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Myosin Il is not required for Drosophila tracheal branch elongation

and cell intercalation

Amanda Ochoa-Espinosa’*$1, Stefan Harmansa'*$, Emmanuel Caussinus? and Markus Affolter™ T

ABSTRACT

The Drosophila tracheal system consists of an interconnected
network of monolayered epithelial tubes that ensures oxygen
transport in the larval and adult body. During tracheal dorsal branch
(DB) development, individual DBs elongate as a cluster of cells, led
by tip cells at the front and trailing cells in the rear. Branch elongation
is accompanied by extensive cell intercalation and cell lengthening of
the trailing stalk cells. Although cell intercalation is governed by
Myosin Il (Myoll)-dependent forces during tissue elongation in the
Drosophila embryo that lead to germ-band extension, it remained
unclear whether Myoll plays a similar active role during tracheal
branch elongation and intercalation. Here, we have used a nanobody-
based approach to selectively knock down Myoll in tracheal cells. Our
data show that, despite the depletion of Myoll function, tip cell
migration and stalk cell intercalation (SCI) proceed at a normal rate.
This confirms a model in which DB elongation and SCI in the trachea
occur as a consequence of tip cell migration, which produces the
necessary forces for the branching process.

KEY WORDS: Branching morphogenesis, Cell intercalation, Cell
migration, Drosophila, Myosin

INTRODUCTION

During morphogenesis, a coordinated series of complex events,
including cell division, cell shape changes and cell rearrangements
underlies the formation of functional tissues and organs. Epithelial
cell intercalation is a major morphogenetic mechanism that acts in
polarized tissue elongation, e.g. during Drosophila germ-band
extension (GBE) (Irvine and Wieschaus, 1994), mouse gastrulation
(Yen et al., 2009), and C. elegans intestine (Leung et al., 1999) and
Xenopus kidney tube development (Lienkamp et al., 2012). During
intercalation, controlled cell neighbour exchange results in tissue
extension along one axis and concomitant convergence along the
orthogonal axis. Intercalation requires contacts between two
adjacent cells to shrink (Fig. SI1A, type I configuration), resulting
in a configuration where four or more cells contact each other (type
II configuration; Bertet et al., 2004; Blankenship et al., 2006).
Subsequently, the new contact extends (type III configuration)
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leading to a local extension of the tissue (Bardet et al., 2013;
Collinet et al., 2015; Zallen and Wieschaus, 2004).

The Drosophila tracheal system presents a paradigm of epithelial
remodelling and elongation through cell intercalation in a tubular
organ. The primary branches are monolayered epithelial tubes and
form in the absence of cell division in two distinct stages. First,
tracheal tip cells (TCs) begin to migrate away from the tracheal sac
and pull along several tracheal stalk cells into the developing
branch, forming a small bud (Samakovlis et al., 1996). In a second
phase, the branches elongate and narrow down due to stalk cell
intercalation (SCI) and extensive cell lengthening (Ribeiro et al.,
2004) (Fig. S1B). SCI of the primary branches follows similar
geometrical rules to intercalation in flat epithelia (Lecuit, 2005).
Initially, cells in the bud are arranged in a side-to-side configuration
and share intercellular junctions with their opposite neighbour but
also with cells located distal and proximal along the branch (type I
configuration, see Fig. S1B’). Intercalation is initiated by cells
reaching around the lumen and forming an autocellular junction
(type II configuration), followed by zipping up of the autocellular
junction along the proximal-distal axis of the branch (type III
configuration). Therefore, the pair of cells initially located side by
side, rearranges to an end-to-end configuration, resulting in branch
elongation (Fig. S1B’") (Neumann and Affolter, 2006; Ribeiro et al.,
2004).

Although the steps of cell and junction rearrangements during
intercalation have been described in great detail (see Fig. Sl1),
whether intercalation per se is the driving force leading to branch
extension remains debatable. Several studies in epithelial tissues
suggest that intercalation is the direct consequence of increased
cortical contractility resulting from the dynamics and the
localization of Myoll, thereby generating the major force
controlling tissue elongation (Bardet et al., 2013; Bertet et al.,
2004; Rauzi et al., 2008; Simoes et al., 2010). However, external
forces acting on tissue boundaries have also been implicated in
tissue elongation. For example, extrinsic pulling forces generated by
posterior midgut invagination were linked to Drosophila GBE
(Butler et al., 2009; Collinet et al., 2015; Kong et al., 2016; Lye
et al., 2015), and also the Drosophila wing is shaped by extrinsic
tensile forces (Etournay et al., 2015; Ray et al., 2015). Therefore,
tissue elongation is a consequence of a combination of local and
tissue-scale forces. During tracheal dorsal branch (DB) elongation,
laser ablation studies have shown that highly motile tip cells create a
tensile stress during migration, resulting in branch elongation and
SCI (Caussinus et al., 2008). Furthermore, Spaghetti squash-GFP, a
GFP/myosin regulatory light chain fusion protein (Sqh/MRLC),
does not localize to the adherens junctions during SCI. Therefore,
and in contrast to elongating epithelial sheets in the fly embryo (see
above), cell intercalation appears not to be the cause but rather the
consequence of epithelial branch elongation in the tracheal system.

Nevertheless, it remains possible that, similar to elongating
epithelial sheets, a local tensile force at cell boundaries that is
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produced by MyollI activation, plays an additional active role in DB
elongation. Given the prominent role of Myoll during epithelial
morphogenesis, its presence in the tracheal system throughout
development and its clear role in tracheal placode invagination
(Nishimura et al., 2007) and tracheal fusion (Kato et al., 2016), we
decided to further investigate the function of Myoll during SCI in
the tracheal system. To overcome prior limitations due to Myoll
maternal contribution and pleiotropic roles in morphogenesis and
cytokinesis, we used a nanobody-based approach that can interfere
with MyolI activity in a time- and tissue-specific manner (Caussinus
et al., 2012; Pasakarnis et al., 2016). Our results show that, in the
absence of actomyosin contractibility, tip cell migration and stalk
cell intercalation occur normally. Thus, our data provide functional
evidence supporting a model proposing that primary branch
elongation in the trachea is driven by tip cell migration and
passive stalk cell intercalation, and demonstrate that the primary
tracheal branching process is a consequence of cell migration and
thus is coordinated by tip cell activity.

RESULTS

deGradFP efficiently knocks down Myoll in a time- and
tissue-specific manner during embryogenesis

In order to interfere with Myoll function directly at the protein level
in a time- and tissue-specific manner, we used the deGradFP
method. deGradFP allows for the efficient degradation of GFP-
fusion proteins and can be used to phenocopy loss-of-function
mutations (Blattner et al., 2016; Caussinus et al., 2012; Lee et al.,
2016; Nagarkar-Jaiswal et al., 2015; Pasakarnis et al., 2016). Here,
we used a null mutant for s¢/ (Jordan and Karess, 1997) rescued by
a Sqh-GFP transgene (sqhAX3; sqh-Sqh-GFP) (Royou et al., 2004).
In this genetic background, we expressed deGradFP using the Gal4/
UAS system to target Sqh-GFP for degradation in different tissues
and analysed the resulting phenotypes.

In all the experiments shown, the sqhAX3; sqh-Sqh-GFP line was
used as a maternal counterpart in our crossing schemes, allowing us
to easily introduce a Gal4 driver and UAS-deGradFP from the
paternal side (see Fig. S2 for a detailed description of the crossing
schemes). As sqh is on the X-chromosome, all male progeny from a
cross were hemizygous for sgh4X3 and hence the sqh-Sqh-GFP
transgene on the second chromosome provided the only source of
Sqh protein. In contrast, females expressed both non-tagged and
GFP-tagged Sqh. In order to distinguish male embryos from female
embryos, we used different approaches depending on the
experimental condition. In fixed embryos, we used a monoclonal
antibody against Sex lethal (Sx1), which recognizes all somatic cell
nuclei in females from nuclear cycle 12 (Bopp et al., 1991). For live-
imaging analyses, we used a vestigial red fluorescent reporter
(5XQE-DsRed) on the X chromosome that has a stripped pattern of
expression in the epidermis from stage 11 and continues to be
expressed in the embryo and in larval stages in diverse tissues
(Zecca and Struhl, 2007). These two methods, in combination with
fluorescent reporters and the obvious signs of Sqh-GFP degradation
(see below), allowed us to unambiguously discriminate all possible
genotypes.

Initially, we validated the efficiency of deGradFP-mediated
knockdown of Sqh-GFP in the lateral epidermis, owing to its
imaging accessibility and comprehensive characterization. During
dorsal closure (DC), epidermal cells elongate in dorsoventral
direction to close a gap that exists in the dorsal epidermis. Along the
leading edge of the closing epidermis, an actomyosin cable forms
(Fig. S3A) (as shown before by Franke et al., 2005; Kichart et al.,
2000; Pasakarnis et al., 2016; Ducuing and Vincent, 2016) and
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leading cells project filopodia and lamellipodia dorsally (Fig. S3A,
right) (Eltsov et al., 2015). To perturb Sgh function in the embryonic
epidermis, we used engrailed-Gal4 (en-Gal4) (Tabata et al., 1992)
to restrict expression of deGradFP to the posterior compartment of
each segment in sqhAX3, sqh-Sqh-GFP embryos.

deGradFP-mediated Sqh-GFP knockdown resulted in an
interruption of the actomyosin cable. However, deGradFP
mediated knockdown did not result in the total disappearance of
Sqh-GFP, instead Shq-GFP remained in what appears to be
inclusion bodies (Fig. S3B, arrowheads). This observation was
similar to what was previously reported in the epidermis (Pasakarnis
et al., 2016) and the wing imaginal discs (Caussinus et al., 2012).
Live imaging of the F-actin reporter Lifeact-Ruby revealed that Sqh-
GFP knockdown males formed thicker and longer filipodia at the
leading edge than the control embryos (compare Fig. S3A,B, yellow
arrows). However, F-actin was not enriched at the bright Sqh-GFP
‘inclusion bodies’ (Fig. S3B, asterisk; see also Pasakarnis et al.,
2016).

To ensure that Sqgh function was indeed lost under these
conditions, we used an antibody specifically recognizing the
phosphorylated and active form of Sqh (P-MRLC) (Ikebe and
Hartshorne, 1985; Jordan and Karess, 1997; Karess et al., 1991). In
stage 14 male control embryos, P-MRLC showed apical punctate
localization and enrichment at the actomyosin cable (Fig. 1A,B). In
knockdown embryos, P-MRLC levels were strongly reduced in all
deGradFP-expressing cells, even at the leading edge (Fig. 1C,D).
Furthermore, it has been suggested previously that a loss of Myoll
function results in cortical relaxation (Mason et al., 2013; Royou
et al., 2002; Rozbicki et al., 2015). We therefore investigated
whether knockdown of Sqh-GFP resulted in aberrant cell
morphology. Indeed, staining for the junctional protein
E-Cadherin (E-Cad) revealed that Sqgh-GFP knockdown resulted
in a significant increase in apical cell surface area (Fig. 1E,F and
Fig. S3C,D).

By stage 16, Sqh-GFP knockdown cells managed to contact cells in
the contralateral stripes. We observed that in the posterior half of the
embryo, cells in the deGradFP-expressing stripes moved forward,
displacing the non-deGradFP-expressing cells and excluding them
completely from the leading edge while sealing aberrantly with other
deGradFP-expressing cells and never with non-deGradFP-expressing
cells (Fig. S4B). These results are similar to the ones obtained by the
striped expression of a dominant-negative version of Rho1, which is a
positive upstream regulator of Myoll (Jacinto et al., 2002), and
corroborate two more recent studies using either loss-of-function
mutants or deGradFP to disrupt the leading edge actomyosin cable
(Ducuing and Vincent, 2016; Pasakarnis et al., 2016). Finally,
knockdown of Sqh-GFP in stripes resulted in embryonic lethality in
male embryos, while female embryos, which carry a wild-type sqh
copy, gave rise to viable progeny (Fig. S4C-E).

In summary, these results consistently show that deGradFP-
mediated knockdown of Sgh-GFP in the rescue background
inactivates Myoll and produces phenotypes consistent with a loss
of Myoll (i.e. abnormal epidermal packing, disruption of the
actomyosin cable and aberrant epidermal leading edge behaviour)
without disrupting other actin-based structures such as filopodia.
Furthermore, we have tested a number of other means to inactivate
Myoll function but did not find another method that resulted in the
dorsal open phenotypes observed when knocking down Sqh-GFP in
amnioserosa cells using deGradFP (Table S1). Therefore, we
conclude that deGradFP represents the best available tool to address
the role of Myoll during cell intercalation in tracheal branch
formation.

DEVELOPMENT


http://dev.biologists.org/lookup/doi/10.1242/dev.148940.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.148940.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.148940.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.148940.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.148940.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.148940.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.148940.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.148940.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.148940.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.148940.supplemental

RESEARCH ARTICLE

Development (2017) 144, 2961-2968 doi:10.1242/dev.148940

>

enGal4>mCherryy s

enGal4>mCherryy g, deGradFP O

(a1
w
=
o
(O]
o]
-]
2]
|
=
=
5]
2)
(&}
£ i
A
=
[
o
=
5]

mCherry

3
8

P-MRLC fluorescence (a.u.)
3

<

mCherry
+deGradFP

3
=3

@
S

P-MRLC fluorescence (a.u.) )

>

-n

80

Apical surface area (p.mz)
& g
(7
O, [”_{

o= =
¢ X
& (\® {bbgz\\
4 N
& o &

Fig. 1. deGradFP-mediated knockdown of Sqh-GFP in the embryonic epidermis. All images show lateral views of stage 14 male sqhAX3; sqh-Sqh-GFP
embryos additionally expressing the indicated transgenes in the engrailed (en::Gal4) stripe pattern. Representative en stripes are highlighted by continuous
yellow lines. (A,B) Control embryos stained for phosphorylated MRLC (P-MRLC) show uniform phosphomyosin distribution in all segments and enrichment at the
actomyosin cable (arrow in A), although in deGradFP-expressing embryos the P-MRLC signal is drastically reduced in en stripes [see yellow brackets in C (right)
and D]. P-MRLC fluorescence levels of the areas marked by a red dotted line in A,C are plotted in B,D, respectively. (E) A deGradFP-expressing embryo stained
for E-Cadherin (E-Cad) shows increased apical surface area in the en stripe (blue outlines) compared with cells outside the en stripes (pink outlines).

(F) Quantification of apical cell surface area of cells inside (blue) and outside (pink) the en stripe. The green lines mark the median; whiskers correspond to
minimum and maximum data points. Statistical significance was assessed using a two-sided Student’s t-test (***P<0.001); outliers are indicated by a red cross.

Tracheal-specific knockdown of Sqh/MRLC does not perturb
primary branch elongation

To determine whether Myoll function is necessary for tracheal
system development, we expressed deGradFP under the control of
the trachea-specific brl-Gal4 driver in sqgh mutant background.
btl-Gal4 is expressed in tracheal cells from late stage 11 onwards
(Shiga et al., 1996), after the invagination of the tracheal placode
(Fig. S5A). Low-magnification time-lapse imaging of knockdown
embryos revealed that Sqh-GFP showed a dotted appearance at each
tracheomere from early stage 12, indicating deGradFP activity and
efficient inactivation of Sqgh-GFP (Movie 1 and Fig. S5B).

In order to verify the efficiency of Sqgh-GFP knockdown and to
assess the extent of the reduction in Myoll activity in tracheal cells,
we performed staining against P-MRLC. In wild-type embryos
(Fig. S6) and in female sqhAX3/+, sqh-Sqh-GFP embryos (carrying
one wild-type copy of sqh) expressing deGradFP, we detected low,
rather diffuse levels of P-MRLC along the junctions of tracheal cells
(Fig. 2A, white arrows). In contrast, in male sqghAX3, sqh-Sqh-GFP
embryos expressing deGradFP, the junctional P-MRLC signal was
lost (Fig. 2B). Importantly, we also did not detect a P-MRLC signal
in the dotted Sqh-GFP spots (arrowheads in Fig. 2B, bottom). These
results show that deGradFP expression provides an effective way to
inactivate Sqh-GFP, and hence Myoll function, in tracheal cells.

In the trachea of embryos older than stage 16, we observed that
dorsal trunk (DT) morphology was affected by Sqh-GFP
knockdown (Fig. S7). Sqh-GFP knockdown embryos showed

increased DT diameters and the smooth tube surface observed in
control embryos was lost (Fig. S7A,B). Furthermore, knockdown
embryos died as first instar larvae (see Fig. S7C). Previous studies
highlighted the requirement of Myoll activity for tracheal branch
fusions and for extracellular matrix remodelling in tracheal branches
(Kato et al., 2016). In line with these findings, the phenotypes we
observed in the DT, as well as the larval lethality, are likely to be
caused by the lack of Myoll function at developmental stages
following DB elongation and SCI. These results further support the
efficiency of Sqh-GFP knockdown by deGradFP.

Despite of the lethality and late phenotypes observed in the DT
upon loss of Myoll activity in tracheal cells, E-Cad staining in early
stage 16 fixed embryos showed that the overall development and the
morphology of the tracheal system remained normal upon
expression of deGradFP; all major tracheal branches formed,
elongated and the majority fused with their corresponding partners
(Fig. 2C,D). However, we observed a partially penetrant defect on
dorsal branch tube fusion (not quantified), supporting a requirement
for Myoll during the fusion process (as shown by Kato et al., 2016).
Additionally, the deposition and clearance of Vermiform, a protein
essential for normal chitin cable processing (Luschnig et al., 2006)
and the subsequent gas filling of the tracheal tubes, proceeded
normally in knockdown embryos (Fig. S8 and Movie 2).

To gain a more detailed view of possible consequences of the
absence of Myoll activity during cell intercalation, we characterized
the dynamics of DB elongation upon Sqh-GFP knockdown in
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tracheal cells from stage 13/14 onwards (btl-Gal4). Time-lapse
movies of male sqhAX3; sqh-Sqh-GFP embryos expressing either
mCherryy s alone (control) or mCherryy; s and deGradFP
(deGradFP) allowed us to investigate the dynamics of DB
elongation (Fig. 3A-D and Movie 3). Under both conditions, five
or six DB cells were present in an initial side-by-side configuration
(Fig. 3A,B, 0 min; also see Fig. S9). In the following elongation
phase, tip cells migrated dorsally (Fig. 3A,B, 35 min) while the stalk
cells intercalated, i.e. the cells rearranged to an end-to-end
configuration (Fig. 3A,B, 125 min). The intercalation process and
the dynamics we observed during DB elongation in knockdown
embryos were indistinguishable from control embryos (Fig. 3C,D).
Furthermore, time-lapse movies of male sqhAX3; sqh-Sqh-GFP
embryos expressing either Lifeact-Ruby alone (Control) or Lifeact-
Ruby and deGradFP (deGradFP) showed that the tip cells of
knockdown DBs formed filopodia (Fig. 3E,F and Movie 4) similar
to wild-type embryos (Lebreton and Casanova, 2014; Ribeiro et al.,
2004). At later stages, terminal cells formed and the fusion cells
contacted the contralateral DB in the Sqh-GFP knockdown
embryos, comparable with control embryos (Fig. 3E,F, 160 min).
Finally, E-Cad staining on control and knockdown embryos
revealed that in stage 16 knockdown embryos (in which nuclei had
an end-to-end arrangement), intercellular junctions had remodelled
to give rise to autocellular junctions, again as seen in control
embryos (Fig. 3G,H). At this final stage, the fusion cells established
de novo contacts with the contralateral branches, as visualized by a
dot of E-Cad between the two fusion cells under both conditions
(Fig. 3G,H). In addition, the spacing between DB nuclei in stage 16
embryos did not significantly differ between the two conditions
(Fig. 31). To verify these observations and ensure that the expression
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Fig. 2. Sqh-GFP knockdown in the
tracheal system results in normal
branch architecture. (A,B) Lateral views
of stage 14/15 embryos stained for P-
MRLC and SxI. (A) A female sqghAX3/+;
sqh-Sqh-GFP embryo, carrying one wild-
type copy of sqh, expressing mCherryy, s
and deGradFP in the tracheal system (btl-
Gal4). Low levels of P-MRLC can be
visualized along the junctions (arrows).
(B) Male sqhAX3; sqh-Sqh-GFP embryo,
hemizygous for sqh, expressing
mCherryn.s and deGradFP under btl-
Gal4 control. The P-MRLC signal along
the junctions is lost and Sqh-GFP dots
also do not show P-MRLC staining
(arrowheads). (C,D) Dorsal views of stage
16 male sqhAX3; sqh-Sqgh-GFP embryos
expressing mCherryy, s (C, control) or
mCherryy. s together with deGradFP (D)
in the tracheal system (btl-Gal4). The
trachea system architecture is visualized
by staining for E-Cad. In male control (C)
and tracheal Sgh knockdown (D)
embryos, all main tracheal branches form,
elongate and fuse except for few DBs,
nevertheless the overall morphology of
the tracheal system remains normal. In the
higher magnification images (C’,D’), the
tracheomere 5 (Tr5) branches are
labelled: dorsal branch (DB), dorsal trunk
(DT), transverse connective (TC), visceral
branch (VB) and lateral trunk branches
(LTa and LTp).

Sgh-GFP Sxl, mCherryn s

levels of deGradFP were high enough to completely deplete
Sqh-GFP by the onset of DB elongation, we also used trachealess-
Gal4 (trh-Gal4), another tracheal driver-line that drives expression
from stage 11 on (Fig. S10A), to induce deGradFP expression.
Importantly, DB elongation and SCI in Sqh-GFP knockdown
embryos using #rh-Gal4 was indistinguishable from control
embryos (Fig. S10B,C). These results show that Myoll activity is
not required during dorsal branch migration and elongation, and,
more importantly, that junctional remodelling in SCI proceeds
normally in the absence of functional Myoll.

DISCUSSION
A long-standing question in the field of Drosophila tracheal
development was whether Myoll activity is required for DB
elongation and SCI. Here, we present data showing that Myoll
function is dispensable for branch elongation and concomitant SCI
during Drosophila tracheal development. Knockdown of Sqh-GFP,
the regulatory light chain of Myoll, specifically in the tracheal
system resulted in a normal architecture of the tracheal system and
the dynamics of DB elongation and SCI were unaffected. The
experiments and results presented here are in line with our previous
observations that the pulling forces provided by the tip cells provide
enough mechanical force for SCI, and fully support a scenario in
which stalk cell intercalation is a cell non-autonomous process
brought about by tip cell migration (Caussinus et al., 2008).
Crucial to our approach and different from previous approaches
was the use of deGradFP to deplete Sqh-GFP protein in order to
block Myoll function. Previous studies mainly relied on
hypomorphic mutants and overexpression of dominant-negative
and inhibitory proteins in order to interfere with Myoll function.
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Fig. 3. Dorsal branch elongation and SCI do not require Myoll activity. Male sqhAX3; sqh-Sqgh-GFP embryos expressing the indicated transgenes in the
tracheal system (btl-Gal4). (A,B) Frames from time-lapse movies show that in control (A) and Sgh-GFP knockdown (B) embryos, DBs elongate (individual cells are
numbered). (C) Distance between the tip cell (TC) and the dorsal trunk (DT) during Tr3 DB elongation. Tr3 DB elongation starts to plateau after 200 min at ~65 pm
under both conditions. Error bars indicate the standard deviation. (D) Rate of DB elongation. The median is marked by a green line. (E,F) In both control (E)
and Sgh knockdown (F) embryos, tip cells extend filopodia (blue dashed lines at 0 min and 35 min), form a terminal cell with long cytoplasmic extensions (yellow
dashed lines at 35 min and 160 min) and form a fusion cell that eventually contacts the contralateral branch (blue and red dashed lines 160 min).

(G,H) Control (G) and Sgh-GFP knockdown (H) stage 16 embryos showing the Tr3 DBs stained for E-Cad. In both cases, cells within the branch have an
end-to-end configuration (asterisks over nuclei), form autocellular junctions (arrowheads) and deposit de novo junctional material in contact with the contralateral
branch (white arrows). Also highlighted are the fused Tr3 and Tr4 in the DT (yellow arrows). (I) Distance between individual nuclei in the Tr3 DBs of stage

16 embryos. Median (green line), whiskers correspond to minimum and maximum data points. Statistical significance was assessed using a two-sided Student’s

t-test; outliers are indicated by a red cross.

However, these approaches have drawbacks that complicate the
interpretation of the experimental outcomes. Mutants used to study
Myoll function during late embryogenesis must not interfere with
maternally contributed mRNA and protein (Franke et al., 2010) in
order to allow normal early embryonic development. Hence, owing
to protein stability, Myoll function might not be completely lost in
such a background. Furthermore, mutations often affect multiple
cellular processes and therefore are prone to generate indirect effects
or lead to adaptation. To overcome these drawbacks, time- and
tissue-specific expression of dominant-negative forms of Myoll or
upstream regulators have often been used (Fischer et al., 2014,
Franke et al., 2010; Saias et al., 2015). However, these tools seemed
to be less efficient in their depleting competence and gave rise to
much milder phenotypes than the ones observed with deGradFP
(see also Pasakarnis et al., 2016 and Table S1). Therefore, deGradFP
is the most effective tool available to deplete Sqh-GFP and interfere
with Myoll function in a time- and tissue-specific manner. The
results we obtain by deGradFP-mediated inactivation of Sqh-GFP in

the tracheal system provide two interesting findings: first, cellular
rearrangements during SCI occur normally in the absence of Myoll
activity; and second, actomyosin contractile forces are not required
in tracheal cells for TC migration and concomitant DB elongation.

The forces that fuel epithelial cell intercalation and tissue
elongation have been intensively studied in several organisms.
During Drosophila germ-band extension, local forces arising from
spatiotemporal dynamics in Myoll levels are required for junctional
shrinkage (Bertet et al., 2004; Blankenship et al., 2006; Fernandez-
Gonzalez et al., 2009; Levayer and Lecuit, 2013; Rauzi et al., 2008)
and subsequent extension (Bardet et al., 2013; Collinet et al., 2015),
and act together with global, tissue-scale forces (Butler et al., 2009;
Collinet et al., 2015; Etournay et al., 2015; Ray et al., 2015) to drive
tissue elongation. Therefore, cell intercalation is a direct
consequence of local and tissue-scale forces and is a major cause
of'tissue elongation in the Drosophila germband. Myoll activity has
also been shown to be required for intercalation during chicken
primitive streak formation (Rozbicki et al., 2015) and mouse renal
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tube elongation (Lienkamp et al., 2012). Therefore, most
intercalation processes mechanistically closely resemble GBE in
the Drosophila embryo and use locally produced forces to drive
junction and cell-neighbour remodelling. In contrast to the control
of intercalation by local force development, external constraints
acting on tissue boundaries also control and/or drive intercalation
and tissue remodelling. This is very likely the case during
Drosophila pupal wing extension, where anchorage of wing blade
cells to the pupal cuticle and synchronous contraction of the hinge
create a tissue-scale force pattern that drives cellular rearrangements
via intercalation and cell division (Etournay et al., 2015; Ray et al.,
2015). Our results suggest that despite the resemblance of tracheal
SCI to intercalation in the embryonic epidermis (see Fig. S1), the
molecular mechanisms underlying force generation in these two
systems are fundamentally different.

Pulling forces during tracheal branch elongation, which result in
an extrinsic traction force that creates tension in the trailing stalk
cells, arise due to TC migration (Caussinus et al., 2008). Cell
elongation and rearrangements associated with oriented cell division
have been shown to result in stress dissipation (Affolter et al., 2009;
Campinho et al., 2013; Guillot and Lecuit, 2013; Wyatt et al., 2015).
As tracheal branch elongation occurs in the absence of cell division,
extensive cell elongation and cell intercalation presumably provide
the only mechanisms for tension relaxation in this context. This is in
line with the earlier proposal that cell shape changes and SCI are
passive, non-cell-autonomous processes induced by the tension
created in stalk cells by TC migration (see also Affolter and
Caussinus, 2008; Affolter et al., 2009). Therefore, although during
GBE locally produced Myoll-dependent forces drive intercalation
and tissue extension, our results show that SCI in the trachea is Myoll
independent and that tracheal branch intercalation is, similar to pupal
wing extension (Etournay et al., 2015; Ray et al., 2015), a passive
process driven by global tissue-scale pulling forces.

Despite the loss of actomyosin activity in all tracheal cells,
including the TCs, we found that branch elongation dynamics are
unchanged. Therefore, TC migration does not rely on actomyosin
contractibility, posing the question: which molecular players might be
involved in TC force generation? Interestingly, collective movement
of cells depends on actin-based filopodia and lamellipodia (Mayor and
Etienne-Manneville, 2016), and was shown in several cases to be
independent of Myoll activity (Matsubayashi et al., 2011; Serra-
Picamal et al., 2012). Furthermore, several studies showed that a
downregulation of Myoll is required for effective collective cell
migration (Hidalgo-Carcedo etal.,2011; Omelchenko and Hall, 2012;
Yamada and Nelson, 2007). It seems that Myoll-independent TC
migration might be mainly actin polymerization based and the
branching process might therefore be more similar to collective cell
migration than to classical epithelial intercalation in flat tissues such as
the embryonic epidermis.

Future studies will need to investigate the detailed molecular
basis of force generation during trachea TC migration. The extent to
which TC migration and DB elongation depend on actin
polymerization and the molecules participating in this process
might be investigated by directly modulating actin polymerization
regulators using deGradFP.

MATERIALS AND METHODS

Drosophila stocks

The following stocks were used: b#l-Gal4 (Shiga et al., 1996); UAS-
mCherrynps (Caussinus et al., 2008); UAS-LifeAct-Ruby (Hatan et al.,
2011); UAS-deGradFP (Caussinus et al., 2012); SXQEDSRed (Zecca and
Struhl, 2007); sqhAX3; sqh-Sqh-GFP (Royou et al., 2004); trh66-Gal4
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(Kondo and Hayashi, 2013); a dominant-negative version of zip (UAS-
GFP-DN-zip) (Franke et al., 2005); en-Gal4, amnioserosa-Gal4 ({PGawB}
332.3), UAS-Dicer2, UAS-shRNA-sqh (TRiP.HMS00437, TRiP.
HMS00830 and TRiP.GL00663), UAS-shRNA-zip (TRiP.HMS01618
and TRiP.GL00623) and a dominant-negative version of Rok [UAS-rok.
CAT-KG2B1 and UAS-rok.CAT-KG3 (Winter et al., 2001)]; and a
dominant-negative version of Rhol [UAS-Rhol.N19 (Strutt et al., 1997)]
(Bloomington Stock Center).

Immunohistochemistry and antibodies

The following antibodies were used: mouse anti-SxI-m18 (1:100; DSHB),
rabbit anti-phospho-Myosin Light Chain 2 (Serl19) (1:50; 3671, Cell
Signaling Technology), rabbit anti-Verm (1:300, a gift from S. Luschnig,
WWU Miinster) and rat anti-E-Cad DCAD2 (1:100; DSHB). Secondary
antibodies were conjugated with Alexa 488, Alexa 568, Alexa 633
(Molecular Probes) or Cy5 (Jackson ImmunoResearch). Embryos were
collected overnight and fixed in 4% formaldehyde in PBS-heptane for
20 min or 10 min (for anti-E-Cad) and devitellinized by shaking in
methanol-heptane. After extensive washing in methanol and PBT, embryos
were blocked in PBT containing 2% normal goat serum and incubated in
primary antibody solution overnight at 4°C. The next day, embryos were
extensively washed with PBT and incubated in secondary antibody solution
for 2 h at room temperature. Subsequently, embryos were washed in PBT
again and mounted in Vectashield (H-1000, Vector Laboratories).

Light microscopy

Imaging was carried out using a Leica TCS SP5 confocal microscope with
x20 dry, x40 water, x63 water and x63 glycerol objectives. For live
imaging, embryos were collected overnight, dechorionated in 4% bleach and
mounted in 400-5 mineral oil (Sigma) between a glass coverslip and gas-
permeable plastic foil (bioFOLIE 25, In Vitro System and Services).
Imaging was carried out at 10 min intervals for Movies 1 and 2, at 5 min
intervals for Movie 3 and at 2 min intervals for Movie 4. Images were
processed using ImageJ (v1.42; NIH) and Imaris (v7.3.0; Bitplane). Time-
lapse movies were processed using a custom-made plug-in in Image] to
correct for drift in the xy plane.

Quantifications and statistics

For the P-MRLC plots in Fig. 1B,D, we measured the fluorescent intensities
in the regions of interest indicated in Fig. 1A,C using the Plot Profile
function in ImageJ (NIH). Apical cell surface area (quantifications shown in
Fig. 1F and Fig. S3D) was measured in ImageJ from maximum projections
of pre-DC stage 14 embryos stained for E-Cad. We excluded cells from the
quantification that we could not clearly assign to either the En-positive
(mCherryns) or the En-negative stripes. To quantify the dynamics of
branch elongation (Fig. 3C,D), we measured the direct (minimal) distance
between the dorsal trunk and the tip cells of the Tr3 DB in maximum
projections of time-lapse movies using ImagelJ. The plot in Fig. 3C shows
the arithmetic means and the error bars show the standard deviation. For the
quantifications in Fig. 31, live embryos were collected and staged using the
completion of dorsal closure as a reference to obtain stage 16 embryos. Live
embryos were mounted dorsolaterally as previously described and only
embryos in which dorsal branch nuclei appeared in the same plane were
imaged at 1 um optical section intervals. z maximum projections of the
acquired images were used to measure the distances between nuclei in dorsal
branch 3 (which migrates the longest distance in wild type) using Imagel.
n values are indicated either directly in the figures or in the corresponding
legend. In the boxplots (Fig. 1F, Fig. 3D,I and Fig. S3D) centre values
(green bar) correspond to the median and whiskers mark maximum and
minimum data points. A sample number was chosen that was large enough
to allow statistical significance to be assessed using a two-sided Student’s
t-test with unequal variance.
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