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1. Introduction

1.1 Definitions and basic properties

Discrete event systems (DES) constitute a specific subclass of discrete time systems whose
dynamic behavior is governed by instantaneous changes of the system state that are triggered
by the occurrence of asynchronous events. In particular, the characteristic feature of discrete
event systems is that they are discrete in both their state space and in time. The modeling
formalism of discrete event systems is suitable to represent man-made systems such as
manufacturing systems, telecommunication systems, transportation systems and logistic
systems (Caillaud et al. (2002); Delgado-Eckert (2009c); Dicesare & Zhou (1993); Kumar &
Varaiya (1995)). Due to the steady increase in the complexity of such systems, analysis and
control synthesis problems for discrete event systems received great attention in the last two
decades leading to a broad variety of formal frameworks and solution methods (Baccelli et al.
(1992); Cassandras & Lafortune (2006); Germundsson (1995); Iordache & Antsaklis (2006);
Ramadge & Wonham (1989)).
The literature suggests different modeling techniques for DES such as automata (Hopcroft
& Ullman (1979)), petri-nets (Murata (1989)) or algebraic state space models (Delgado-Eckert
(2009b); Germundsson (1995); Plantin et al. (1995); Reger & Schmidt (2004)). Herein, we focus
on the latter modeling paradigm. In a fairly general setting, within this paradigm, the state
space model can be obtained from an unstructured automaton representation of a DES by
encoding the trajectories in the state space in an n-dimensional state vector x(k) ∈ Xn at each
time instant k, whose entries can assume a finite number of different values out of a non-empty
and finite set X. Then, the system dynamics follow

F(x(k + 1), x(k)) = 0, x(k) ∈ Xn

where F marks an implicit scalar transition function F : Xn × Xn → X, which relates x(k) at
instant k with the possibly multiple successor states x(k + 1) in the instant k + 1. Clearly, in
the case of multiple successor states the dynamics evolve in a non-deterministic manner.
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In addition, it is possible to include control in the model by means of an m-dimensional control
input u(k) ∈ Um at time instant k. This control input is contained in a so called control set (or
space) Um, where U is a finite set. The resulting system evolution is described by

F(x(k + 1), x(k), u(k)) = 0, x(k) ∈ Xn, u(k) ∈ Um

In many cases, this implicit representation can be solved for the successor state x(k + 1),
yielding the explicit form

x(k + 1) = f (x(k), u(k)) (1)

or
x(k + 1) = f (x(k)) (2)

when no controls are applied. As a consequence, the study of deterministic DES reduces to
the study of a mapping f : Xn → Xn, or f : Xn × Um → Xn if we consider control inputs,
where X and U are finite sets, X is assumed non-empty, and n, m ∈ N are natural numbers.
Such a mapping f : Xn → Xn is denoted as a time invariant discrete time finite dynamical system.
Due to the finiteness of X it is readily observed that the trajectory x, f (x), f ( f (x)), ... of any
point x ∈ Xn contains at most |Xn| = |X|n different points and therefore becomes either cyclic
or converges to a single point y ∈ Xn with the property f (y) = y (i.e., a fixed point of f ). The
phase space of f is the directed graph (Xn, E, π : E → Xn × Xn) with node set Xn, arrow set E
defined as E := {(x, y) ∈ Xn × Xn | f (x) = y} and vertex mapping

π : E → Xn × Xn

(x, y) �→ (x, y)

The phase space consists of closed paths of different lengths that range from 1 (i.e. loops
centered on fixed points) to |Xn| (the closed path comprises all possible states), and directed
trees that end each one at exactly one closed path. The nodes in the directed trees correspond

to transient states of the system. In particular, if f is bijective1, every point x ∈ Xn is contained
in a closed path and the phase space is the union of disjoint closed paths. Conversely, if every
point in the phase space is contained in a closed path, then f must be bijective. A closed path
of length s in the phase space of f is called a cycle of length s. We refer to the total number of
cycles and their lengths in the phase space of f as the cycle structure of f .
Given a discrete time finite dynamical system f : Xn → Xn, we can find in the phase space
the longest open path ending in a closed path. Let m ∈ N0 be the length of this path. It is easy
to see, that for any s ≥ m the (iterated) discrete time finite dynamical system f s : Xn → Xn

has the following properties

1. ∀ x ∈ Xn, f s(x) is a node contained in one closed path of the phase space.

2. If T is the least common multiple of all the lengths of closed paths displayed in the phase
space, then it holds

f s+λT = f s ∀ λ ∈ N and f s+i �= f s ∀ i ∈ {1, ..., T − 1}

We call T the period number of f . If T = 1, f is called a fixed point system.

In order to study the dynamics of such a dynamical system mathematically, it is beneficial to
add some mathematical structure to the set X so that one can make use of well established
mathematical techniques. One approach that opens up a large tool box of algebraic and graph
theoretical methods is to endow the set X with the algebraic structure of a finite field (Lidl &

1 Note that for any map from a finite set into itself, surjectivity is equivalent to injectivity.
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Niederreiter (1997)). While this step implies some limitations on the cardinality2 |X| of the set
X, at the same time, it enormously simplifies the study of systems f : Xn → Xn due to the
fact that every component function fi : Xn → X can be shown to be a polynomial function of
bounded degree in n variables (Lidl & Niederreiter (1997), Delgado-Eckert (2008)). In many
applications, the occurrence of events and the encoding of states and possible state transitions
are modeled over the Boolean finite field F2 containing only the elements 0 and 1.

1.2 Control theoretic problems – analysis and controller synthesis

Discrete event systems exhibit specific control theoretic properties and bring about different
control theoretic problems that aim at ensuring desired system properties. This section
reviews the relevant properties and formalizes their analysis and synthesis in terms of the
formal framework introduced in the previous section.

1.2.1 Discrete event systems analysis

A classical topic is the investigation of reachability properties of a DES. Basically, the analysis
of reachability seeks to determine if the dynamics of a DES permit trajectories between given
system states. Specifically, it is frequently required to verify if a DES is nonblocking, that is, if it
is always possible to reach certain pre-defined desirable system states. For example, regarding
manufacturing systems, such desirable states could represent the completion of a production
task. Formally, it is desired to find out if a set of goal states Xg ⊆ Xn can be reached from a
start state x̄ ∈ Xn.
In the case of autonomous DES without a control input as in (2), a DES with the dynamic
equations x(k + 1) = f (x(k)) is denoted as reachable if it holds for all x̄ ∈ X that the set Xg is
reached after applying the mapping f for a finite number of times:

∀x̄ ∈ Xn∃k ∈ N s.t. f k(x̄) ∈ Xg. (3)

Considering DES with a control input, reachability of a DES with respect to a goal set Xg holds
if there exists a control input sequence that leads to a trajectory from each start state x̄ ∈ Xn

to a state x(k) ∈ Xg, whereby x(k) is determined according to (1):

∀x̄ ∈ Xn∃k ∈ N and controls u(0), . . . , u(k − 1) ∈ Um s.t. x(k) ∈ Xg. (4)

Moreover, if reachability of a controlled DES holds with respect to all possible goal sets Xg ⊆
Xn, then the DES is simply denoted as reachable and if the number of steps required to reach
Xg is bounded by l ∈ N, then the DES is called l-reachable.
An important related subject is the stability of DES that addresses the question if the dynamic
system evolution will finally converge to a certain set of states ((Young & Garg, 1993)).
Stability is particularly interesting in the context of failure-tolerant DES, where it is desired to
finally ensure correct system behavior even after the occurrence of a failure. Formally, stability
requires that trajectories from any start state x̄ ∈ Xn finally lead to a goal set Xg without ever
leaving Xg again.
Regarding autonomous DES without control, this condition is written as

∀x̄ ∈ Xn∃l ∈ N s.t. ∀k ≥ l, f k(x̄) ∈ Xg. (5)

In addition, DES with control input require that

∀x̄ ∈ Xn∃k ∈ N and controls u(0), . . . , u(k − 1) ∈ Um s.t.∀l ≥ k x(l) ∈ Xg, (6)

2 A well-known result states that X can be endowed with the structure of a finite field if and only if there
is a prime number p ∈ N and a natural number m ∈ N such that |X| = pm.
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whereby k = 1 for all x̄ ∈ Xg.
It has to be noted that stability is a stronger condition than reachability both for autonomous
DES and for DES with control inputs, that is, stability directly implies reachability in both
cases.

In the previous section, it is discussed that the phase space of a DES consists of closed paths
– so-called cycles – and directed trees that lead to exactly one closed path. In this context, the
DES analysis is interested in inherent structural properties of autonomous DES. For instance,
it is sought to determine cyclic or fixed-point behavior along with system states that belong
to cycles or that lead to a fixed point ((Delgado-Eckert, 2009b; Plantin et al., 1995; Reger &
Schmidt, 2004)). In addition, it is desired to determine the depth of directed trees and the
states that belong to trees in the phase space of DES. A classical application, where cyclic
behavior is required, is the design of feedback shift registers that serve as counter circuits in
logical devices ((Gill, 1966; 1969)).

1.2.2 Controller synthesis for discrete event systems

Generally, the control synthesis for discrete event systems is concerned with the design of a
controller that influences the DES behavior in order to allow certain trajectories or to achieve
pre-specified structural properties under control. In the setting of DES, the control is applied
by disabling or enforcing the occurrence of system events that are encoded by the control
inputs of the DES description in (1). On the one hand, the control law can be realized as a
feedforward controller that supplies an appropriate control input sequence u(0), u(1), . . . , in
order to meet the specified DES behavior. Such feedforward control is for example required
for reaching a goal set Xg as in (4) and (6). On the other hand, the control law can be stated
in the form of a feedback controller that is realized as a function g : Xn → Um. This function
maps the current state x ∈ Xn to the current control input g(x) and is computed such that the
closed-loop system

h : Xn → Xn

x �→ f (x, g(x))

satisfies desired structural properties. In this context, the assignment of a pre-determined
cyclic behavior of a given DES are of particular interest for this chapter.

1.3 Applicability of existing methods

The control literature offers a great variety of approaches and tools for the system analysis
and the controller synthesis for continuous and discrete time dynamical systems that are
represented in the form

ẋ(t) = f (x(t), u(t)) or x(k + 1) = f (x(k), u(k)),

whereby usually x(t) ∈ R
n, u(t) ∈ R

m, and x(k) ∈ R
n, u(k) ∈ R

m, respectively.
Unfortunately, traditional approaches to analyzing continuous and discrete time dynamical
systems and to synthesizing controllers may fail when dealing with new modeling paradigms
such as the use of the finite field F2 for DES as proposed in Section 1.1. From a mathematical
point of view, one of the major difficulties is the fact that finite fields are not algebraically
closed. Also non-linearity in the functions involved places a major burden for the system
analysis and controller synthesis. In general, despite the simple polynomial shape of the
transition function f (see above), calculations may be computationally intractable. For
instance, determining the reachability set ((Le Borgne et al., 1991)) involves solving a certain
set of algebraic equations, which is known to be an NP-hard problem ((Smale, 1998)).
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Consequently, one of the main challenges in the field of discrete event systems is the
development of appropriate mathematical techniques. To this end, researchers are confronted
with the problem of finding new mathematical indicators that characterize the dynamic
properties of a discrete system. Moreover, it is pertinent to establish to what extent such
indicators can be used to solve the analysis and control problems described in Section 1.2.
In addition, the development of efficient algorithms for the system analysis and controller
synthesis are of great interest.
To illustrate recent achievements, this chapter presents the control theoretic study of linear
modular systems in Section 2, on the one hand, and, on the other hand, of a class of nonlinear
control systems over the Boolean finite field F2, namely, Boolean monomial control systems in
Section 3, (first introduced by Delgado-Eckert (2009b)).

2. Analysis and control of linear modular systems3

2.1 State space decomposition

In this section, linear modular systems (LMS) over the finite field F2 shall be in the focus. Such
systems are given by a linear recurrence

x(k + 1) = A x(k), k ∈ N0 , (7)

where A ∈ F
n×n
2 is the so-called system matrix. As usual in systems theory, it is our objective

to track back dynamic properties of the system to the properties of the respective system
matrix. To this end, we first recall some concepts from linear algebra that we need so as to
relate the cycle structure of the system to properties of the system matrix.

2.1.1 Invariant polynomials and elementary divisor polynomials

A polynomial matrix P(λ) is a matrix whose entries are polynomials in λ. Whenever
the inverse of a polynomial matrix again is a polynomial matrix then this matrix is called
unimodular. These matrices are just the matrices that show constant non-zero determinant. In
the following, F denotes a field.

Lemma 1. Let A ∈ F
n×n be arbitrary. There exist unimodular polynomial matrices U(λ), V(λ) ∈

F[λ]n×n such that
U(λ)(λI − A)V(λ) = S(λ) (8)

with

S(λ) =

⎛
⎜⎜⎜⎝

c1(λ) 0 · · · 0

0 c2(λ)
...

...
. . . 0

0 · · · 0 cn(λ)

⎞
⎟⎟⎟⎠ , (9)

in which ci(λ) ∈ F[λ] are monic polynomials with the property ci+1 | ci, i = 1, . . . , n − 1.

Remark 2. The diagonal matrix S(λ) is the Smith canonical form of λI − A which, of course, exists
for any non-square polynomial matrix, not only in case of the characteristic matrix λI − A. However,
for λ not in the spectrum of A the rank of λI − A is always full and, thus, for any non-eigenvalue λ
we have ci(λ) �= 0.

Definition 3. Let A ∈ F
n×n be arbitrary and S(λ) ∈ F[λ] n×n the Smith canonical form associated

to the characteristic matrix λI − A. The monic polynomials ci(λ), i = 1, . . . , n, generating S(λ) are
called invariant polynomials of A.

3 Some of the material presented in this section has been previously published in (Reger & Schmidt,
2004).

451Discrete Time Systems with Event-Based Dynamics:
Recent Developments in Analysis and Synthesis Methods

www.intechopen.com



It is a well-known fact that two square matrices are similar if and only if they have the same
Smith canonical form ((Wolovich, 1974)). That is, these invariant polynomials capture the
coordinate independent properties of the system. Moreover, the product of all invariant
polynomials results in the characteristic polynomial cpA(λ) = det(λ I − A) = c1(λ) · · · cn(λ)
and the largest degree polynomial c1(λ) in S(λ) is the minimal polynomial mpA(λ) of A,
which is the polynomial of least degree such that mpA(A) = 0. The invariant polynomials
can be factored into irreducible factors.

Definition 4. A non-constant polynomial p ∈ F[λ] is called irreducible over the field F if whenever
p(λ) = g(λ)h(λ) in F[λ] then either g(λ) or h(λ) is a constant.

In view of irreducibility, Gauß’ fundamental theorem of algebra can be rephrased so as to
obtain the unique factorization theorem.

Theorem 5. Any polynomial p ∈ F[λ] can be written in the form

p = a p1
e1 · · · pk

ek (10)

with a ∈ F, e1, . . . , ek ∈ N, and polynomials p1, . . . , pk ∈ F[λ] irreducible over F. The factorization
is unique except for the ordering of the factors.

Definition 6. Let A ∈ F
n×n be arbitrary and ci = p

ei,1

i,1 · · · p
ei,Ni

i,Ni
∈ F[λ], i = 1, . . . , n̄,

the corresponding n̄ non-unity invariant polynomials in unique factorization with Ni factors. The

N = ∑
n̄
i=1 Ni monic factor polynomials p

ei,j

i,j , i = 1, . . . , n̄ and j = 1, . . . , Ni, are called elementary

divisor polynomials of A.

In order to precise our statements the following definition is in order:

Definition 7. Let pC = λd + ∑
d−1
i=0 ai λi ∈ F[λ] be monic. Then the (d × d)-matrix

C =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1

−a0 −a1 −a2 · · · −ad−2 −ad−1

⎞
⎟⎟⎟⎟⎟⎠

(11)

is called the companion matrix associated to pC.

Based on Definition 7, it is now possible to define the rational canonical form of a given matrix.

Theorem 8. Let A ∈ F
n×n be arbitrary and p

ei,j

i,j its N elementary divisor polynomials, as introduced

in Definition 6. There exists an invertible matrix T such that

Arat = T−1 A T = diag(C1, . . . , CN) (12)

where C1, . . . , CN are the companion matrices associated to the N elementary divisor polynomials of
A.

Remark 9. Except for the ordering of the companion matrices the matrix Arat is unique. Furthermore,
the number N is maximal in the sense that there is no other matrix similar to A that comprises more
than N companion matrices.
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2.1.2 Cycle structure

As pointed out in the introductory section, the phase space of any discrete system may be
decomposed into closed paths (cycles) and paths that terminate in some cycle. For ease of
notation, let NΣ denote the number of different-length cycles in a discrete system. Moreover,
let the expression ν[τ] denote ν cycles of length τ. For this notation it clearly holds νi[τ] +
νj[τ] = (νi + νj)[τ]. Then the formal sum (cycle sum)

Σ = ν1[τ1] + ν2[τ2] + . . . + νNΣ
[τNΣ

] (13)

is used to represent the entire cycle structure of a discrete system that has a total of νi cycles
of length τi for i = 1, . . . , NΣ. The cycle structure is naturally linked to the notion of a periodic
state, which shall be introduced for the particular case of linear modular systems.

Definition 10. Let x ∈ F
n
2 be a non-zero state of the LMS in (7). The period of x is the least natural

number t such that x = Atx. The period of the zero state x = 0 is t = 1.

Without loss of generality, let the LMS in (7) be given in the elementary divisor version of the

rational canonical form4 (see Theorem 8). Hence,

x(k + 1) = diag(C1, . . . , CN) x(k) . (14)

The representation reveals the decomposition of (7) into N decoupled underlying subsystems,
xi(k + 1) = Ci xi(k), associated to the companion matrices Ci with respect to each elementary
divisor polynomial of A. By combinatorial superposition of the periodic states of the
subsystems it is clear that the periods of the states in the composite system follow from the
least common multiple of the state periods in the subsystems. Therefore, for the examination
of the cycle structure, it is sufficient to consider the cycle structure of a system

x(k + 1) = C x(k) . (15)

In this representation, C ∈ F
d×d
2 is a companion matrix whose polynomial pC ∈ F2[λ] is a

power of a monic polynomial that is irreducible over F2, whereby either pC(0) �= 0 or pC = λd

((Reger, 2004)). It is now possible to relate the cyclic properties of the matrix C to the cyclic
properties of the polynomial pC.

Theorem 11. Let a linear modular system x(k + 1) = C x(k) be given by a companion matrix

C ∈ F
d×d
2 and its corresponding d-th degree polynomial pC = (pirr,C)

e, where pirr,C ∈ F2[λ] is
an irreducible polynomial over F2 of degree δ such that d = e δ. Then the following statements hold:

1. If pirr,C(0) �= 0, then the phase space of the system has the cycle sum

Σ = 1[1] +
2δ − 1

τ1
[τ1] + · · ·+ 22δ − 2δ

τj
[τj] + . . . +

2eδ − 2(e−1)δ

τe
[τe] . (16)

In the above equation, the periods τj, j = 1, . . . , e are computed as τj = 2lj τ, whereby τ represents
the period of the irreducible polynomial pirr,C which is defined as the least positive natural number

for which p(λ) divides λτ − 1. In addition, lj, j = 1, . . . , e, is the least integer such that 2lj ≥ j.

2. If pirr,C = λd, then the phase space forms a tree with d levels, whereby each level l = 1, . . . , d

comprises 2l−1 states, each non-zero state in level l − 1 is associated to 2 states in level l, and the
zero state has one state in level 1.

4 Otherwise, we may always transform x̄ = T x such that in new coordinates it will be.
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Proof. Part 1. is proved in [Theorem 4.5 in (Reger, 2004)] and part 2. is proved in [Theorem 4.9
in (Reger, 2004)].
Equipped with this basic result, it is now possible to describe the structure of the state space
of an LMS in rational canonical form (14). Without loss of generality, it is assumed that the
first c companion matrices are cyclic with the cycle sums Σ1, . . . , Σc, whereas the remaining

companion matrices are nilpotent.5 Using the multiplication of cycle terms as defined by

νi[τi]νj[τj] =
νiνjτiτj

lcm(τi, τj)
[lcm(τi, τj)] = νiνj gcd(τi, τj)[lcm(τi, τj)] ,

the cycle structure Σ of the overall LMS is given by the multiplication of the cycle sums of the
cyclic companion matrices

Σ = Σ1 Σ2 · · · Σc.

Finally, the nilpotent part of the overall LMS forms a tree with max{dc+1, . . . , dN} levels, that
is, the length of the longest open path of the LMS is lo = max{dc+1, . . . , dN}. For the detailed
structure of the resulting tree the reader is referred to Section 4.2.2.2 in (Reger, 2004).
The following example illustrates the cycle sum evaluation for an LMS with the system matrix

A ∈ F
5×5
2 and its corresponding Smith canonical form S(λ) ∈ F2[λ]

5×5 that is computed as
in [p. 268 ff. in (Booth, 1967)], [p. 222 ff. in (Gill, 1969)].

A =

⎛
⎜⎜⎜⎝

1 0 0 1 1
1 1 0 0 1
0 0 1 0 1
0 0 0 0 1
1 0 0 0 1

⎞
⎟⎟⎟⎠ , S(λ) =

⎛
⎜⎜⎜⎝

(λ2 + λ + 1)(λ + 1)2 0 0 0 0
0 λ + 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎠

Here the only non-constant invariant polynomials of A are

c1(λ) = (λ2 + λ + 1)(λ + 1)2, c2(λ) = λ + 1

as indicated by the Smith canonical form. Thus, A has the elementary divisor polynomials

pC1
(λ) = λ2 + λ + 1, pC2

(λ) = (λ + 1)2, pC3
(λ) = λ + 1.

Since none of the elementary divisor polynomials is of the form λh for some integer h, the
system matrix A is cyclic. The corresponding base polynomial degrees are δ1 = 2, δ2 = 1 and

δ3 = 1, respectively. Consequently, the corresponding rational canonical form Arat = T A T−1

together with its transformation matrix T reads6

Arat = diag(C1, C2, C3) =

⎛
⎜⎜⎜⎝

0 1 0 0 0
1 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

⎞
⎟⎟⎟⎠, T =

⎛
⎜⎜⎜⎝

1 0 0 1 1
0 0 0 1 1
1 0 1 0 1
0 0 1 1 1
0 1 1 0 1

⎞
⎟⎟⎟⎠, T−1 =

⎛
⎜⎜⎜⎝

1 1 0 0 0
1 1 1 0 1
0 1 0 1 0
1 1 1 1 0
1 0 1 1 0

⎞
⎟⎟⎟⎠ .

5 A matrix A is called nilpotent when there is a natural number n ∈ N such that An = 0.
6 A simple method for obtaining the transformation matrix T can be found in Appendix B of (Reger,

2004).
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In view of Theorem 11, the corresponding periods are

pirr,C1
(λ) = λ2 + λ + 1|λ3 + 1 =⇒ τ

(1)
1 =3

pirr,C2
(λ) = λ + 1 =⇒ τ

(2)
1 =1

(
pirr,C2

(λ)
)2

= (λ + 1)2 = λ2 + 1 =⇒ τ
(2)
2 =2

pirr,C3
(λ) = λ + 1 =⇒ τ

(3)
1 =1

Thus, the associated cycle sums are

Σ1 = 1[1] + [3], Σ2 = 2[1] + [2], Σ3 = 2[1].

The superposition of these cycle sums yields the cycle sum of the overall LMS

Σ = Σ1Σ2Σ3 =
(
1[1] + 1[3]

)(
2[1] + 1[2]

)(
2[1]

)
=

(
2[1] + 1[2] + 2[3] + 1[6]

)(
2[1]

)
=

= 4[1] + 2[2] + 4[3] + 2[6] .

Therefore, the LMS represented by the system matrix A comprises 4 cycles of length 1, 2 cycles
of length 2, 4 cycles of length 3 and 2 cycles of length 6.

2.2 Reachability and stability

In this section, the DES properties of reachability and stability as introduced in Section 1.2
are investigated. The DES analysis for both properties is first performed for systems with no
controls in Subsection 2.2.1. In this case, we can prove necessary and sufficient conditions for
reachability and stability for general (not necessarily linear) deterministic DES f : Xn → Xn,
without even requiring an algebraic structure imposed on the set X. However, to achieve
equivalent results in the case of DES with controls, we need to endow the set X with the
structure of a finite field and assume that the mapping f : Xn × Um → Xn is linear. This is
presented in Subsection 2.2.2.

2.2.1 Reachability and stability for discrete event systems with no controls

The reachability analysis for DES with no controls requires the verification of (3). As
mentioned in Section 1.1, any state x̄ ∈ X either belongs to a unique cycle or to a tree that
is rooted at a unique cycle. In the first case, it is necessary and sufficient for reachability from
x̄ that there is at least one state x̂ ∈ Xg that belongs to the same cycle. Denoting the cycle

length as τ, it follows that f k(x̄) = x̂ ∈ Xg for some 0 ≤ k < τ. In the latter case, it is sufficient
that at least one state x̂ ∈ Xg is located on the cycle with length τ where the tree is rooted.

With the length lo of the longest open path and the root xr of the tree, it holds that xr = f l(x̄)

with 0 < l ≤ lo and x̂ = f k(xr) for some 0 < k < τ. Hence, f l+k x̄ = x̂ ∈ Xg. Together, it
turns out that reachability for a DES without controls can be formulated as a necessary and
sufficient property of the goal state set Xg with respect to the map f .

Theorem 12. Let f : Xn → Xn be a mapping, let C f denote the set of all cycles of the DES and let

Xg ⊆ Xn be a goal state set. Then, reachability of Xg with respect to f is given if and only if for all
cycles c ∈ C f , there is a state x̂ ∈ Xg that belongs to c. Denoting lo as the longest open path and τ as

the length of the longest cycle of the DES, Xg is reachable from any x̄ ∈ Xn in at most lo + τ − 1 steps.

Algorithmically, the verification of reachability for a given DES without controls with the
mapping f and the goal state set Xg can be done based on the knowledge of the number ν of
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cycles of the DES7. First, it has to be noted that the requirement |Xg| ≥ ν for the cardinality of
Xg is a necessary requirement. If this condition is fulfilled, the following procedure performs
the reachability verification.

Algorithm 13. Input: Mapping f , goal state set Xg, cycle count ν

1. Remove all states on trees from Xg

2. if ν = 1 and Xg �= ∅

return rechability verification successful

3. Pick x̂ ∈ Xg

Compute all states X̂g ⊆ Xg on the same cycle as x̂

Xg = Xg − X̂g

4. ν = ν − 1

5. if |Xg| ≥ ν

go to 2.

else

return reachability verification fails

That is, Algorithm 13 checks if the states in Xg cover each cycle of the DES. To this end, the
algorithm successively picks states from Xg and removes all states in the same cycle from Xg.
With the removal of each cycle, the variable ν that represents the number of cycles of the DES
that were not covered by states in Xg, yet, is decremented. Thereby, reachability is violated as
soon as there are more remaining cycles ν than remaining states in Xg.
Next, stability for DES with no controls as in (5) is considered. In view of the previous
discussion, stability requires that all states in all cycles of the DES belong to the goal set Xg.
In that case, it holds that whatever start state x̄ ∈ Xn is chosen, at most lo steps are required
to lead x̄ to a cycle that belongs to Xg. In contrast, it is clear that whenever there is a state
x ∈ Xn − Xg that belongs to a cycle of the DES, then the condition in (5) is violated for all
states in the same cycle. Hence, the formal stability result for DES with no controls is as
follows.

Theorem 14. Let f : Xn × Xn be a mapping and let Xg ⊆ Xn be a goal state set. Then, stability of
Xg with respect to f is given if and only if Xg contains all cyclic states of the DES with the mapping f .
Denoting lo as the longest open path of the DES, Xg is reached from any x̄ ∈ Xn in at most lo steps.

For the algorithmic verification of stability, a slight modification of Algorithm 13 can be used.

It is only required to additionally check if the set X̂g computed in step 3. contains all states of
the respective cycle. In the positive case, the algorithm can be continued as specified, whereas

the modified algorithm terminates with a violation of stability if X̂g does not contain all states
of a cycle.
In summary, both reachability and stability of DES with no controls with respect to a given
goal state set Xg can be formulated and algorithmically verified in terms of the cycle structure
of the DES. Moreover, it has to be noted that stability is more restrictive than reachability.
While reachability requires that at least one state in each cycle of the DES belongs to Xg,
stability necessitates that all cyclic states of the DES belong to Xg.

7 Note that ν can be computed for LMS according to Subsection 2.1.2.
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2.2.2 Reachability and stability under control

The results in this subsection are valid for arbitrary finite fields. However, we will state the
results with respect to the (for applications most relevant) Boolean finite field F2. Moreover,
the focus of this subsection is the specialization of (4) to the case of controlled LMS with the
following form

x(k + 1) = Ax(k) + Bu(k), k ∈ N0 (17)

with the matrices A ∈ F
n×n
2 and B ∈ F

n×m
2 :

∀x̄ ∈ F
n
2∃k ∈ N and controls u(0), . . . , u(k − 1) ∈ Um s.t. Ak x̄ +

k−1

∑
j=0

Ak−1−jBu(j) ∈ Xg. (18)

In analogy to the classical reachability condition for linear discrete time systems that are
formulated over the field R ((Sontag, 1998)), the following definition is sufficient for (18).

Definition 15. The LMS in (17) is denoted as reachable if for any x̄, x̂ ∈ F
n
2 , there exists a k ∈ N and

controls u(0), u(1), . . . , u(k − 1) such that x(k) = x̂. If there is a smallest number l ∈ N such that
the above condition is fulfilled for any x̄, x̂ ∈ F

n
2 and k = l, then the LMS is l-reachable.

That is, if an LMS is reachable, then the condition in (18) is fulfilled for any given goal set
Xg. To this end, the notion of controllability that is established for linear discrete time systems
[Theorem 2 in (Sontag, 1998)] is formulated for LMS.

Theorem 16. The LMS in (17) is controllable if and only if the pair (A, B) is controllable, that is, the
matrix R with

R =
[
B AB A2B · · · An−1B

]
(19)

has full rank n. Moreover, the LMS is l-controllable if and only if Rl =
[
B AB · · · Al−1B

]
has full

rank n for an l ∈ {1, ..., n}.

Noting the equivalence of controllability and reachability for linear discrete time systems
as established in [Lemma 3.1.5 in (Sontag, 1998)], l-reachability for LMS can be verified by
evaluating the rank of the matrix Rl . In case an LMS is l-reachable, an important task is to
determine an appropriate control input that leads a given start state x̄ to the goal state set Xg.
That is, for some x̂ ∈ Xg the controls u(0), . . . , u(l − 1) ∈ Um have to be computed such that

x̂ = Al x̄ + ∑
l−1
j=0 Al−1−jBu(j).

To this end, a particular matrix L ∈ F
n×n
2 is defined in analogy to [p. 81 in (Wolovich,

1974)]. Denoting the column vectors of the input matrix B as b1, . . . , bm (which, without loss
of generality, are linearly independent), that is, B =

[
b1 · · · bm

]
, L is constructed by choosing

n linearly independent columns from Rl with the following arrangement:

L =
[

b1 A b1 · · · Aµ1−1b1 b2 A b2 · · · Aµ2−1b2 · · · bm A bm · · · Aµm−1bm

]
. (20)

In this expression, the parameters µ1, . . . , µm that arise from the choice of the linearly
independent columns of Rl are the controllability indices of the LMS (A, B). Without loss of
generality it can be assumed that the controllability indices are ordered such that µ1 ≤ · · · ≤
µm, in which case they are unique for each LMS. The representation in (20) allows to directly
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compute an appropriate control sequence that leads x̄ to a state x̂ ∈ Xg. It is desired that

x̂ = Al x̄ +
l−1

∑
j=0

Al−1−j
[
b1 · · · bm

]
u(j)

= Al x̄ +
[
b1 · · · Al−1b1 · · · bm · · · Al−1bm

] [
u1(l − 1) · · · u1(0) · · · um(l − 1) · · · um(0)

]t

In the above equation, ui(j) denotes the i-th component of the input vector u(j) ∈ Um at step
j. Next, setting all ui(j) = 0 for i = 1, . . . , m and j ≤ l − 1 − µi, the above equation simplifies
to

x̂ = Al x̄+
[
b1· · ·Aµ1−1b1· · ·bm· · ·Aµm−1bm

] [
u1(l−1)· · ·u1(l−µ1)· · ·um(l−1)· · ·um(l−µm)

]t

= Al x̄+L
[
u1(l − 1) · · · u1(l − µ1) · · · um(l − 1) · · · um(l − µm)

]t

Since L is invertible, the remaining components of the control input evaluate as

[
u1(l − 1) · · · u1(l − µ1) · · · um(l − 1) · · · um(l − µm)

]t
= L−1

(
x̂ − Al x̄

)
.

Remark 17. At this point, it has to be noted that the presented procedure determines one of the possible
control input sequences that lead a given x̄ to x̂ ∈ Xg. In general, there are multiple different control
input sequences that solve this problem.

Considering stability, it is required to find a control input sequence that finally leads a given
start state to the goal state set Xg without leaving the goal state set again. For DES with no
controls that are described in Subsection 2.2.1, stability can only be achieved if all cyclic states
of an LMS are contained in Xg. In the case of LMS with control, this restrictive condition
can be relaxed. It is only necessary that the goal set contains at least one full cycle of the
corresponding system with no controls (for B = 0), that is, all states that form at least one
cycle of an LMS. If l-reachability of the LMS is given, then it is always possible to reach this
cycle after a bounded number of at most l steps.

Corollary 18. The LMS in (17) is stable if it is l-reachable for an l ∈ {1, ..., n} and Xg contains all
states of at least one cycle of the autonomous LMS with the system matrix A.

Next, it is considered that l-reachability is violated for any l in Corollary 18. In that case, the
linear systems theory suggests that the state space is separated into a controllable state space
and an uncontrollable state space, whereby there is a particular transformation to the state

y = T̃−1x that structurally separates both subspaces as follows from [p. 86 in ((Wolovich,
1974))].

y(k) = T̃AT̃−1y(k − 1) + T̃Bu(k − 1) =

[
yc(k)
yc̄(k)

]
=

[
Ãc Ãcc̄

0 Ãc̄

]
y(k − 1) +

[
B̃c

0

]
u(k − 1). (21)

This representation is denoted as the controller companion form with the controllable subsystem
(Ãc, B̃c), the uncontrollable autonomous subsystem with the matrix Ãc̄ and the coupling
matrix Ãcc̄.

Then, the following result is sufficient for the reachability of a goal state ŷ =

[
ŷc

ŷc̄

]
from a start

state ȳ =

[
ȳc

ȳc̄

]
, whereby ŷc, ȳc and ŷc̄, ȳc̄ denote the controllable and reachable part of the

respective state vectors in the transformed coordinates.
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Theorem 19. Assume that an uncontrollable LMS is given by its controller companion form in (21)

and assume that the pair (Ãc, B̃c) is l-controllable. Let ȳ =

[
ȳc

ȳc̄

]
be a start state and ŷ =

[
ŷc

ŷx̄

]
∈ Yg

be a goal state. Then, ŷ is reachable from ȳ in k steps if

• k ≥ l

• ŷc̄ = Ãk
c̄ ȳc̄

Theorem 19 constitutes the most general result in this subsection. In particular, Theorem 16 is
recovered if the uncontrollable subsystem of the LMS does not exist and k ≥ l.
Finally, the combination of the results in Theorem 19 and Corollary 18 allows to address the
issue of stability in the case of an uncontrollable LMS.

Corollary 20. Consider an LMS in its Kalman decomposition (21). The LMS is stable if it holds for
the uncontrollable subsystem that all states in cycles of Ãc̄ are present in the uncontrollable part ŷc̄ of
the goal states ŷ ∈ Yg, whereby each cycle in the uncontrollable subsystem has to correspond to at least
one cycle of the complete state y in Yg.

2.3 Cycle sum assignment

In regard of Section 2.1, imposing a desired cycle sum on an LMS requires to alter the system
matrix in such a way that it obtains desired invariant polynomials that generate the desired
cycle sum. Under certain conditions, this task can be achieved by means of linear state

feedback of the form u(k) = K x(k) with K ∈ F
m×n
2 .

Since the specification of a cycle sum via periodic polynomials will usually entail the need to
introduce more than one non-unity invariant polynomial, invariant polynomial assignment
generalizes the idea of pole placement that is wide-spread in the control community. The
question to be answered in this context is: what are necessary and sufficient conditions for
an LMS such that a set of invariant polynomials can be assigned by state feedback? The
answer to this question is given by the celebrated control structure theorem of Rosenbrock in
[Theorem 7.2.-4. in (Kailath, 1980)]. Note that, in this case, the closed-loop LMS assumes the
form x(k + 1) = (A + B K)x(k).

Theorem 21. Given is an n-dimensional and n-controllable LMS with m inputs. Assume that the
LMS has the controllability indices µ1 ≥ . . . ≥ µm. Let ci,K ∈ F2[λ] with ci+1,K |ci,K , i = 1, . . . , m −
1, and ∑

m
i=1 deg(ci,K) = n be the desired non-unity monic invariant polynomials. Then there exists

a matrix K ∈ F
m×n
2 such that A + B K has the desired invariant polynomials ci,K if and only if the

inequalities
k

∑
i=1

deg(ci,K) ≥
k

∑
i=1

µi, k = 1, 2, . . . , m (22)

are satisfied.

Remark 22. The sum of the invariant polynomial degrees and the n-controllability condition guarantee
that equality holds for k = m. However, the choice of formulation also includes the case of systems with
single input m. In this case, Rosenbrock’s theorem requires n-controllablity when a desired closed-loop
characteristic polynomial is to be assigned by state feedback. Furthermore, the theorem indicates that at
most m different invariant polynomials may be assigned in an LMS with m inputs.

Assigning invariant polynomials is equivalent to assigning the non-unity polynomials of the
Smith canonical form of the closed-loop characteristic matrix λI − (A + B K). It has to be
noted that although meeting the assumptions of the control structure theorem with the desired
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closed-loop Smith form, the extraction of the corresponding feedback matrix K is not a trivial
task. The reason for this is that, in general, the structure of the Smith form of λI − (A + B K)
does not necessarily agree with the controllability indices of the LMS, which are preserved
under linear state feedback. However, there is a useful reduction of the LMS representation
based on the closed loop characteristic matrix in the controller companion form as shown in
[Theorem 5.8 in (Reger, 2004)].

Theorem 23. Given is an n-dimensional n-controllable LMS in controller companion form (21) with
m inputs and controllability indices µ1, . . . , µm. Let DK̂ ∈ F2[λ]

m×m denote the polynomial matrix

DK̂(λ) := Λ(λ)− ÂK̂,nonzero P(λ) ,

where ÂK̂,nonzero ∈ F
m×n
2 contains the m non-zero rows of the controllable part of the closed-loop

system matrix Âc + B̂c K̂ in controller companion form, and P ∈ F2[λ]
n×m, Λ ∈ F2[λ]

m×m are

P(λ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0
λ 0 · · · 0
...

...
. . .

...
λµ1−1 0 · · · 0

0 1 · · · 0
...

...
. . .

...
0 λµ2−1 · · · 0
...

...
. . .

...
0 0 · · · 1
...

...
. . .

...
0 0 · · · λµm−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Λ(λ) =

⎛
⎜⎜⎝

λµ1 0 · · · 0
0 λµ2 · · · 0
...

...
. . .

...
0 0 · · · λµm

⎞
⎟⎟⎠ . (23)

Then the non-unity invariant polynomials of λI − (Âc + B̂cK̂), λI − (Ânonzero + K̂) and DK̂(λ)

coincide, whereby Ânonzero contains the nonzero rows of the controllable part Âc of the original system
matrix.

Theorem 23 points out a direct way of realizing the closed-loop LMS y(k + 1) = (Âc +
B̂cK̂)y(k) with desired invariant polynomials by means of specifying DK̂(λ). That is, if

an appropriate DK̂ can be found, then a linear state feedback matrix K̂ in the transformed
coordinates can be directly constructed. Simple manipulations first lead to

ÂK̂,nonzeroP(λ) = DK̂(λ)− Λ(λ) (24)

from which ÂK̂,nonzero can be determined by comparison of coefficients. Then, by Theorem

23, the feedback matrix

K̂ = Anonzero − ÂK̂,nonzero (25)

is obtained. Finally, the inverse coordinate transformation from the controller companion
form to the original coordinates yields

K = K̂T̃ . (26)

Hence, it remains to find an appropriate matrix DK̂ . To this end, the following definitions are
employed.
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Definition 24. Let M ∈ F2[λ]
n×m be arbitrary. The degree of the highest degree monomial in λ

within the i-th column of M(λ) is denoted as the i-th column degree of M and denoted by coli(M).

Definition 25. Let M ∈ F2[λ]
n×m be arbitrary. The highest column degree coefficient matrix

Γ(M) ∈ F
n×m
2 is the matrix whose elements result from the coefficients of the highest monomial

degree in the respective elements of M(λ).

Then, the following procedure leads to an appropriate DK̂ . Starting with a desired cycle
sum for the closed-loop LMS, an appropriate set of invariant polynomials – as discussed
in Section 2.1 – has to be specified. Next, it has to be verified if the realizability condition
of Rosenbrock’s control structure theorem for the given choice of invariant polynomials is
fulfilled. If the polynomials are realizable then DK̂(λ) is chosen as the Smith canonical form
that corresponds to the specified closed-loop invariant polynomials. In case the column
degrees of DK̂(λ) coincide with the respective controllability indices of the underlying LMS,

that is, coli(DK̂) = µi for i = 1, . . . , m, it is possible to directly calculate the feedback matrix K̂
according to (26). Otherwise, it is required to modify the column degrees of DK̂(λ) by means
of unimodular left and right transformations while leaving the invariant polynomials of DK̂
untouched. This procedure is summarized in the following algorithm.

Algorithm 26. Input: Pair (Âc, B̂c) in controller companion form8 controllability indices µ1 ≥
· · · ≥ µm, polynomials ci,K ∈ F2[λ], i = 1, . . . , m with cj+1,K |cj,K , j = 1, . . . , m − 1 and

∑
m
i=1 deg(ci,K) = n.

1. Verify Rosenbrock’s structure theorem
if the inequalities in Theorem 21 are fulfilled

go to step 2.

else

return “Rosenbrock’s structure theorem is violated.”

2. Define D⋆(λ) := diag(c1,K , . . . , cm,K)

3. Verify if the column degrees of D⋆(λ) and the controllability indices coincide
if coli(D⋆) = µi, i = 1, . . . , m

go to step 6.

else

Detect the first column of D⋆(λ) which differs from the ordered list of controllability indices,
starting with column 1. Denote this column colu(D⋆) (deg(colu(D⋆)) > µu)

Detect the first column of D⋆(λ) which differs from the controllability indices, starting with
column m. Denote this column cold(D⋆) (deg(cold(D⋆)) < µd)

4. Adapt the column degrees of D⋆(λ) by unimodular transformations
Multiply rowd(D⋆) by λ and add the result to rowu(D⋆) → new matrix D+(λ)
if deg(colu(D+)) = deg(colu(D⋆))− 1

D+(λ) → new matrix D++(λ) and go to step 5.

else

Define r := deg(colu(D⋆))− deg(cold(D⋆))− 1

Multiply cold(D+) by λr and subtract result from colu(D+) → new matrix D++(λ) .

8 If the LMS is not given in controller companion form, this form can be computed as in [p. 86 in
(Wolovich, 1974)].
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5. Set D⋆(λ) = (Γ(D++))−1D++(λ) and go to step 3.

6. DK̂(λ) := D⋆(λ) and return DK̂(λ)

It is important to note that the above algorithm is guaranteed to terminate with a suitable
matrix DK̂ if Rosenbrock’s structure theorem is fulfilled. For illustration, the feedback matrix
computation is applied to the following example that also appears in (Reger, 2004; Reger &
Schmidt, 2004). Given is an LMS over F2 of dimension n = 5 with m = 2 inputs in controller
companion form (that is, T̃ = I),

y(k + 1) = Âc y(k) + B̂c u(k), Âc =

⎛
⎜⎜⎜⎝

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
1 0 0 1 0

⎞
⎟⎟⎟⎠ , B̂c =

⎛
⎜⎜⎜⎝

0 0
1 0
0 0
0 0
0 1

⎞
⎟⎟⎟⎠

from which the matrix Ânonzero =

(
0 0 0 0 0
1 0 0 1 0

)
can be extracted.

As a control objective, we want to assign the invariant polynomials9 c1,K(a) = (a2 + a +

1)(a + 1)2 and c2,K(a) = a + 1, that is, according to the example in Subsection 2.1.2 this goal
is equivalent to specifing that the closed-loop LMS shall have 4 cycles of length 1, 2 cycles of
length 2, 4 cycles of length 3 and 2 cycles of length 6. An appropriate state feedback matrix K
is now determined by using (26) and Algorithm 26.

1.−→ 1
∑

i=1
deg(ci,K(λ)) = 4 ≥

1
∑

i=1
ci = 3 and

2
∑

i=1
deg(ci,K(λ)) = 5 ≥

2
∑

i=1
ci = 5

√

2.−→ D⋆(λ) =

(
(λ2 + λ + 1)(λ + 1)2 0

0 λ + 1

)
=

(
λ4 + λ3 + λ + 1 0

0 λ + 1

)

3., 4.−→ D+(λ) =

(
λ4 + λ3 + λ + 1 λ2 + λ

0 λ + 1

)
=⇒ D++(λ) =

(
λ + 1 λ2 + λ

λ3 + λ2 λ + 1

)

5.−→ Γ(D++) =

(
0 1
1 0

)
=⇒ D⋆(λ) = (Γ(D++))−1D++(λ) =

(
λ3 + λ2 λ + 1

λ + 1 λ2 + λ

)

3., 4., 6.−→ DK̂(λ) =

(
λ3 + λ2 λ + 1

λ + 1 λ2 + λ

)

With DK̂(λ) the feedback matrix K can be computed. First, employing equation (24) yields

ÂK̂,nonzero

⎛
⎜⎜⎜⎝

1 0
λ 0
λ2 0
0 1
0 λ

⎞
⎟⎟⎟⎠ =

(
λ3 0
0 λ2

)

︸ ︷︷ ︸
ΛΛΛ(λ)

+

(
λ3 + λ2 λ + 1

λ + 1 λ2 + λ

)

︸ ︷︷ ︸
DK̂(λ)

=

(
λ2 λ + 1

λ + 1 λ

)

9 Constructing the appropriate invariant polynomials based on the cycle structure desired is not always
solvable and, if solvable, not necessarily a straightforward task (Reger & Schmidt (2004)).
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and by comparison of coefficients results in ÂK̂,nonzero =

(
0 0 1 1 1
1 1 0 0 1

)
. This implies that

K = K̂T̃ = (ÂK̂,nonzero + Ânonzero) I =

(
0 0 1 1 1
0 1 0 1 1

)
.

3. Properties of Boolean monomial systems10

3.1 Dynamic properties, cycle structure and the loop number

The aim of this section is that the reader becomes acquainted with the main theorems
that characterize the dynamical properties of Boolean monomial dynamical systems without
deepening into the technicalities of their proofs. We briefly introduce terminology and
notation and present the main results. Proofs can be found in Delgado-Eckert (2008), and
partially in Delgado-Eckert (2009a) or Colón-Reyes et al. (2004).
Let G = (VG, EG, πG) be a directed graph (also known as digraph). Two vertices a, b ∈ VG are
called connected if there is a t ∈ N0 and (not necessarily different) vertices v1, ..., vt ∈ VG such
that

a → v1 → v2 → ... → vt → b,

where the arrows represent directed edges in the graph. In this situation we write a �s b,
where s is the number of directed edges involved in the sequence from a to b (in this case
s = t + 1). Two sequences a �s b of the same length are considered different if the directed
edges involved are different or the order at which they appear is different, even if the visited
vertices are the same. As a convention, a single vertex a ∈ VG is always connected to itself
a �0 a by an empty sequence of length 0. A sequence a �s b is called a path, if no vertex vi is
visited more than once. If a = b, but no other vertex is visited more than once, a �s b is called
a closed path.
Let q ∈ N be a natural number. We denote with Fq a finite field with q elements, i.e.

∣∣Fq

∣∣ = q.
As stated in the introduction, every function h : F

n
q → Fq can be written as a polynomial

function in n variables where the degree of each variable is less or equal to q − 1. Therefore we
introduce the exponents set (also referred to as exponents semiring, see below) Eq := {0, 1, ..., (q−
2), (q − 1)} and define monomial dynamical systems over a finite field as:

Definition 27. Let Fq be a finite field and n ∈ N a natural number. A map f : F
n
q → F

n
q is called an

n-dimensional monic monomial dynamical system over Fq if for every i ∈ {1, ..., n} there is a tuple
(Fi1, ..., Fin) ∈ En

q such that

fi(x) = xFi1

1 ...xFin
n ∀ x ∈ Fn

q

We will call a monic monomial dynamical system just monomial dynamical system. The matrix11

Fij ∈ M(n × n; Eq) is called the corresponding matrix of the system f .

Remark 28. As opposed to Colón-Reyes et al. (2004), we exclude in the definition of monomial
dynamical system the possibility that one of the functions fi is equal to the zero function. However, in
contrast to Colón-Reyes et al. (2006), we do allow the case fi ≡ 1 in our definition. This is not a loss of
generality because of the following: If we were studying a dynamical system f : F

n
q → F

n
q where one

of the functions, say f j, was equal to zero, then, for every initial state x ∈ F
n
q , after one iteration the

system would be in a state f (x) whose jth entry is zero. In all subsequent iterations the value of the jth

10 Some of the material presented in this section has been previously published in Delgado-Eckert (2009b).
11 M(n × n; Eq) is the set of n × n matrices with entries in the set Eq.
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entry would remain zero. As a consequence, the long term dynamics of the system are reflected in the
projection π ĵ : F

n
q → F

n−1
q

π ĵ(y) := (y1, ..., yj−1, yj+1, ..., yn)
t

and it is sufficient to study the system

f̃ : F
n−1
q → F

n−1
q

y �→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1(y1, ..., yj−1, 0, yj+1, ..., yn)
...

f j−1(y1, ..., yj−1, 0, yj+1, ..., yn)
f j+1(y1, ..., yj−1, 0, yj+1, ..., yn)

...
fn(y1, ..., yj−1, 0, yj+1, ..., yn)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In general, this system f̃ could contain component functions equal to the zero function, since every
component fi that depends on the variable xj would become zero. As a consequence, the procedure
described above needs to be applied several times until the lower dimensional system obtained does not
contain component functions equal to zero. It is also possible that this repeated procedure yields the
one dimensional zero function. In this case, we can conclude that the original system f is a fixed point
system with (0, ..., 0) ∈ F

n
q as its unique fixed point. The details about this procedure are described

as the "preprocessing algorithm" in Appendix B of Delgado-Eckert (2008). This also explains why we
exclude in the definition of monomial feedback controller (see Definition 62 in Section 3.2 below) the
possibility that one of the functions fi is equal to the zero function.

When calculating the composition of two monomial dynamical systems f , g : F
n
q → F

n
q (i.e.

the system f ◦ g : F
n
q → F

n
q , x �→ f (g(x))), one needs to add and multiply exponents.

Similarly, when calculating the product f ∗ g, where ∗ is the component-wise multiplication
defined as

( f ∗ g)i(x) := fi(x)gi(x)

one needs to add exponents. However, after such operations, one may face the situation
where some of the exponents exceed the value q − 1 and need to be reduced according to the
well known rule aq = a ∀ a ∈ Fq. This process can be accomplished systematically if we look

at the power x
p
i (where p > q) as a polynomial in the ring Fq[τ] and define the magnitude

redq(p) as the degree of the (unique) remainder of the polynomial division τp ÷ (τq − τ)

in the polynomial ring Fq[τ]. Then we can write x
p
i = x

redq(p)
i ∀ xi ∈ Fq, which is a direct

consequence of certain properties of the operator redq (see Lemma 39 in Delgado-Eckert
(2008)). In conclusion, the "exponents arithmetic" needed when calculating the composition of
dynamical systems f , g : F

n
q → Fn

q can be formalized based on the reduction operator redq(p).

Indeed, the set Eq = {0, 1, ..., (q − 1)} ⊂ Z together with the operations of addition a ⊕ b :=
redq(a + b) and multiplication a • b := redq(ab) is a commutative semiring with identity 1. We
call this commutative semiring the exponents semiring of the field Fq. Due to this property, the
set of all n-dimensional monomial dynamical systems over Fq, denoted with MFn

n (Fq), is a
monoid (MFn

n (Fq), ◦), where ◦ is the composition of such systems. Furthermore, this set is
also a monoid (MFn

n (Fq), ∗) where ∗ is the component-wise multiplication defined above. In
addition, as shown in Delgado-Eckert (2008), these two binary operations satisfy distributivity
properties, i.e. (MFn

n (Fq), ∗, ◦) is a semiring with identity element with respect to each binary
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operation. Moreover, Delgado-Eckert (2008) proved that this semiring is isomorphic to the
semiring M(n × n; Eq) of matrices with entries in Eq. This result establishes on the one hand,
that the composition f ◦ g of two monomial dynamical systems f , g is completely captured
by the product F · G of their corresponding matrices. On the other hand, it also shows that
the component-wise multiplication f ∗ g is completely captured by the sum F + G of the
corresponding matrices. Clearly, these matrix operations are defined entry-wise in terms
of the operations ⊕ and •. The aforementioned isomorphism makes it possible for us to
operate with the corresponding matrices instead of the functions, which has computational
advantages. Roughly speaking, this result can be summarized as follows: There is a bijective
mapping

Ψ : (M(n × n; Eq),+, ·) → (MFn
n (Fq), ∗, ◦)

which defines a one-to-one correspondence between matrices and monomial dynamical

systems. The corresponding matrix defined above can therefore be calculated as Ψ−1( f ). This
result is proved in Corollary 58 of Delgado-Eckert (2008), which states:

Theorem 29. The semirings (M(n × n; Eq),+, ·) and (MFn
n (Fq), ∗, ◦) are isomorphic.

Another important aspect is summarized in the following remark

Remark 30. Let Fq be a finite field and n, m, r ∈ N natural numbers. Furthermore, let f ∈ MFm
n (Fq)

and g ∈ MFr
m(Fq) with

fi(x) = xFi1

1 ...xFin
n ∀ x ∈ F

n
q , i = 1, ..., m

gj(x) = x
Gj1

1 ...x
Gjm
m ∀ x ∈ F

m
q , j = 1, ..., r

where F ∈ M(m × n; Eq) and G ∈ M(r × m; Eq) are the corresponding matrices of f and g,
respectively. Then for their composition g ◦ f : F

n
q → F

r
q it holds

(g ◦ f )k(x) =
n

∏
j=1

xj
(G·F)kj ∀ x ∈ F

n
q , k ∈ {1, ..., r}

Proof. See Remark and Lemma 51 of Delgado-Eckert (2008).
The dependency graph of a monomial dynamical system (to be defined below) is an important
mathematical object that can reveal dynamic properties of the system. Therefore, we turn our
attention to some graph theoretic considerations:

Definition 31. Let M be a nonempty finite set. Furthermore, let n := |M| be the cardinality of M. An
enumeration of the elements of M is a bijective mapping a : M → {1, ..., n}. Given an enumeration a
of the set M we write M = {a1, ..., an}, where the unique element x ∈ M with the property a(x) = i ∈
{1, ..., n} is denoted as ai.

Definition 32. Let f ∈ MFn
n (Fq) be a monomial dynamical system and G = (VG, EG, πG) a digraph

with vertex set VG of cardinality |VG| = n. Furthermore, let F := Ψ−1( f ) be the corresponding matrix
of f . The digraph G is called dependency graph of f iff an enumeration a : M → {1, ..., n} of the
elements of VG exists such that ∀ i, j ∈ {1, ..., n} there are exactly Fij directed edges ai → aj in the set

EG, i.e.
∣∣∣π−1

G ((ai, aj))
∣∣∣ = Fij.

It is easy to show that if G and H are dependency graphs of f then G and H are isomorphic.
In this sense we speak of the dependency graph of f and denote it by G f = (Vf , E f , π f ).
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Definition 33. Let G = (VG, EG, πG) be a digraph. Two vertices a, b ∈ VG are called strongly
connected if there are natural numbers s, t ∈ N such that a �s b and b �t a. In this situation we
write a ⇋ b.

Theorem 34. Let G = (VG, EG, πG) be a digraph. ⇋ is an equivalence relation on VG called strong
equivalence. The equivalence class of any vertex a ∈ VG is called a strongly connected component
and denoted by ←→a ⊆ VG.

Proof. This a well known result. A proof can be found, for instance, in Delgado-Eckert (2008),
Theorem 68.

Definition 35. Let G = (VG, EG, πG) be a digraph and a ∈ VG one of its vertices. The strongly
connected component ←→a ⊆ VG is called trivial iff ←→a = {a} and there is no edge a → a in EG.

Definition 36. Let G = (VG, EG, πG) be a digraph with vertex set VG of cardinality |VG| = n
and VG = {a1, ..., an} an enumeration of the elements of VG. The matrix A ∈ M(n × n; N0) whose
entries are defined as

Aij := number of edges ai → aj contained in EG

for i, j = 1, ..., n is called adjacency matrix of G with the enumeration a.

Remark 37. Let f ∈ MFn
n (Fq) be a monomial dynamical system. Furthermore, let G f = (Vf , E f ,

π f ) be the dependency graph of f and Vf = {a1, ..., an} the associated enumeration of the elements of

Vf . Then, according to the definition of dependency graph, F := Ψ−1( f ) (the corresponding matrix of
f ) is precisely the adjacency matrix of G f with the enumeration a.

The following parameter for digraphs was introduced into the study of Boolean monomial
dynamical systems by Colón-Reyes et al. (2004):

Definition 38. Let G = (VG, EG, πG) be a digraph and a ∈ VG one of its vertices. The number

LG(a) := min
a�u a
a�v a
u �=v

|u − v|

is called the loop number of a. If there is no sequence of positive length from a to a, then LG(a) is set to
zero.

Note that the loop number LG′ (a) of the vertex a in a graph G′ = (VG, E′
G, π′

G) may have a
different value.

Lemma 39. Let G = (VG, EG, πG) be a digraph and a ∈ VG one of its vertices. If ←→a is nontrivial
then for every b ∈ ←→a it holds LG(b) = LG(a). Therefore, we introduce the loop number of strongly
connected components as

LG(
←→a ) := LG(a)

Proof. See Lemma 4.2 in Colón-Reyes et al. (2004).
The loop number of a strongly connected graph is also known as the index of imprimitivity
(see, for instance, Pták & Sedlaček (1958)) or period (Denardo (1977)) and has been used in
the study of nonnegative matrices (see, for instance, Brualdi & Ryser (1991) and Lancaster
& Tismenetsky (1985)). This number quantizes the length of any closed sequence in a strongly
connected graph, as shown in the following theorem. It is also the biggest possible "quantum",
as proved in the subsequent corollary.
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Theorem 40. Let G = (VG, EG, πG) be a strongly connected digraph. Furthermore, let t :=
LG(VG) ≥ 0 be its loop number and a ∈ VG an arbitrary vertex. Then for any closed sequence
a �m a there is an α ∈ N0 such that m = αt.

Proof. This result was proved in Corollary 4.4 of Colón-Reyes et al. (2004). A similar proof
can be found in Delgado-Eckert (2009b), Theorem 2.19.

Corollary 41. Let G = (VG, EG, πG) be a strongly connected digraph such that VG is nontrivial and
VG = {a1, ..., an} an enumeration of the vertices. Furthermore, let l1, ..., lk ∈ {1, ..., n} be the different
lengths of non-empty closed paths actually contained in the graph G. That is, for every j ∈ {1, ..., k}
there is an aij

∈ VG such that a closed path aij
�lj

aij
exists in G, and the list l1, ..., lk captures all

different lengths of all occurring closed paths. Then the loop number LG(VG) satisfies

LG(VG) = gcd(l1, ..., lk)

Proof. This result was proved in Theorem 4.13 of Colón-Reyes et al. (2004). A slightly simpler
proof can be found in Delgado-Eckert (2009b), Corollary 2.20.
The next results show how the connectivity properties of the dependency graph and, in
particular, the loop number are related to the dynamical properties of a monomial dynamical
system.

Theorem 42. Let Fq be a finite field and f ∈ MFn
n (Fq) a monomial dynamical system. Then f is a

fixed point system with (1, ..., 1)t ∈ F
n
q as its only fixed point if and only if its dependency graph only

contains trivial strongly connected components.

Proof. See Theorem 3 in Delgado-Eckert (2009a).

Definition 43. A monomial dynamical system f ∈ MFn
n (Fq) whose dependency graph contains

nontrivial strongly connected components is called coupled monomial dynamical system.

Definition 44. Let m ∈ N be a natural number. We denote with D(m) := {d ∈ N : d divides m}
the set of all positive divisors of m.

Theorem 45. Let F2 be the finite field with two elements, f ∈ MFn
n (F2) a Boolean coupled monomial

dynamical system and G f = (Vf , E f , π f ) its dependency graph. Furthermore, let G f be strongly
connected with loop number t := LG f

(Vf ) > 1. Then the period number T (cf. Section 1.1) of f
satisfies

T = LG f
(Vf )

Moreover, the phase space of f contains cycles of all lengths s ∈ D(T).

Proof. This result was proved by Colón-Reyes et al. (2004), see Corollary 4.12. An alternative
proof is presented in Delgado-Eckert (2008), Theorem 131.

Theorem 46. Let F2 be the finite field with two elements, f ∈ MFn
n (F2) a Boolean coupled monomial

dynamical system and G f = (Vf , E f , π f ) its dependency graph. Furthermore, let G f be strongly
connected with loop number t := LG f

(Vf ) > 1. In addition, let s ∈ N be a natural number and

denote by Zs the number of cycles of length s displayed by the phase space of f . Then it holds for any
d ∈ N

Zd =

⎧
⎪⎨
⎪⎩

2d −∑j∈D(d)\d
Zj

d if d ∈ D(t)

0 if d /∈ D(t)
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Proof. See Theorem 132 in Delgado-Eckert (2008).

Theorem 47. Let F2 be the finite field with two elements, f ∈ MFn
n (F2) a Boolean coupled monomial

dynamical system and G f = (Vf , E f , π f ) its dependency graph. f is a fixed point system if and only
if the loop number of each nontrivial strongly connected component of G f is equal to 1.

Proof. This result was proved in Colón-Reyes et al. (2004), see Theorem 6.1. An alternative
proof is presented in Delgado-Eckert (2009a), Theorem 6.

Remark 48. As opposed to the previous two theorems, the latter theorem does not require that G f

is strongly connected. This feature allows us to solve the stabilization problem (see Section 3.3) for a
broader class of monomial control systems (see Definition 54 in Section 3.2).

Lemma 49. Let G = (VG, EG, πG) be a strongly connected digraph such that VG is nontrivial.
Furthermore, let t := LG(VG) > 0 be its loop number. For any a, b ∈ VG the relation ≈ defined by

a ≈ b :⇔ ∃ a sequence a �αt b with α ∈ N0

is an equivalence relation called loop equivalence. The loop equivalence class of an arbitrary vertex
a ∈ VG is denoted by ã. Moreover, the partition of VG defined by the loop equivalence ≈ contains
exactly t loop equivalence classes.

Proof. See the proofs of Lemma 4.6 and Lemma 4.7 in Colón-Reyes et al. (2004).

Definition 50. Let G = (VG, EG, πG) be a digraph, a ∈ VG an arbitrary vertex and m ∈ N a
natural number. Then the set

Nm(a) := {b ∈ VG : ∃ a �m b}
is called the set of neighbors of order m.

Remark 51. From the definitions it is clear that

ã =
⋃

α∈N0

Nαt(a)

Theorem 52. Let G = (VG, EG, πG) be a strongly connected digraph such that VG is nontrivial.
Furthermore, let t := LG(VG) > 0 be its loop number and ã ⊆ VG an arbitrary loop equivalence class
of VG. Then for any b, b′ ∈ ã the following holds

1. Nm(b) ∩ Nm′ (b′) = ∅ for m, m′ ∈ N such that 1 ≤ m, m′ < t and m �= m′.

2. Nm(b) ∩ ã = ∅ for m ∈ N such that 1 ≤ m < t.

3. For every fixed m ∈ N such that 1 ≤ m ≤ t ∃ c ∈ VG :
⋃

b∈ã
Nm(b) = c̃.

Proof. See Theorem 111 in Delgado-Eckert (2008).

Remark 53. It is worth mentioning that since VG is strongly connected and nontrivial, Nm(b) �= ∅

∀ m ∈ N, b ∈ VG. Moreover, from (1) in the previous theorem it follows easily

(
⋃

b∈ã

Nm(b)

)
∩
(

⋃

b∈ã

Nm′ (b)

)
= ∅ for m, m′ ∈ N such that 1 ≤ m, m′

< t and m �= m′
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Fig. 1. Strongly connected dependency graph G f = (Vf , E f , π f ) with loop number

LG f
(Vf ) = 6 of a 24-dimensional Boolean monomial dynamical system f ∈ MF24

24 (F2).
Circles (blue) demarcate each of the six loop equivalence classes. Essentially, the dependency
graph is a closed path of length 6.

and because of (2) in the previous theorem clearly

ã =
⋃

b∈ã

Nt(b)

Given one loop equivalence class ã ⊆ VG, the set of all the t loop equivalence classes can be ordered in
the following manner

ãi := ã, ãi+1 =
⋃

b∈ãi

N1(b), ...ãi+j =
⋃

b∈ãi

Nj(b), ...ãi+t−1 =
⋃

b∈ãi

Nt−1(b)

For any c ∈ ⋃

b∈ãi

Nt−1(b) it must hold N1(c) ⊆ ãi (if N1(c)∩ ãj �= ∅ with j �= i, then ãi = ãj). Thus,

the graph G can be visualized as (see Fig. 1)

ãi ⇒ ãi+1 ⇒ · · · ⇒ ãi+j ⇒ ã(i+j+1) mod t ⇒ ... ⇒ ãi+t−1 ⇒ ã(i+t) mod t

Due to the fact ã =
⋃

b∈ã
Nt(b) ∀ a ∈ VG, we can conclude that the claims of the previous lemma still

hold if the sequence lengths m and m′ are replaced by the more general lengths λt + m and λ′t + m′,
where λ, λ′ ∈ N.

3.2 Boolean monomial control systems: Control theoretic questions studied

We start this section with the formal definition of a time invariant monomial control system
over a finite field. Using the results stated in the previous section, we provide a very compact
nomenclature for such systems. After further elucidations, and, in particular, after providing
the formal definition of a monomial feedback controller, we clearly state the main control
theoretic problem to be studied in Section 3.3 of this chapter.

Definition 54. Let Fq be a finite field, n ∈ N a natural number and m ∈ N0 a nonnegative integer.
A mapping g : F

n
q × F

m
q → F

n
q is called time invariant monomial control system over Fq if for
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every i ∈ {1, ..., n} there are two tuples (Ai1, ..., Ain) ∈ En
q and (Bi1, ..., Bim) ∈ Em

q such that

gi(x, u) = xAi1

1 ...xAin
n uBi1

1 ...uBim
m ∀ (x, u) ∈ F

n
q × F

m
q

Remark 55. In the case m = 0, we have F
m
q = F

0
q = {()} (the set containing the empty tuple) and

thus F
n
q × F

m
q = F

n
q × F

0
q = F

n
q × {()} = F

n
q . In other words, g is a monomial dynamical system

over Fq. From now on we will refer to a time invariant monomial control system over Fq as monomial
control system over Fq.

Definition 56. Let X be a nonempty finite set and n, l ∈ N natural numbers. The set of all functions
f : Xl → Xn is denoted with Fn

l (X).

Definition 57. Let Fq be a finite field and l, m, n ∈ N natural numbers. Furthermore, let Eq be the
exponents semiring of Fq and M(n × l; Eq) the set of n × l matrices with entries in Eq. Consider the
map

Γ : Fl
m(Fq)× M(n × l; Eq) → Fn

m(Fq)

( f , A) �→ ΓA( f )

where ΓA( f ) is defined for every x ∈ F
m
q and i ∈ {1, ..., n} by

ΓA( f )(x)i := f1(x)Ai1 ... fl(x)Ail

We denote the mapping ΓA( f ) ∈ Fn
m(Fq) simply A f .

Remark 58. Let l = m, id ∈ Fm
m (Fq) be the identity map (i.e. idi(x) = xi ∀ i ∈ {1, ..., m}) and

A ∈ M(n × m; Eq) Then the following relationship between the mapping Aid ∈ Fn
m(Fq) and any

f ∈ Fm
m (Fq) holds

Aid( f (x)) = A f (x) ∀ x ∈ F
m
q

Remark 59. Consider the case l = m = n. For every monomial dynamical system f ∈ MFn
n (Fq) ⊂

Fn
n (Fq) with corresponding matrix F := Ψ−1( f ) ∈ M(n × n; Eq) it holds Fid = f . On the other

hand, given a matrix F ∈ M(n × n; Eq) we have Ψ−1(Fid) = F. Moreover, the map Γ : Fn
n (Fq)×

M(n× n; Eq) → Fn
n (Fq) is an action of the multiplicative monoid M(n× n; Eq) on the set Fn

n (Fq). It

holds namely, that12 I f = f ∀ f ∈ Fn
n (Fq) (which is trivial) and (A · B) f = A(B f ) ∀ f ∈ Fn

n (Fq),
A, B ∈ M(n × n; Eq). To see this, consider

((A · B) f )i(x) = f1(x)(A·B)i1 ... fn(x)(A·B)in =
n

∏
j=1

f j(x)(Ai1•B1j⊕...⊕Ain•Bnj)

= (Aid ◦ Bid)i( f (x)) = (Aid)i(Bid( f (x)))

= (Aid)i( f B(x)) = (A(B f ))i(x)

where id ∈ Fn
n (Fq) is the identity map (i.e. idi(x) = xi ∀ i ∈ {1, ..., n}). (cf. with the proof of Theorem

29). As a consequence, MFn
n (Fq) is the orbit in Fn

n (Fq) of id under the monoid M(n × n; Eq). In
particular (see Theorem 29), we have

(F · G)id = F(Gid) = f ◦ g

12 I ∈ M(n × n; Eq) denotes the identity matrix.
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where g ∈ MFn
n (Fq) is another monomial dynamical system with corresponding matrix G :=

Ψ−1(g) ∈ M(n × n; Eq).

Lemma 60. Let Fq be a finite field, n ∈ N a natural number and m ∈ N0 a nonnegative integer.

Furthermore, let id ∈ F
(n+m)
(n+m)

(Fq) be the identity map (i.e. idi(x) = xi ∀ i ∈ {1, ..., n + m}) and

g : F
n
q × F

m
q → F

n
q a monomial control system over Fq. Then there are matrices A ∈ M(n × n; Eq)

and B ∈ M(n × m; Eq) such that

((A|B)id)(x, u) = g(x, u) ∀ (x, u) ∈ F
n
q × F

m
q

where (A|B) ∈ M(n × (n + m); Eq) is the matrix that results by writing A and B side by side. In this
sense we denote g as the monomial control system (A, B) with n state variables and m control inputs.

Proof. This follows immediately from the previous definitions.

Remark 61. If the matrix B ∈ M(n × m; Eq) is equal to the zero matrix, then g is called a control
system with no controls. In contrast to linear control systems (see the previous sections and also
Sontag (1998)), when the input vector u ∈ F

m
q satisfies

u =�1 := (1, ..., 1)t ∈ F
m
q

then no control input is being applied on the system, i.e. the monomial dynamical system over Fq

σ : F
n
q → F

n
q

x �→ g(x,�1)

satisfies
σ(x) = ((A|0)id)(x, u) ∀ (x, u) ∈ F

n
q × F

m
q

where 0 ∈ M(n × m; Eq) stands for the zero matrix.

Definition 62. Let Fq be a finite field and n, m ∈ N natural numbers. A monomial feedback
controller is a mapping

f : F
n
q → F

m
q

such that for every i ∈ {1, ..., m} there is a tuple (Fi1, ..., Fin) ∈ En
q such that

fi(x) = xFi1

1 ...xFin
n ∀ x ∈ Fn

q

Remark 63. We exclude in the definition of monomial feedback controller the possibility that one of the
functions fi is equal to the zero function. The reason for this will become apparent in the next remark
(see below).

Now we are able to formulate the first control theoretic problem to be addressed in this section:

Problem 64. Let Fq be a finite field and n, m ∈ N natural numbers. Given a monomial control system
g : F

n
q × F

m
q → F

n
q with completely observable state, design a monomial state feedback controller

f : F
n
q → F

m
q such that the closed-loop system

h : F
n
q → F

n
q

x �→ g(x, f (x))
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has a desired period number and cycle structure of its phase space. What properties has g to fulfill for
this task to be accomplished?

Remark 65. Note that every component

hi : F
n
q → Fq, i = 1, ..., n

x �→ gi(x, f (x))

is a nonzero monic monomial function, i.e. the mapping h : F
n
q → F

n
q is a monomial dynamical system

over Fq. Remember that we excluded in the definition of monomial feedback controller the possibility
that one of the functions fi is equal to the zero function. Indeed, the only effect of a component fi ≡ 0
in the closed-loop system h would be to possibly generate a component hj ≡ 0. As explained in Remark
28 of Section 3.1, this component would not play a crucial role determining the long term dynamics of
h.
Due to the monomial structure of h, the results presented in Section 3.1 of this chapter can be used to
analyze the dynamical properties of h. Moreover, the following identity holds

h = (A + B · F)id

where F ∈ M(m × n; Eq) is the corresponding matrix of f (see Remark 30), (A, B) are the matrices in
Lemma 60 and id ∈ Fn

n (Fq). To see this, consider the mapping

µ : F
m
q → F

n
q

u �→ g(�1, u)

where�1 ∈ F
n
q . From the definition of g it follows that µ ∈ MFn

m(Fq). Now, since f ∈ MFm
n (Fq), by

Remark 30 we have for the composition µ ◦ f : F
n
q → F

n
q

µ ◦ f = (B · F)id

Now its easy to see
h = (A + B · F)id

The most significant results proved in Colón-Reyes et al. (2004), Delgado-Eckert (2008)
concern Boolean monomial dynamical systems with a strongly connected dependency graph.
Therefore, in the next section we will focus on the solution of Problem 64 for Boolean
monomial control systems g : F

n
2 × F

m
2 → F

n
2 with the property that the mapping

σ : F
n
2 → F

n
2

x �→ g(x,�1)

has a strongly connected dependency graph. Such systems are called strongly dependent
monomial control systems. If we drop this requirement, we would not be able to use Theorems
45 and 46 to analyze h regarding its cycle structure. However, if we are only interested in
forcing the period number of h to be equal to 1, we can still use Theorem 47 (see Remark 48).
This feature will be exploited in Section 3.3, when we study the stabilization problem.
Although the above representation

h = (A + B · F)id
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of the closed loop system displays a striking structural similarity with linear control
systems and linear feedback laws, our approach will completely differ from the well known
"Pole-Assignment" method.

3.3 State feedback controller design for Boolean monomial control systems

Our goal in this section is to illustrate how the loop number, a parameter that, as we
saw, characterizes the dynamic properties of Boolean monomial dynamical systems, can be
exploited for the synthesis of suitable feedback controllers. To this end, we will demonstrate
the basic ideas using a very simple subclass of systems that allow for a graphical elucidation
of the rationale behind our approach. The structural similarity demonstrated in Remark 53
then enables the extension of the results to more general cases. A rigorous implementation of
the ideas developed here can be found in Delgado-Eckert (2009b).
As explained in Remark 53, a Boolean monomial dynamical system with a strongly connected
non-trivial dependency graph can be visualized as a simple cycle of loop-equivalence classes
(see Fig. 1). In the simplest case, each loop-equivalence class only contains one node and
the dependency graph is a closed path. A first step towards solving Problem 64 for strongly
dependent Boolean monomial control systems g : F

n
2 × F

m
2 → F

n
2 would be to consider the

simpler subclass of problems in which the mapping

σ : F
n
2 → F

n
2

x �→ g(x,�1)

simply has a closed path of length n as its dependency graph (see Fig. 2 a for an example
in the case n = 6). By the definition of dependency graph and after choosing any monomial
feedback controller f : F

n
2 → F

m
2 , it becomes apparent that the dependency graph of the

closed-loop system

h f : F
n
2 → F

n
2

x �→ g(x, f (x))

arises from adding new edges to the dependency graph of σ. Since we assumed that the
dependency graph of σ is just a closed path, adding new edges to it can only generate new
closed paths of length in the range 1, . . . , n − 1. By Corollary 41, we immediately see that the
loop number of the modified dependency graph (i.e., the dependency graph of h f ) must be a
divisor of the original loop number. This result is telling us that no matter how complicated
we choose a monomial feedback controller f : F

n
2 → F

m
2 , the closed loop system h f will

have a dependency graph with a loop number L′ which divides the loop number L of the
dependency graph of σ. This is all we can achieve in terms of loop number assignment. When a
system allows for assignment to all values out of the set D(L), we call it completely loop number
controllable. We just proved this limitation for systems in which σ has a simple closed path
as its dependency graph. However, due to the structural similarity between such systems
and strongly dependent systems (see Remark 53), this result remains valid in the general case
where σ has a strongly connected dependency graph.
Let us simplify the scenario a bit more and assume that the system g has only one control
variable u (i.e., g : F

n
2 × F2 → F

n
2 ) and that this variable appears in only one component

function, say gk. As before, assume σ has a simple closed path as its dependency graph. Under
these circumstances, we choose the following monomial feedback controllers: fi : F

n
2 → F2,
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fi(x) := xi, i = 1, ..., n. When we look at the closed-loop systems

h fi
: F

n
2 → F

n
2

x �→ g(x, fi(x))

and their dependency graphs, we realize that the dependency graph of h fi
corresponds to the

one of σ with one single additional edge. Depending on the value of i under consideration,
this additional edge adds a closed path of length l in the range l = 1, .., n− 1 to the dependency
graph of σ. In Figures 2 b-e, we see all the possibilities in the case of n = L = 6, except for
l = 1 (self-loop around the kth node).

L = 6 L = 2 L = 3

L = 1 L = 1 L = 1

a b c

d e f

Fig. 2. Loop number assignment through the choice of different feeback controllers.

We realize that with only one control variable appearing in only one of the components of
the system g, we can set the loop number of the closed-loop system h fi

to be equal to any

of the possible values (out of the set D(L)) by choosing among the feedback controllers fi,
i = 1, ..., n, defined above. This proves that the type of systems we are considering here are
indeed completely loop number controllable. Moreover, as illustrated in Figure 2 f, if the
control variable u would appear in another component function of g, we may loose the loop
number controllability. Again, due to the structural similarity (see Remark 53), this complete
loop number controllability statement is valid for strongly dependent systems.

In the light of Theorem 47 (see Remark 48), for the stabilization13 problem we can consider
arbitrary Boolean monomial control systems g : F

n
2 × F

m
2 → F

n
2 , maybe only requiring the

obvious condition that the mapping σ is not already a fixed point system. Moreover, the
statement of Theorem 47 is telling us that such a system will be stabilizable if and only if the
component functions gj depend in such a way on control variables ui, that every strongly
connected component of the dependency graph of σ can be forced into loop number one by
incorporating suitable additional edges. This corresponds to the choice of a suitable feedback
controller. The details and proof of this stabilizability statement as well as a brief description
of a stabilization procedure can be found in Delgado-Eckert (2009b).

13 Note that in contrast to the definition of stability introduced in Subsection 1.2.1, in this context we refer
to stabilizability as the property of a control system to become a fixed point system through the choice
of a suitable feedback controller.
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4. Conclusions

In this chapter we considered discrete event systems within the paradigm of algebraic state
space models. As we pointed out, traditional approaches to system analysis and controller
synthesis that were developed for continuous and discrete time dynamical systems may not
be suitable for the same or similar tasks in the case of discrete event systems. Thus, one of
the main challenges in the field of discrete event systems is the development of appropriate
mathematical techniques. Finding new mathematical indicators that characterize the dynamic
properties of a discrete event system represents a promising approach to the development of
new analysis and controller synthesis methods.
We have demonstrated how mathematical objects or magnitudes such as invariant
polynomials, elementary divisor polynomials, and the loop number can play the role of the
aforementioned indicators, characterizing the dynamic properties of certain classes of discrete
event systems. Moreover, we have shown how these objects or magnitudes can be used to
effectively address controller synthesis problems for linear modular systems over the finite
field F2 and for Boolean monomial systems.
We anticipate that the future development of the discrete event systems field will not only
comprise the derivation of new mathematical methods, but also will be concerned with the
development of efficient algorithms and their implementation.
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