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ABSTRACT: A general and highly enantioselective arylation of carbamates derived from primary alcohols was developed by 
combining Hoppe's sparteine-mediated asymmetric lithiation with Negishi cross-coupling. Coupled with Aggarwal's lithiation-
borylation sequence, the current method provides a short and divergent access to a variety of enantioenriched secondary and tertiary 
benzylic alcohols.  

The asymmetric lithiation of carbamates derived from aliphat-
ic alcohols with s-BuLi and (–)-sparteine [(–)-sp] has been 
extensively studied by Hoppe and co-workers (Scheme 1a).1 
Upon trapping the configurationally stable organolithium 
intermediate with a suitable electrophile, a variety of highly 
enantioenriched secondary alcohols are accessed. Both enanti-
omers of sparteine are commercially available or readily pre-
pared from the seeds of Lupinus albus,2 thereby making this 
method highly practical and versatile despite the use of stoi-
chiometric chiral reagent. However, to our knowledge the 
Hoppe method has been limited to nonaromatic electrophiles. 
On the other hand, Campos and co-workers have been able to 
combine Beak's asymmetric lithiation of Boc-amines3 with s-
BuLi/(–)-sp with stereoretentive Li®Zn transmetalation and 
Negishi cross-coupling,4 but high enantioselectivities could be 
achieved only with Boc-pyrrolidines (Scheme 1b).5  The cur-
rent work demonstrates that the combination of Hoppe's 
asymmetric lithiation with Negishi cross-coupling allows 
access to a-arylcarbamates with high enantioselectivities 
(Scheme 1c). These products are precursors of a great variety 
of enantio-enriched secondary and tertiary benzylic alcohols 
via Aggarwal's lithiation-borylation method.6 Both types of 
alcohols, which are traditionally synthesized by enantioselec-
tive reduction, addition of organometallics to carbonyl com-
pounds, or by enzymatic resolution,7 find widespread use as 
chiral building blocks for the synthesis of active pharmaceuti-
cal ingredients, such as the blockbuster antidepressants Fluox-
etine and Escitalopram8 (Scheme 1, bottom). 

Scheme 1. Asymmetric lithiation of carbamates using s-
BuLi/(–)-sparteine and Negishi arylation: state-of-the-art 
and current work 
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Table 1. Study of the directing group and optimized reac-
tion conditionsa 

 
entry product C(O)R TMEDA (–)-sp 
   yield (%)b yield (%)b erc 
1 5a Cb 71 51 98:2 
2 6a Cbx 87 70 99.5:0.5 
3 7a Cby 81 86 99.5:0.5 
4 8a TIB 47 62 92.5:7.5 
5d 7a Cby 70 n.d. n.d. 
6e 7a Cby 41 n.d. n.d. 
7f 7a Cby 7 n.d. n.d. 
aReaction conditions: (i)1a-4a (1.0 equiv), s-BuLi (1.3 equiv), 
diamine (1.3 equiv), Et2O, –78 °C, 1 h (TMEDA) or 5 h [(–)-sp], 
(ii) Zn(OAc)2 (1.4 equiv), –78 °C, 30 min, then 20 °C, 30 min, 
then evaporation of volatiles; (iii) p-MeOC6H4Br (0.7 equiv), 
Pd2dba3 (1.75 mol %), RuPhos (3.5 mol %), toluene, 80 °C, 18 h. 
bYield of the isolated product. cMeasured by HPLC using a chiral 
phase. dp-MeOC6H4I was used as the electrophile. ep-
MeOC6H4OTf was used as the electrophile. fp-MeOC6H4Cl was 
used as the electrophile. TMEDA = N,N,N',N'-
tetramethylethylenediamine. 

 
We set out to explore the a-arylation of diisopropylcarbamate 
(Cb) 1a (Table 1). From similar substrates and through trap-
ping with various non-aromatic electrophiles, Nakai, Taylor 
and co-workers had already reported that, following the lithia-
tion step, the Li®Zn transmetalation occurs with retention of 
configuration.9 These, as well as the aforementioned literature 
reports on N-carbamates,4 provided us with a sound basis for 
the development of a stereoretentive Negishi coupling of O-
carbamates, which would involve similar stereoretentive 
Li®Zn®Pd transmetalations. The method was first optimized 
in racemic mode using s-BuLi/TMEDA for the lithiation step 
and previously reported conditions as a starting point for the 
transmetalation and Negishi coupling (Table 1).4,10,11 For the 
latter, p-bromoanisole was used as the electrophile. The opti-
mal conditions involved deprotonation with s-BuLi and 
TMEDA in diethyl ether at –78 °C, followed by transmeta-
lation with zinc acetate, which proved superior to zinc chlo-
ride, and Negishi coupling employing Pd2dba3/RuPhos12 as the 
catalyst (3.5 mol % vs. the carbamate reactant), and gave rise 
to (±)-5a in 71% yield (entry 1). A 1.4-fold excess of carba-

mate vs. the aryl bromide was found optimal to achieve good 
yields. Gratifyingly, the enantioselective arylation, which 
involved initial deprotonation with (–)-sp for 5 h instead of 
TMEDA for 1 h, under otherwise identical conditions, fur-
nished compound 5a in 51% yield and 98:2 er (entry 1). Inter-
estingly, the aminal-derived Cbx (2a)13 and Cby (3a)14 carba-
mates, which were introduced by Hoppe as efficient and re-
movable directing groups in asymmetric lithiations, gave 
improved yields and er with both TMEDA and (–)-sp (entries 
2-3). In addition to carbamates 1a-3a, 2,4,6-
triisopropylbenzoate (TIB) 4a proved to be a competent reac-
tion partner with both TMEDA and (–)-sp,15 albeit with re-
duced yields and er (entry 4). Finally, the aryl iodide and 
triflate instead of the corresponding bromide also gave rise to 
the coupling product, albeit in reduced yields (entries 5-6). 
Moreover, the reaction of the corresponding aryl chloride was 
low yielding (entry 7). 
Scheme 2. Scope of the racemic and enantioselective a-
arylation reactions in aryl bromidea 
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B shows the yield and er obtained with (–)-sp. Reaction condi-
tions: see Table 1. bX-ray structure of 7f showing the absolute 
configuration (shown with 30% probability ellipsoids, only one H 
atom is displayed for clarity). cReaction performed with (+)-sp 
instead of (–)-sp. dReaction performed at 110 °C. 

The Cby carbamate and aryl bromides were thus selected as 
the optimal directing group and electrophiles, respectively, for 
the study of the reaction scope and limitations (Scheme 2). 
First, a variety of aryl bromides were found to be compatible 
with both racemic and enantioselective protocols, including 
unsubstituted (7b), para- (7a, 7c-h), meta- (7i), ortho- (7j-k), 
as well as polysubstituted (7l-n) arenes. In addition, the 
Negishi coupling step was mild enough to tolerate sensitive 
functional groups such as a methyl ketone (7e), nitrile (7f), 
nitro (7g) and methyl ester (7h). Excellent enantioselectivities 
were achieved in all cases (7a-n) with (–)-sp (7a-n) as the 
diamine. In addition to bromoarenes, 3-bromopyridine reacted 
successfully in both TMEDA and sp-mediated protocols (7o). 
In contrast, the 2-bromo isomer failed to react in the enanti-
oselective reaction (7p). Other heteroaryl (e. g., thiophen-2-yl, 
furan-3-yl), alkenyl or alkynyl electrophiles gave low coupling 
yields and were not further explored. The absolute configura-
tion of compound 7f was determined to be (R) by X-ray dif-
fraction analysis, and the configurations of other products 
were ascribed by analogy. This result is consistent with previ-
ous work showing that the Li-Zn transmetalation and Pd-
catalyzed Negishi coupling are both stereoretentive,4,9 and that 
the configuration of the carbamate is fixed in the initial (–)-sp-
mediated lithiation. 
Scheme 3. Scope of the racemic and enantioselective a-
arylation reactions in carbamatea 

aFor each product, A shows the yield obtained with TMEDA and 
B shows the yield and er obtained with (–)-sp. Reaction condi-
tions are identical to those in Table 1, with 1.4 equiv of s-BuLi 
and diamine instead of 1.3 equiv. bWith PhBr instead of p-TolBr. 
cReaction performed with (+)-sp instead of (–)-sp on a 3 mmol 
scale. dWith 2 equiv s-BuLi/diamine. 

Next, the scope with respect to the carbamate reactant was 
investigated using p-bromotoluene as the electrophile (Scheme 
3). Moderate-to-very good yields were obtained for both pro-
tocols, and excellent er were achieved using (–)-sp for carba-
mates bearing a secondary carbon at the b position (7q, 7t-u, 

7w-z). Lower yields and enantioselectivities were observed 
with (–)-sp for carbamates containing a more crowded tertiary 
b carbon (7r-s). Since the (–)-sp-mediated lithiation of the 
carbamate precursor of 7r was reported to occur with er 
>97.5:2.5,16 the lower er observed for 7r-s likely arises from 
the partial racemization of the corresponding organozinc or 
organopalladium intermediate. A variety of useful functional 
groups were tolerated, such as a benzene ring (7t, 7w), an 
olefin (7u), a TBS-protected alcohol (7x), and a bis-benzyl-
protected amine (7z). Interestingly, bis-carbamate 7y17 also 
underwent efficient enantioselective monoarylation. Im-
portantly, as shown with compound 7v, the reaction could be 
performed on a fivefold scale (3 mmol, 474 mg of product) 
and with the (+) enantiomer of sparteine with equally good 
performance (74% yield, er 99:1). 
To demonstrate the versatility and utility of the current aryla-
tion method to synthesize scalemic secondary and tertiary 
alcohol building blocks, a series of reactions were performed 
from both enantiomers of arylated Cby carbamate 7a, by 
adapting the protocols reported by Aggarwal and co-workers 
with diisopropyl (Cb) carbamates (Scheme 4). A first lithia-
tion/borylation/oxidation sequence was performed with 
HB(pin)18 from carbamate (R)-7a, obtained using (–)-sp, to 
give 2ary alcohol (R)-9a in good yield and enantiospecificity 
(es 94%).19 It is important to note that methods described by 
Hoppe and co-workers to cleave the Cby group by treatment 
with a metal hydride1b or with methanesulfonic acid14 failed, 
presumably due to the steric hindrance and acid-sensitivity, 
respectively, of the current benzylic carbamate. Similarly, the 
(S) enantiomer of 7a was obtained with 99:1 er using (+)-sp in 
the asymmetric lithiation/Negishi coupling, which was per-
formed on a 3 mmol scale (542 mg of product). The lithia-
tion/borylation/oxidation of (S)-7a using HB(pin) furnished 
(S)-9a with excellent enantiospecificity (es 96%). Alternative-
ly, using organoboronates EtB(pin) and PhB(pin)20 instead of 
pinacolborane provided (R)-configured 3ary alcohols 9b-c in 
good yield and excellent preservation of the optical purity (er 
97:3, es 96%). It is remarkable to notice that the configuration 
of 2° and 3° alcohols 9a-c is controlled by the initial sparteine-
mediated lithiation of the 1° carbamate 3a, followed by a 
sequence of 5 discrete stereospecific steps (Li-Zn transmeta-
lation, Negishi coupling furnishing 7a, then lithiation, boryla-
tion, oxidation). 
Scheme 4. Synthesis of enantioenriched secondary and 
tertiary alcohols via Aggarwal's lithiation-borylation 
methods  
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aArylation reaction performed on a 3 mmol scale. 

In conclusion, a versatile and highly enantioselective arylation 
of carbamates derived from primary alcohols was designed by 
combining Hoppe's sparteine-mediated asymmetric lithiation 
with Negishi cross-coupling. This method, when coupled to 
Aggarwal's lithiation/borylation/oxidation sequence, provides 
a concise and divergent access to enantioenriched secondary 
and tertiary benzylic alcohols that complements well other 
enantioselective methods. 
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