related observations have been made on various systems by different researchers.38, 40-44 

 

Scheme 1. Hole transfer from photogenerated Ru(bpy)3
3+ to phenothiazine across p-xylene and p-

dimethoxybenzene spacers.37 

 

 

1,2,4,5-Tetramethoxybenzene (tmb) is oxidized even more readily than p-dimethoxybenzene,45-47 and 

therefore we reasoned that a molecular bridge containing tmb might be able to mediate long-range 
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charge transfer even more efficiently. The electrochemical potential for one-electron oxidation of tmb is 

in fact so low that the transition from a tunneling to a hopping regime appeared possible in combination 

with a triarylamine (TAA) / Ru(bpy)3
2+ redox couple. In a prior study we connected tmb directly to a 

Ru(bpy)3
2+ complex and a neighboring p-dimethoxybenzene bridge unit.48 This molecular design turned 

out to be sub-optimal because the steric demand of tmb caused large equilibrium torsion angles between 

tmb and its neighboring building blocks. This is detrimental for long-range electron transfer because π-

conjugation is reduced substantially when increasing the torsion angle between adjacent phenyl or 

pyridine rings.12, 49-51 For the present study we therefore flanked the tmb bridging unit with ethynyl 

groups, resulting in the TAA-tmb-Ru
2+ dyad shown in Scheme 2. An analogous compound with an un-

substituted phenylene (ph) instead of the tmb unit was explored as a reference system (TAA-ph-Ru
2+). 

 

Scheme 2. Molecular structures of the two donor-bridge-acceptor compounds investigated in this work. 

 

 

 

RESULTS AND DISCUSSION 

 

Synthesis and X-ray crystallography. The two dyads from Scheme 2 each contain a ligand in which a 

2,2’-bipyridine (bpy) motif is connected to a triarylamine (TAA) electron donor, either via a tmb or a ph 

bridging unit. These two ligands (21 and 22) were synthesized as illustrated by Scheme 3. 
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Scheme 3. Synthesis of the ligands with triarylamine donor groups and tmb / ph spacers: (a) BF3⋅Et2O, 

MeOH; (b) NaBH4, EtOH; (c) Me2SO4, NaHSO3, KOH, EtOH / H2O; (d) n-BuLi, TMEDA, Et2O, I2; (e) 

2-methyl-3-butyn-2-ol, PdCl2(PPh3)2, CuI, Et3N; (f) NaH, toluene; (g) KOH, toluene; (h) Pd(PPh3)4, 

THF; (i) Pd(PPh3)4, Na2CO3, THF / H2O; (k) ICl, CH3CN / CH2Cl2; (l) NaOtBu, Pd(dba)2, (HPtBu3)BF4, 

toluene; (m) C6H5I(CF3COO)2, I2, CH2Cl2; (n) PdCl2(PPh3)2, CuI, Et3N. 

 

 

 For the TAA-tmb-Ru
2+ dyad, synthesis started from 2,5-dihydroxy-1,4-benzoquinone (1) which was 

converted to 1,4-diethynyl-2,3,5,6-tetramethoxybenzene (7) in 6 steps in 53% overall yield.42, 52-54 For 

the TAA-ph-Ru
2+ dyad, the 1,4-diethynylbenzene (10) building block was available in only 2 steps 

from commercial 1,4-diiodobenzene (8) in 93% yield.55 The iodoxylene-equipped bpy fragment 16 was 

accessible in 3 steps from commercial chemicals (11, 12),56, 57 in addition to the two-step synthesis of 4-
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(trimethylsilyl)phenylboronic acid (14) from 2,5-dibromo-p-xylene.58-60 The iodo-substituted TAA unit 

20 was prepared in 2 steps from bis(p-anisyl)amine (17) following a previously published method.61 

One-pot Sonogashira coupling reactions involving the iodo-substituted TAA donor unit 20, diethynyl-

equipped bridging units 7 or 10, and the iodoxylene-equipped bpy fragment 16 then afforded the desired 

ligands 21 and 22. 

 

Figure 1. Crystallographic structure of ligand 21 (used for the TAA-tmb-Ru
2+ dyad). Anisotropic 

displacement parameters are drawn at the 50% probability level. 

 

The result of an X-ray diffraction study of single crystals of ligand 21, grown by slow evaporation 

from acetone solution, is shown in Figure 1. Ligand 21 crystallizes in space group P-1 with two 

molecules per unit cell. The triarylamine donor unit adopts its common propeller-shaped structure,62 and 

the bipyridine ligand has its two pyridine units oriented in opposite fashion to each other, as commonly 

observed. The central tetramethoxybenzene unit is nearly coplanar with the adjacent phenyl rings with 

torsion angles of 10.1° and 34.1° relative to the p-xylene unit and the relevant phenyl from the 

triarylamine, respectively. The distance between the triarylamine N atom and the center of the bpy 

ligand is 22.9 Å, consequently, the N–Ru (donor-acceptor distance) in the dyad will be roughly 23 Å. 

Ligand 21 arranges in sheets which lie in the crystallographic ab plane. 

 

UV-Vis spectroscopy and electrochemistry. In Figure 2 the optical absorption spectra of TAA-tmb-
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Ru
2+ and TAA-ph-Ru

2+ in CH3CN are shown along with the UV-Vis spectrum of the Ru(bpy)3
2+ 

reference complex measured under identical conditions. In the two dyads, the 1MLCT absorption band 

of the photosensitizer is merely a shoulder to more intense, ligand-centered absorption bands, yet it 

seems clear that the lowest-energetic electronically excited state is the MLCT state of the Ru(bpy)3
2+ 

fragment in both dyads. 

 

 

Figure 2. Optical absorption spectra of the two dyads from Scheme 2 along with the UV-Vis spectrum 

of Ru(bpy)3
2+ in CH3CN. 

 

Cyclic voltammograms obtained using solutions of the two dyads in CH3CN in presence of 0.1 M 

TBAPF6 as a supporting electrolyte are shown in Figure 3. Oxidative and reductive potential sweeps 

with rates of 0.1 V/s were conducted separately because this gave higher quality results. In the reductive 

sweeps one easily recognizes 3 subsequent reversible waves corresponding to consecutive one-electron 

reduction of each of the three bpy ligands of the photosensitizer between -1.8 V and -2.2 V vs. Fc+/Fc, 

as commonly detected.63-65 In the oxidative sweeps, there is a wave due to triarylamine oxidation around 

0.3 V vs. Fc+/Fc and a wave caused by the Ru(II)/Ru(III) couple around 0.8 V vs. Fc+/Fc, both in line 

with expectation.63-66 For the isolated 1,2,4,5-tetramethoxybenzene (tmb) molecule an oxidation 

potential of 0.42 V vs. Fc+/Fc has been reported,45, 46 but in Figure 3 there is no sign of tmb oxidation, 

perhaps because its oxidation overlaps with that of the triarylamine. All relevant reduction potentials are 

summarized in Table 1. 
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Figure 3. Cyclic voltammograms for the two dyads from Scheme 2 in CH3CN with 0.1 M TBAPF6. The 

potential sweep rates were 0.1 V/s. The waves at 0.0 V are due to ferrocene which was added in small 

quantities for internal potential calibration. 

 

Table 1. Reduction potentials (E0) for the individual redox-active components of the two dyads from 

Scheme 2.a 

 TAA-tmb-Ru
2+

 TAA-ph-Ru
2+

 

Ru(III)/(II) 0.80 0.81 

TAA+/0 0.23 0.23 

tmb+/0 0.42b,d  

ph+/0  2.10c,d 

bpy0/- -1.78 -1.78 

bpy0/- -1.99 -2.03 

bpy0/- -2.21 -2.22 

a In CH3CN with 0.1 M TBAPF6, measured with potential sweep rates of 0.1 V/s. All potentials are 
given in Volts relative to the Fc+/Fc couple; b reported in ref. 45, 46 for the 1,2,4,5-tetramethoxybenzene 
molecule in CH3CN; c reported in ref. 67 for the benzene molecule in CH3CN; d converted from a 
potential reported in V vs. SCE to V vs. Fc+/Fc according to ref. 68. 

 

Identification of photoproducts. In Figure 4a/d transient absorption spectra obtained after excitation of 

2⋅10-5 M solutions of the two dyads in aerated CH3CN at 532 nm with laser pulses of ∼10 ns duration 
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are shown. The spectra were recorded by averaging over a time period of 200 ns starting immediately 

after the excitation pulses. Use of this wavelength leads to selective excitation of the Ru(bpy)3
2+ 

photosensitizer of TAA-tmb-Ru
2+ and TAA-ph-Ru

2+. For both dyads a similar transient absorption 

spectrum is obtained: There are absorption bands centered at 740 and 470 nm in addition to a bleach at 

390 nm. These three spectral features can be explained by the formation of TAA
+
-tmb-Ru

+ and TAA
+
-

ph-Ru
+ photoproducts as a result of electron transfer from TAA to the photoexcited Ru(bpy)3

2+ 

complex as explained in the following. 

 

 

Figure 4. Transient difference spectra of (a) TAA-tmb-Ru
2+ and (d) TAA-ph-Ru

2+ in aerated CH3CN 

(2⋅10-5 M) measured after excitation at 532 nm with laser pulses of ∼10 ns duration. The signal was 

averaged over a time interval of 200 ns immediately after excitation. The asterisks (*) mark signals due 

to laser stray light. UV-Vis difference spectra of (b) TAA-tmb-Ru
2+ and (e) TAA-ph-Ru

2+ measured in 

CH3CN after addition of one equivalent of Cu(ClO4)2 as a chemical oxidant. UV-Vis difference spectra 

of (c) TAA-tmb-Ru
2+ and (f) TAA-ph-Ru

2+ measured in CH3CN after applying a potential of -1.8 V 

vs. Fc+/Fc to induce reduction of Ru(bpy)3
2+ to Ru(bpy)3

+. In (b, c, e, f) the UV-Vis spectra recorded 

before applying any potential served as baselines. 
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The UV-Vis difference spectra in Figure 4b/e were measured after addition of one equivalent of 

Cu(ClO4)2 to solutions of TAA-tmb-Ru
2+ and TAA-ph-Ru

2+ in CH3CN which leads primarily to 

oxidation of the triarylamine;66 the spectra obtained before addition of any chemical oxidant served as 

baselines in both cases. One observes increased absorption at ∼750 and ∼475 nm as well as decreased 

absorption at ∼400 nm in both dyads. The bands at ∼750 and ∼475 nm are typical for triarylamine 

radical cations.57, 66, 69, 70 

The UV-Vis difference spectra in Figure 4c/f were obtained by applying a potential of -1.8 V vs. 

Fc+/Fc to solutions of TAA-tmb-Ru
2+ and TAA-ph-Ru

2+ in CH3CN (using a Pt grid electrode); the 

spectra obtained before applying any potential served as baselines in both cases. At this potential the 

Ru(bpy)3
2+ unit in both dyads can be reduced selectively (Table 1). In both cases this leads to increased 

absorption above ~400 nm and to a bleach at shorter wavelengths. 

For both dyads the transient absorption spectra (Figure 4a/d) are essentially a 1:1 superposition of the 

spectro-electrochemical data illustrating the formation of TAA+ and Ru(bpy)3
+ (“Ru+”). This is clear 

evidence for intramolecular electron transfer from TAA to photoexcited Ru(bpy)3
2+ in TAA-tmb-Ru

2+ 

and TAA-ph-Ru
2+. The reaction free energy (∆GET

0) for this process can be estimated with the Weller 

equation (eq. 1),71 using the electrochemical potentials from Table 1 and a 3MLCT energy (E00) of 2.12 

eV for Ru(bpy)3
2+.63, 72 For a donor-acceptor distance (RDA) of 23 Å (see above), this method yields 

∆GET
0 = -0.13 eV for both dyads. The reverse (thermal) electron transfer from Ru+ back to TAA+ to re-

establish the starting materials is associated with a reaction free energy (∆GbET
0) of -1.99 eV in both 

dyads. Eq. 2 was employed to estimate the (outer-sphere) reorganization energy (λo) associated with 

photoinduced electron transfer.73, 74 Using a reactant radius (rD = rA) of 4.5 Å and the relevant constants 

for CH3CN (εs = 35.94, n=1.3460) one obtains λ = 1.35 eV for both dyads. 

 

∆GET
0 = e⋅(E0(TAA+/0) – E0(bpy0/-)) – E00 – e2 / (4⋅π⋅ε0⋅εs⋅RDA)    (eq. 1) 
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λo = e2 / 4⋅π⋅ε0⋅[(2⋅rD)-1 + (2⋅rA)-1 – RDA
-1]⋅(n-2 – εs

-1)     (eq. 2) 

 

Assuming that the total reorganization energy (λ) is dominated by the outer-sphere contribution (λo), 

this analysis then leads to the conclusion that photoinduced electron transfer from TAA to photoexcited 

Ru(bpy)3
2+ takes place in the so-called normal regime in both dyads (-∆GET

0 < λ) whereas the reverse 

(thermal) electron transfer occurs in the Marcus inverted region (-∆GbET
0 > λ). The latter process is in 

fact closer to the barrierless point, hence one might anticipate more rapid thermal reverse electron 

transfer than photoinduced (forward) electron transfer. 

 

 

Figure 5. Transient absorption spectra measured at different time delays after excitation of TAA-tmb-

Ru
2+ in CH3CN at 400 nm using a fs/ps TA setup.75 Analogous data for the TAA-ph-Ru

2+ dyad are 

reported in the Supporting Information (Figure S1). 

 

Kinetics of photoinduced electron transfer. A combination of pico- and nanosecond transient 

absorption spectroscopy was necessary to explore the electron transfer kinetics in the two dyads from 

Scheme 2. Following excitation at 400 nm with a femtosecond laser pulse,75 the series of transient 
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absorption spectra shown in Figure 5 was obtained for TAA-tmb-Ru
2+ in de-aerated CH3CN. An 

analogous data set for TAA-ph-Ru
2+ is in the Supporting Information (Figure S1). On a very short 

timescale (<10 ps), one observes absorption maxima at 510 and 730 nm in addition to a bleach near 400 

nm. The respective signals decrease over the first 11 ps (Figure 5a) before there is an increase of 

absorptions with maxima at 500 nm and above 700 nm, in addition to a growing bleach at 400 nm 

(Figure 5b). The temporal evolution of the transient absorption was analyzed by a global fit involving 

four exponential functions, yielding time constants of 0.9 ps, 1.4 ps, 1.6 ns, and > 5 ns. Alternatively, a 

global target analysis assuming an A → B → C → D → E reaction scheme (with “A” the initially 

excited state and “E” the ground state) was performed, and this procedure yielded, as expected,76 the 

same time constants in addition to the species-associated difference absorption spectra (SADS) shown 

in Figure 6. The SADS for species D is compatible with the TAA
+
-B-Ru

+ photoproduct, and the SADS 

for species C is attributed to the 3MLCT state of the Ru(bpy)3
2+ unit of TAA-B-Ru

2+. Precise 

identification of species A and B is not possible, but the initial ultrafast processes are likely to involve 

internal conversion from the optically excited (ligand-centered) state to the 1MLCT, intersystem 

crossing to the 3MLCT state, and (vibrational and solvent) relaxation of the 3MLCT state.77 

 

 

Figure 6. Species-associated difference spectra (SADS) extracted from the global target analysis of the 

fs/ps TA spectra measured for TAA-tmb-Ru
2+ in Figure 5. Analogous SADS for TAA-ph-Ru

2+ are 

given in the Supporting Information (Figure S2). 
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For the TAA-ph-Ru
2+ dyad very similar transient absorption spectra are obtained (Figure S1), but the 

kinetic analysis yields time constants which are different from those obtained for TAA-tmb-Ru
2+. 

Specifically, 0.9 ps, 1.5 ps, ∼4 ns, and > 5 ns are found; the respective SADS of an A → B → C → D → 

E reaction sequence are shown in Figure S2. In analogy to TAA-tmb-Ru
2+, species “C” is attributed to 

the 3MLCT state and species “D” is assigned to the TAA
+
-ph-Ru

+ photoproduct. Given the 0 – 1.5 ns 

time window of the experimental (fs/ps) setup, only an approximate value of ∼4 ns can be estimated for 

the time constant for the electron transfer process C → D. 

 

 

Figure 7. Transient absorption spectra measured at different time delays after excitation of TAA-tmb-

Ru
2+ in de-aerated CH3CN at 355 nm using a sub-ns/µs TA setup.78 Analogous data for the TAA-ph-

Ru
2+ dyad are reported in the Supporting Information (Figure S3). 

 

Additional experiments which permit detection of transient absorption spectra beyond 1.5 ns were 

therefore performed on a different setup using excitation at 355 nm.78 These experiments allow more 

reliable determination of the rate constants for photoinduced electron transfer (process C → D) and for 

thermal reverse electron transfer (process D → E). Transient absorption spectra recorded with this (sub-
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ns/µs) setup at different time delays for the TAA-tmb-Ru
2+ dyad in de-aerated CH3CN are shown in 

Figure 7. Expectedly, the same spectral features as detected above (Figure 5) are observed, but they can 

be followed over a significantly longer time range. On the nanosecond timescale one can identify three 

decay times, namely 1.5 ns, 10 ns and 560 ns. The respective SADS are shown in Figure 8. The time 

constant of 1.5 ns is attributed to intramolecular electron transfer from TAA to photoexcited Ru(bpy)3
2+, 

and this value is in line with that extracted from the fs/ps studies (1.6 ns) reported above (Figure 5). The 

time constant of 10 ns is attributed to intramolecular reverse electron transfer from the reduced 

ruthenium photosensitizer to oxidized TAA+ (process D → E); to maintain consistency between Figures 

5 and Figure 7, the respective species is labelled “D” in both cases. This value is more accurate than that 

extracted from the fs/ps studies in Figure 5; in the studies with higher temporal resolution reported 

above it was merely possible to determine a lower limit of 5 ns for thermal reverse electron transfer in 

the TAA-tmb-Ru
2+ dyad. Finally, the time constant of 560 ns is attributed to an impurity which escaped 

detection in the analytical methods used to characterize TAA-tmb-Ru
2+ but which contributes (to a 

minor extent) to the transient absorption spectra in Figure 6. The respective SADS in Figure 8 is 

labelled with “X”.  

 

 

Figure 8. Species-associated difference spectra (SADS) extracted from the global target analysis of the 

sub-ns/µs TA spectra measured for TAA-tmb-Ru
2+ in Figure 7. Analogous SADS for TAA-ph-Ru

2+ 

are given in the Supporting Information (Figure S4). 
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Analogous experiments were performed with the TAA-ph-Ru
2+ reference dyad in CH3CN, and the 

respective transient absorption spectra are reported in Figure S3. From the SADS in Figure S4, three 

species-associated decay times can be extracted. In this case they are 6.8 ns, 10 ns, and 490 ns. In 

analogy to the TAA-tmb-Ru
2+ dyad, they are attributed to the time constants for electron transfer from 

TAA to 3MLCT-excited Ru(bpy)3
2+ (process C → D), to thermal reverse electron transfer (process D → 

E), and to a (minor) impurity, respectively. All relevant rate constants for intramolecular electron 

transfer are summarized in Table 2. 

 

Table 2. Time constants for intramolecular electron transfer in de-aerated CH3CN at 20 °C. 

 forwarda reverseb 

TAA-tmb-Ru
2+

 1.5 ns 10 ns 

TAA-ph-Ru
2+

 6.8 ns 10 ns 

a Photoinduced electron transfer from TAA to 3MLCT-excited Ru(bpy)3
2+; b Thermal electron transfer 

from Ru(bpy)3
+ to TAA+. 

 

Physical origin of different rate constants for photoinduced electron transfer. In both dyads the time 

constants for photoinduced electron transfer (2nd column in Table 2) are significantly shorter than the 

time constant for thermal electron transfer in the reverse direction (3rd column of Table 2). At first first, 

this finding is surprising because the driving-force and reorganization energy analysis made above 

suggested that thermal reverse electron transfer occurs closer to the activationless regime than 

photoinduced (forward) electron transfer. However, in addition to the so-called nuclear factor whose 

magnitude is determined by the interplay between driving-force (∆GET
0, ∆GbET

0) and reorganization 

energy (λ), the so-called electronic factor governs the rate constants for electron transfer.73 As noted 

earlier, the electronic factor can be very different for photoinduced forward and thermal reverse electron 

transfer because different molecular orbitals are involved in the two processes.7, 79 We assume that it is 

primarily this effect which makes photoinduced electron transfer faster than thermal reverse electron 
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transfer in our dyads. 

The key finding from this study is that the equidistant intramolecular electron transfer from TAA to 

3MLCT-excited Ru(bpy)3
2+ is substantially faster in TAA-tmb-Ru

2+ (1.5 ns) than in TAA-ph-Ru
2+ (6.8 

ns). We attribute this difference to stronger electronic coupling (HDA) between the TAA and Ru(bpy)3
2+ 

units in the dyad with the tmb bridging unit. According to superexchange theory,80 the electronic 

coupling between a donor (D) and an acceptor (A) separated by n identical bridging units (b) is given by 

equation 3.1, 8, 38 

 

bA

n

bbDb
DA h

hh
H ⋅








∆

⋅
∆

=
−1

εε
         (eq. 3) 

 

In equation 3, hDb, hbb, and hbA represent the electronic couplings between the donor and the adjacent 

bridging unit, between two neighboring bridging units, and between the last bridging unit and the 

acceptor, respectively.1, 8 The parameter ∆ε is called tunneling energy gap and corresponds to the energy 

difference between the donor-acceptor system at the transition state configuration and the one-electron 

reduced or oxidized states of the bridge, depending on whether electron or hole transfer is considered 

(Scheme 4).7, 8, 38, 81  

 

Scheme 4. Illustration of the tunneling energy gap (∆ε).a 
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a D stands for donor, b stands for bridge, and A stands for acceptor. ∆GET
0 is the reaction free energy 

associated with electron transfer from D to A. 

 

In practice, ∆ε is often approximated as the difference between the donor oxidation and bridge 

reduction potentials when considering electron transfer, or as the difference between the acceptor 

reduction and bridge oxidation potentials when dealing with hole transfer.3a, b, 5a, 20 In our dyads n = 1 

(only single bridging units are present), and it seems plausible that the hDb and hbA terms in equation 3 

are very similar for tmb and ph bridging units. However, ∆ε is expected to be substantially different for 

tetramethoxybenzene and un-substituted phenylene, because the former can be oxidized significantly 

more easily due to its electron-donating substituents. The reduction of tmb and ph occurs at very 

negative potentials, and therefore it seems likely that a hole transfer rather than an electron transfer 

mechanism is operative in the dyads from Scheme 2. The oxidation potentials of tmb and ph are 0.42 V 

vs. Fc+/Fc and 2.10 V vs. Fc+/Fc, respectively (Table 1).45, 46, 67 The acceptor reduction potentials are 

identical in TAA-tmb-Ru
2+ and TAA-ph-Ru

2+ and amount to -1.78 V vs. Fc+/Fc in the electronic 

ground state (Table 1). In the 3MLCT excited state, they are 0.34 V vs. Fc+/Fc because the 3MLCT 

energy is 2.12 eV.63 Consequently, the estimated tunneling energy gaps are ∆ε = 0.08 eV for TAA-tmb-

Ru
2+ and ∆ε = 1.76 eV for TAA-ph-Ru

2+. This difference is substantial, and it can explain the 

difference in time constants for photoinduced electron transfer in the respective two dyads (1.5 vs. 6.8 

ns, Table 2). 

In the superexchange model for electron transfer, the one-electron reduced or oxidized states of the 

bridges are never actually populated but they are merely virtual states which define the height of the 

tunneling barrier associated with long-range electron transfer.38, 82 However, in the TAA-tmb-Ru
2+ 

dyad the estimated ∆ε value is very low (0.08 eV). Given the uncertainty associated with its 

approximation, the possibility of a hole hopping process in which oxidized tmb is formed as a reaction 

intermediate cannot be excluded a priori. However, the ultrafast time-resolved experiments reported 
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above provide no evidence for the formation of tetramethoxybenzene cation with its characteristic 

absorption at 450 nm.83 In any case it seems plausible that the low oxidation potential of tmb compared 

to ph plays a key role for the kinetics of photoinduced electron transfer. 

Curiously, the time constants for thermal reverse electron transfer from the reduced ruthenium 

complex to the oxidized triarylamine are identical in both dyads (10 ns, Table 2). Assuming a hole 

transfer mechanism is operative, one estimates ∆ε = 0.19 eV and ∆ε = 1.87 eV for the charge-shift from 

TAA+ to tmb and ph, respectively, and this leads to the expectation of more rapid hole transfer in the 

tmb-bridged dyad. However, it is possible that the accelerating effect brought about by the lower ∆ε 

value in the tmb dyad is outbalanced by weaker electronic coupling (hbA) between tmb and TAA+ with 

respect to ph and TAA+; the formation of triarylamine monocation is expected to be associated with 

geometrical changes which may include torsion along the C-C triple bond between tmb/ph and TAA+, 

and this effect could be more pronounced in the sterically more demanding tmb unit relative to the un-

substituted ph spacer.49, 50, 84 

 

SUMMARY AND CONCLUSIONS 

 

Alkoxy-substituents are frequently used to improve the solubility of rigid rod-like oligo-p-phenylene 

vinylene (OPV) and oligo-p-phenylene ethynylene (OPE) wires.11, 13, 36, 85-98 Usually, the phenylene 

units of these oligomers or polymers are substituted with two alkoxy-groups in para-position to each 

other, because this leads to the desired solubility enhancement. We hypothesized that fourfold methoxy-

substitution would lower the oxidation potential of the resulting molecular wire to the extent that 

significant rate enhancement for hole transfer can be achieved. This hypothesis was verified by the 

comparative study of the two dyads from Scheme 2 which showed that the tetramethoxybenzene spacer 

of TAA-tmb-Ru
2+ permits more rapid charge transfer by about a factor of 4.5 than the un-substituted 

phenylene spacer of TAA-ph-Ru
2+. Consequently, fourfold alkoxy-substitution might be generally 
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beneficial in molecular wires, particularly in OPEs where the presence of more than two substituents on 

the phenylene units is less likely to have a detrimental effect on overall π-conjugation than in OPVs. In 

OPVs there might be some steric hindrance between alkoxy-groups and adjacent alkene H atoms, but at 

present we have no evidence that fourfold alkoxy-substitution on OPVs should not be possible. 
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SYNOPSIS TOC  

 

Photoinduced hole transfer across a tetramethoxybenzene spacer occurs more rapidly than across an un-

substituted phenylene spacer in triarylamine – Ru(2,2’-bipyridine)3
2+ dyads because methoxy-

substitution lowers the oxidation potential of the molecular bridge between the donor and the acceptor. 

Page 31 of 31

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


