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Abstract

Alternative cell fates represent a form of non-genetic diversity, which can promote adaptation and functional
specialization. It is difficult to predict the rate of the transition between two cell fates due to the strong effect of
noise on feedback loops and missing parameters. We opened synthetic positive feedback loops
experimentally to obtain open-loop functions. These functions allowed us to identify a deterministic model
of bistability by bypassing noise and the requirement to resolve individual processes in the loop. Combining
the open-loop function with kinetic measurements and reintroducing the measured noise, we were able to
predict the transition rates for the feedback systems without parameter tuning. Noise in gene expression was
the key determinant of the transition rates inside the bistable range. Transitions between two cell fates were
also observed outside of the bistable range, evidenced by bimodality and hysteresis. In this case, a slow
transient process was the rate-limiting step in the transitions. Thus, feedback opening is an effective approach
to identify the determinants of cell fate transitions and to predict their rates.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Genetically identical cellswith two distinct phenotypes
can coexist and persist in an identical environment,
provided they were exposed to different conditions in
the past and can display bistability. Bistability plays
important rules in adaptation and cell differentiation in
uni- and multicellular organisms. Typically, bistability
arises due to positive feedback loops [1–3].
In a bistable feedback, a feedback component can

have either low or high concentration in the steady
state. Which state is reached depends only on the
initial condition. If, initially, an external factor induces
a cell to express a sufficiently high concentration of a
component, the high expression will persist even
after the factor is removed. Such a purely determin-
istic view of steady-state bistability needs to be
modified in biological systems because transitions
occur between two states. Transition rates can span
a broad range; it is a rare event, for example, in the
lysis–lysogeny cycle of the lambda phage. On the
other hand, bacteria can switch to the competent
form at high frequency [4,5]. The prediction of these
uthors. Published by Elsevier Ltd. This is
nses/by-nc-nd/4.0/).
rates is crucial because they determine the propor-
tion of the two cell types in a cell population and the
efficiency of cellular reprogramming [6,7].
Typically, noise is considered a driving force of

such transitions in genetic systems [8]. The interac-
tion between a bistable system and noise is often
conceptualized by depicting the deterministic bis-
table system by a potential landscape; the two stable
states correspond to the two lowest points in the
potential wells, which are separated by a barrier
(Fig. 1a) [9]. When the system is exposed to noise,
small fluctuations may not be sufficient to switch the
cells to the other state, but larger fluctuations would
do this (Fig. 1a, lower left panel). On the other hand,
if the barrier is lower, even weak noise can switch the
cells (Fig. 1a, lower right panel).
Thus, bistability amplifies the effect of noise; a

sufficiently strong noise can induce most of the cells
to switch to the higher state even though the
deterministic description predicts the system to be
at the low state. Consequently, the deterministic and
stochastic descriptions of bistable systems are
completely different [10], which makes the prediction
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Fig. 1. Prediction of transition rates in bistable feedback loops. (a) A positive feedback loop displays bistability in a
certain range of TF-DNA affinities. The two stable states correspond to potential wells. At higher TF-DNA affinity, the lower
potential well becomes shallower (right panel) and the cells can more easily switch to the high state. The frequency of the
transition is also influenced by noise intensity: weak noise (orange) and strong noise (green). (b) Prediction of transition
rates and steady-state expression by feedback opening. The feedback loop is opened experimentally. The resulting open‐
loop function and the equivalence plane constitute a simple deterministic model. If they have a single intersection, the
parent feedback is monostable. In this case, the intersection, which we termed open-to-closed loop mapping, can be
directly compared to the measured steady-state expression in the feedback loop. If the parent feedback is classified as
bistable, the open‐loop function must be extended to a model by fitting the parameters to kinetic and noise measurements.
The resulting stochastic model predicts the transition rates. The predictions are verified by measuring the feedback loop.
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of the rates difficult. A possible way to predict the
transitions is to measure individual reactions in vitro
or in vivo and to combine all the reaction parameters
into a model. However, many parameters in a circuit
are experimentally inaccessible; their reported
values can also scatter broadly, which hampers the
prediction [11,12].
Here, we opted for a different approach comprising

two stages. First, we employed a method termed
feedback opening [13]. We opened synthetic feed-
back loops in the yeast Saccharomyces cerevisiae.
Synthetic circuits have been playing an important
role to characterize the fundamental properties of
feedback behavior [14–18]. In the open loop,
bistability is eliminated, and noise-induced transi-
tions are bypassed. Therefore, we can obtain an
open-loop function (fOLM), which is the total response
of all the reaction steps in the loop, without the need
to resolve any of them individually. Since the fOLM
contains all the information on the deterministic
steady-state expression, it can be used to determine
if the parent closed (feedback) loop is bistable or
monostable (Fig. 1b, deterministic model). In the
second stage, we measured noise and the time
scale of reactions, and by reintroducing noise into
the model, we successfully predicted the transition
rates (Fig. 1b, stochastic model).
Results

Design of the input and output constructs for the
loop opening

To open a feedback loop, one of its components has
to be split into an input and an output [13]. The resulting
open loop is thus a reaction chain starting with the
independently controllable input that triggers the
biochemical reactions; the chain ends with the output,
which has no effect on the reaction chain (Fig. 2a).
We opened transcriptional feedback loops at the

RNA level in yeast (gray box, Fig. 2a), and thus, both
the input and output are RNA molecules. The
expressed input RNA is translated, which triggers
the subsequent reactions, such as the transcription
factor (TF) dimerization, the binding of the TF to the
promoter, and lastly, the synthesis of the output
RNA. The reactions between the input and output
RNA are illustrated as a black box in Fig. 2a.
The input RNA is identical to the original RNA in

the feedback loop. On the other hand, the output
RNA has to be designed by mutating the original
RNA. The mutation has to meet two requirements.
First, the protein translated from the output mRNA
must not interfere with the reactions in the loop
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Fig. 2. Opening of the monomeric–noncooperative feedback loop (P[tetO]1-sc-rtTA) classifies the parent loop as
monostable. (a) To open a feedback loop, a component is chosen to be broken into an input and output. (b) The green
segment in the output represents a heterologous sequence inserted for the feedback opening. (c) GFP fluorescence
distribution in an open-loop-like construct, which contains a GFP reporter gene downstream of a [tetO]1 promoter
controlled by sc-rtTA. Cells were exposed to a gradient of dox concentrations (0.07, 0.12, 0.20, 0.33, 0.55, 0.91, 1.52, and
2.53 μM). (d) Open-loop measurements. The input and output RNA is measured, as the activity of the GAL promoter was
varied by estradiol (see Materials and Methods) at three different fixed values of dox. (e) The measured equivalence (gray)
and open-loop (blue) functions fitted to data shown in (d). The traces of the function denoted by blue thick lines correspond
to the dox and estradiol concentrations used in the experiments (see also Fig. S3a). (f) Comparison of the open-to-closed
loop mapping (red lines) with the steady-state expression measured for the feedback loop. The predicted mean steady
state values from the stochastic simulation using the extended and fitted noise model are shown by orange circles.
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(Fig. S1a). Second, the output RNA must preserve
the original properties of the RNA, such as the decay
rate and dynamic range of expression. We found that
retaining only 45-bp long sequences at each end of a
gene was sufficient to preserve much of the original
expression range (Fig. S1b; Design of the output
construct in the Materials and Methods). Therefore,
we used this strategy to build the output construct
(Fig. 2b). Since we used the TF rtTA (reverse
tetracycline transactivator) in the feedback loops, we
built an output construct for rtTA and tested for
interference. The protein translated from such an
output RNA contains only short peptide sequences
from rtTA (15 aa at each end) and is unlikely to
interfere with the reactions in the loop, which we
confirmed experimentally (Fig. S1c–e).
By creating the input and the output constructs with
the aforementioned method, the feedback is opened.
The cells containing the open-loop input and output
constructs were named Input/Output cells (Fig. 2b).

Validation of the loop opening with a
monostable feedback loop

We opened three synthetic transcriptional feedback
loops, in which a monomeric or dimeric version of the
synthetic TF rtTA regulates its own expression. rtTA
binds to the DNAwhen it is complexedwith the ligand,
doxycycline (dox) [19]. These feedback loops con-
tained one (cooperative binding), two (homodimeriza-
tion and cooperative binding), or no reactions that can
support bistability [20]. First, we opened the
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monomeric–noncooperative loop, in which a mono-
meric TF binds to a single binding site in its own
promoter. The monomeric protein is a single-chain
fusion of the dimeric rtTA [20].
Upon opening this loop, the input and output RNAs

were quantified by qPCR (quantitative PCR; Mate-
rials and Methods; Figs. 2, S2, and S3a). Thus, RNA
values represent the averages of a cell population.
The expression of the input was varied by tuning the
PGAL promoter activity with the TF GEV (Gal4-estro-
gen receptor-Vp16, Fig. 2d). We applied different
concentrations of dox to adjust the TF-DNA binding
affinity. Subsequently, we fitted an open‐loop func-
tion, η =fOLM(ω, dox), to these data. η, ω, and fOLM
denote the output, the input, and the open‐loop
function fitted to the measured data, respectively.
Initially, we analyzed the logarithmic sensitivity (S)

of the fOLM with respect to the input (ω), S(ω) =
∂ ln(fOLM) / ∂ ln(ω). If S N 1, the feedback loop can
display bistability [21]. It is monostable if S ≤ 1. S(ω)
of the fitted fOLM(ω, dox) did not exceed one at any
value of ω and dox (Supplementary Information,
Fitted open-loop functions). Thus, the monomeric–
noncooperative feedback is classified asmonostable
upon the opening. This is in agreement with the
expectations since the feedback does not contain
any known reaction that can support bistability.
The intersection points of the fOLM and the

equivalence function (fEQ) define the steady-state
expression for the feedback loop [13,22]. The ideal
fEQ is an identity function, that is, it is the line at which
the output and input have equal values, η = ω
(Fig. 2d). The ideal equivalence assumes that the
output and input RNAs have identical properties
(expression range, synthesis, and decay rate). How-
ever, the heterologous sequence in the output RNA
may cause a departure from the ideal equivalence. To
Fig. 3. Intersection of equivalence plane and fOLM classifies
surfaces stand for the fitted fOLM and the measured equivalence
red curve is their intersection, the open-to-closed loop mappin
with b = 0.01 Vmax by fixing either dox orω. (a) Open-loopmeasu
1.6;Smax (ω=2.11,dox) =1.6. (b) Open-loopmeasurements of the
dox) = 1.1.
assess this departure, we expressed the input and
output mRNAs under the control of identical promoter,
PGAL. The expression of the output RNA in this
construct is not controlled by the input; therefore, we
termed it ghost output (Fig. 2b). Although their decay
rates of themRNAswere similar (Fig. S2a and b), their
expression levels differed (Fig. S2c–e), possibly
because of the different RNA synthesis rates. There
was a linear relationship between their expression
levels with a non-unity slope (Fig. 2d). This slope
defines the scaling factor (s) for the measured
(nonideal) equivalence line, which runs in parallel to
the ideal equivalence line (Fig. 2d): fEQ(ω) = s ω.
The intersection of the measured fEQ and fOLM is a

function of one variable (dox), which we termed
open-to-closed loop mapping since it determines the
steady-state expression in the closed feedback loop
based on open-loop measurements (Fig. 2e and f,
red full line). Importantly, there was a good agree-
ment between the open-to-closed loop mapping and
the steady-state expression measured in the feed-
back loop. If we had relied on the ideal equivalence
plane, with a unity slope, the open-to-closed loop
mapping would have deviated markedly from the
values measured in the feedback loop (Fig. 2f, red
dashed line). This underscores the importance of the
equivalence assessment cells.
In summary, we validated the feedback opening in

two main steps. First, we analyzed the open-loop
constructs. The expression of a fluorescent reporter
in open-loop-like constructs displays a unimodal
distribution (Fig. 2c). The S of the fOLM is less than
one, which implies that the parent feedback loop is
monostable. Since there are no noise-induced
transitions between two stable states in a mono-
stable feedback loop, the deterministic and stochas-
tic descriptions of the steady-state expression levels
two parent feedback loops as bistable. The blue and gray
plane, respectively, fitted to experimental data (dots). The

g. The maximal values of the S are calculated for the fOLM
rements of the P[tetO]7 -sc-rtTA circuit; Smax (ω, dox = 1.37) =
P[tetO]7 - rtTA circuit;Smax(ω, dox = 0.91) =2.4;Smax(ω=1.93,
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are expected to be similar. Consequently, the
steady-state expression measured in the feedback
loop can be directly compared to the value deter-
mined by feedback opening (Fig. 1b), provided that
some general conditions are met (see Discussion).
In the second step, we compared these two values.
We found that the open-to-closed loop mapping
matched up with the steady-state expression level
measured in the feedback loop (Fig. 2f). The
expression increased continuously and steeply
when the TF-DNA affinity (i.e., dox concentration)
passes a certain value, which is a typical behavior of
monostable positive feedback loops.

Identification of bistability by loop opening

Next, we opened the loops with cooperative
promoters, controlled by either the monomeric (Fig.
3a) or the dimeric TF (Fig. 3b). The sensitivity of
fOLM(ω, dox) with respect to the input (ω) was higher
than one for both open loops, which indicates that
the feedback loop is bistable. Indeed, there was a
range of dox concentration, at which the intersection
Fig. 4. Long transient phase upon the addition of dox to the c
(dashed line) and with (full line) the extension to fit the transien
t = 0 h. (a and b) Induction kinetics in open-loop-like construct
(see transient kinetics strain in Table S1). The expression of sc-
t = 0 h together with the addition of dox (green). Expressio
intermediate expression levels of sc-rtTA, we applied 0.8 (a) a
monomeric–noncooperative feedback loop (P[tetO]1-sc-rtTA). T
the sc-rtTA (c) or the GFP expression driven by sc-rtTA (d).
of the fOLM with the equivalence plane resulted in
three, (two stable and one unstable) steady state.
Thus, both parent feedback loops are classified
bistable.
The maximal sensitivity of the fOLM, Smax(ω), has a

major impact on the bistable range of a parameter.
For the monomeric–cooperative circuit, Smax(ω) is
1.6. This value increased to 2.4 for the dimeric–
cooperative circuit (Fig. 3b), and the bistable range
of the dox concentration (i.e., TF-DNA affinity)
became broader, reflecting the joint effect of
dimerization and cooperativity (Fig. 3).

Measurement of the time scale of reactions and
identification of the slow transient kinetics

To predict the transition rates for a bistable
system, we have to combine the fOLM, which is
defined in the steady state, with information on noise
and the time scale of reactions (Fig. 1b). To specify
the time scale of reactions, we determined the RNA
and protein decay rates and the transcription and
translation rates (Table S2). With these parameters,
ells. The curves represent the solution of the model without
t kinetics. Dox was added at the indicated concentration at
s, in which sc-rtTA activates the expression of P[tetO]2-GFP
rtTA was either pre-induced by estradiol (red) or induced at
n of GFP was measured with flow cytometry. To reach
nd 7.28 (b) nM estradiol. (c and d) Induction kinetics of the
o report the feedback activity, we measured the mRNA of
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we extended the fOLM into a kinetic model. We tested
whether this model predicts correctly the kinetics
of expression in open-loop-like constructs. For this
purpose, we analyzed the time course of expression
of green fluorescent protein (GFP) under the control
of the monomeric form of rtTA. Interestingly, the
induction of expression was slower than expected
from the time scales of protein and RNA turnover (Fig.
4a and b; see Modeling transient kinetics in the
Supplementary Information). By varying the order of
induction of the rtTA expression and dox addition, it
became clear that the slower-than-expected increase
of GFP expression persisted even if rtTA was
pre-expressed (Fig. 4a and b). This indicates that the
long transient phase arises due to the slow transport of
the externally added ligand, dox, into the cell or due to
its slow association with the protein inside the cell. The
model was extended and fitted to the slow transient
kinetics in the open-loop-like construct. Subsequently,
we tested the prediction of the new model on the
monostable feedback loop, which can be done
deterministically. The prediction was in good agree-
mentwith the observed timeseries upon theaddition of
dox (Fig. 4c and d).

Measurement of noise

We made a preliminary prediction of noise
intensity based on the time scale of the constitutive
processes (mRNA and protein turnover). A simple
model involving only synthesis and decay, also
known as birth–death process, results in a Poisson
distribution, characterized by a Fano factor (vari-
ance/mean) = 1 [23]. Interestingly, the housekeep-
ing gene PRE2, which was used as a control for the
single-molecule fluorescence in situ hybridization
(smFISH), had a Fano factor close to 1 (Fig. 5a and
b). On the other hand, the distribution of the rtTA
RNA had a much larger variance, with a Fano factor
of around 5, which cannot be explained by such a
simple noise model (Fig. 5a and b). This stronger
noise is not fully surprising because noise in gene
expression can be significantly augmented by
operator fluctuations and by other cellular processes
[24,25]. Therefore, the model was extended to include
operator fluctuations and noise in RNA degradation
(Fig. 5c). The parameters were fitted to the smFISH
measurements (Supplementary Information, Determi-
nation of parameter values for RNA distribution by
linear noise approximation), and the new extended
and fitted model was in good agreement with the
measured RNA distribution (Fig. 5a and b).

Comparison of deterministic and stochastic
descriptions of the fOLM

The open‐loop function is a deterministic concept
and can be considered to be a steady-state solution
of ordinary differential equations. To predict the
transition rates, the deterministic model has to be
converted to a stochastic one (Fig. 1b). This
conversion is accurate, provided that the stochastic
model of the open‐loop function yields a mean value
that is identical or similar to the deterministic value.
The two values are identical, for example, for the
mRNA birth–death process (Fig. 5a and b, see PRE2).
However, this correspondence between the determin-
istic and stochastic models may be lost when the
system is strongly nonlinear and the noise is large
[26,27]. Such an effect was observed for a TF that
displays stochastic nucleocytoplasmic shuttling [28].
We examined the effect of noise on the dimeric–

cooperative open loop as it displays the response
with the largest S in this study, and therefore, it is
highly nonlinear. To explore how much noise shifts
the value of the output mRNA, we performed
stochastic simulation with the extended and fitted
noise model. It yielded mean output RNA similar to
the value of the deterministic function, fOLM (Fig. 5d).
This demonstrates that the effect of noise on this
nonlinear fOLM is negligible and the function can be
used for accurate predictions. Thus, the loop
opening bypasses the effect of noise. We also
confirmed that gene expression in the open loop
reaches a steady state after 24 h, independent of the
initial condition, that is, it does not display hysteresis
(Fig. S4). Furthermore, the distribution of gene
expression in the corresponding open-loop-like
constructs was unimodal (Fig. S3c).
Interestingly, there was also a good match between

the (deterministic) open-to-closed loop mapping and
the stochastic model of the monostable feedback
loop (Fig. 2f, orange circles), which reveals that even
the closed-loop response can have very similar sto-
chastic and deterministic descriptions, provided it is
monostable.

The predicted transition rates agree with the
measurements

Upon extending the fOLM using the reaction time
scales and fitted noise, we reclosed the loop to
predict the transition rates, both from the low to the
high state and also in the opposite direction (high to
low) for the two bistable circuits (Fig. 6). We also
calculated the transition rates with the model not
fitted to noise and transient kinetics for comparison.
The simple noise model, characterized by smaller
noise intensity, yielded slower transitions in the
bistable range than the fitted, extended noise model
(Fig. 6a–g). On the other hand, the transient kinetics
reduced the transition rates only outside but not
inside of the bistable range (Fig. 6b), exactly
opposite to the effect of noise.
To test the predictions experimentally, we pre-

pared pre-cultures with either low or high TF
expression states, which define the initial condition,
to measure how quickly they switch to the other
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The thick dashed arrows indicate the step that is broken to open the feedback loop. (d) Comparison of the output RNA
calculated by deterministic and stochastic models. To convert fOLM(ω) into a model, reactions (r), were specified, which
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state. In the bistable range, the observed transition
rates were in good agreement with the predictions
using the fitted noise (Fig. 6b and g). Outside of the
bistable range, the model with the fitted transient
kinetics predicted well the observations (Fig. 6b).
These results and the model predictions reveal that
noise is the main determinant of transitions inside the
bistable range, while transient kinetics is the main
determinant of the transitions outside of the bistable
range. It is important to reiterate that the transition rates
were predicted without choosing or fitting parameter
values to the observed transition rates.
For the dimeric–cooperative circuit, transitions from
the low to the high state were only observed close to
the bistability boundary at the higher dox concentra-
tion (Fig. 6g). Opposite transitions were observed
close to the lower bistability boundary. Thus, there is a
broad rangeof dox concentrationsatwhich essentially
no transitions are expected to occur between the two
states. This range is positioned in the middle of the
bistable range, determined by the open-to-closed loop
mapping. Indeed,wehavenot observed any transition
in this range of dox concentration even after 10 days
(Fig. 6h).
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For the monomeric–cooperative circuit, transitions
were detected in both directions in the bistable range
(Fig. 6b). Thus, equilibrium is expected to ensue in
an experimentally realistic time scale. This can be
visualized by plotting the experimental data in terms
of hysteresis profiles, which is typically used to
assess bistability, directly in feedback loops. For
both initial conditions, we plotted the percentage of
ON cells, that is, the proportion of cells in the high
state (Fig. 6d and e). The range of dox concentra-
tions at which the ON cell percentage in each culture
remains close to the respective initial condition
defines the hysteresis range. These two distinct
expression states (OFF and ON cells) represent two
“synthetic” cell fates. Interestingly, the hysteresis
range changed with time for the monomeric–
cooperative feedback loop (Fig. 6e). At early time
points (5 h), the hysteresis range was broader than
the bistability range (Fig. 6e). At a later time point
(72 h), the hysteresis nearly collapsed. This also
implies that in noisy systems, hysteresis experi-
ments may fail to distinguish bistable feedback loops
from monostable ones after long periods of time.

Appearance of bimodality far away from the
bistable range

When noise induces transitions between two stable
states, both states become populated, resulting in a
bimodal distribution. That is why bimodality is consid-
ered as a hallmark of bistability in noisy systems.
However, it was surprising to observe that the
transitionsareaccompaniedwith abimodal distribution
of GFP expression well beyond the bistable range for
themonomeric–cooperative circuit (Fig. 6b and c). The
range of this bimodality was around three times
broader than the bistable range. We expected that
the transient kinetics may be responsible for the
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extension of the bimodality range because it prolongs
the phase during which the TF-DNA affinity is
approaching the final value upon the addition of dox
to the cells (Fig. 6b, cyan dashed line), and it is this
affinity that determines the bistability boundary. To
visualize this, we superimposed single-cell trajectories
of stochastic simulations onto a steady-state manifold
perturbed by the transient kinetics. This manifold
reflects the temporal changes in the bistability (Fig. 7,
green surface). Initially, only few cells cross the
unstable part of the manifold because it is far above
the low expression state. As time progresses, the
transient effect peters and the manifold recedes; the
majority of cells transit as soon as the lower fold in the
manifold crosses the dox concentration to which the
cells are exposed. This explains how transient kinetics
can slowdown the transition rates andwhy bimodality,
a sign of bistability, appears far away from the bistable
range.
Fig. 7. Visualization of the effect of transient kinetics on
the transitions. The parameter values for the monomeric–
cooperative feedback loop were used for the simulation.
The steady-state manifold (green surface) is perturbed by
the transient kinetics to represent the temporal evolution of
the TF-DNA affinity due to the slow effect of the externally
added dox. Individual trajectories of stochastic simulations
(with the model extended to fit noise and transient kinetics)
are shown in orange and red. The horizontal black curve
represents the evolution of the perturbed fold bifurcation
point. The vertical black curve indicates the manifold at the
time when the fold point passes the dox concentration that
was used for the stochastic simulation (dox = 1.8 μM).
Discussion

Relation between bistability, bimodality, and
hysteresis

Bimodality has been viewed as a sign of bistability,
and hysteresis as the proof of bistability [29]. Our
results reveal that neither hysteresis experiments
nor bimodality can delimit the bistable range in noisy
gene circuits. The hysteresis range shrinks with time
(Fig. 6e) due to the noise-induced transitions and
can even collapse in feedback loops that have a
narrow bistable range. While hysteresis range may
coincide with the bistable range at a particular time
point, the length of this period is likely to vary from
system to system. Bimodality, a potential sign of
bistability, appeared far away from the bistable range
due to the slow transient kinetics (Fig. 6b and c).
Indeed, an increasing number of models have been
identified, where bimodality appears without bistability
or even in the absence of feedback regulation [30–33].
Since feedback opening bypasses noise, the

open-to-closed loop mapping can determine wheth-
er a system is monostable or bistable and can delimit
the bistable range.

Prediction of transition rates by feedback open-
ing

Traditional modeling requires parameters for all
reactions that comprise the feedback loop. However,
models retain unidentified components, mechanisms,
and parameters even after detailed measurements. In
particular, binding constants are often missing or are
inconsistent. For example, reported values for the
dissociation equilibrium constants of the tetR-tet
operator scatter over 3 orders of magnitude [11],
which is relevant for rtTA, being a fusion protein of tetR.
Furthermore, parameter values measured in vitromay
significantly deviate from their values in vivo [12,34].
Therefore, several parameters are left free and then
directly fitted to the transition rates, which makes true
prediction impossible.
To predict the transition rates, we employed an

inverse approach. By opening the feedback loop, we
obtained an open‐loop function, which lumps the
steady-state response of all reactions in the feed-
back loop but does not resolve the time scale of any
of them. To extend this function into a model, we
performed kinetic and noise measurements. This
extension has to be performed in a way that the
model recreates the original steady state open‐loop
function (Fig. 5d, diagram). Not all reactions in the
loop have to be identified. After measuring the core
constitutive processes, including mRNA and protein
turnover, we extended the model with a fewadditional
parameters to fit the noise in gene expression and the
transient kinetics (Fig. 1b). This was sufficient to
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successfully predict the transition rates. We expect
that, in general, it will be important to characterize the
slow reactions (e.g., protein decay rate), since fast
reactions (e.g., phosphorlyation and dephosphoryla-
tion) are expected to be in equilibrium relative to the
slow reactions.
The success of this approach may lie also in the

fact that the initial steps of modeling were performed
deterministically, which is typically more robust than
the direct stochastic modeling of the whole feedback
system [35,36].

Noise and bistability jointly determine transition
rates

Inside the bistable range, the sensitivity of the fOLM
and noise are the key determinants of the transition
rates. In the monomeric–cooperative loop, the
Smax(ω) is 1.6. This value was 2.4 for the dimeric–
cooperative loop, due to the dimerization. The
system with higher sensitivity can be visualized by
potential wells separated by higher barriers. This
explains why the dimeric–cooperative loop is more
stable than the monomeric–cooperative one: transi-
Fig. 8. The role of bistability, noise, and transient kinetics in
bistability, as determined by feedback opening, the depth of the
transition rate (left). If the parameters of the network are outsid
determined by the long transient phase, which can arise due
described transient cellular process (right).
tions were too slow to be detected even after 10 days
of incubation, that is, after more than 100 cell gen-
erations (Fig. 6h).
The open-to-closed loop mapping determines the

steady-state expression levels and the bistable
range of a parameter. Is this deterministic descrip-
tion relevant for bistable systems, knowing that it
cannot be directly verified in noisy feedback loops?
Our results indicate that the determination of the
bistability boundaries permits targeted system iden-
tification (Fig. 8). Noise was the key determinant of
the transitions inside the bistable range but not
outside of it (Fig. 8, left). In this monostable range,
we had to characterize transient kinetics to explain
the transitions. The slow transient kinetics can be
viewed as a temporal change in the potential barrier
(Fig. 8, right).

The role of transient kinetics in cell fate transitions

When a parameter is in the monostable range in
the vicinity of the bistable range, the slow transient
kinetics is likely to be the rate-limiting step in the
transitions. In such cases, the activity of the
the cell fate transitions. If a network displays steady-state
potential wells and noise are the main determinants of the

e but in the vicinity of the bistable range, the transitions are
to slow transport, metabolism, or other deterministically
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feedback loop is controlled by an extracellular factor
that evokes slow changes in transport, metabolism,
or signal transduction. The two distinct cell fates can
be maintained only transiently. However, such a
transient phenomenon may be of considerable
utility, since an increasing number of studies
revealed that alternative fates exist transiently in
many cells and organisms [5,37–40]. It is possible
that differentiation should be considered as series of
transient events, and the steady state is reached
only in the terminal stage [7]. Upon the completion of
differentiation, only a true bistable state can warrant
long-term stability. In this case, transitions will be
induced by noise and exemplified by noise in
gene expression. Such transitions can destabilize
cell fates, which can hamper cellular reprogramming
[6], but can also help adaptation by diversifying
the phenotypes of immune cells to combat
pathogens.

Validity of prediction by feedback opening

In this study, we opened simple positive
feedback loops. Can we expect that the opening is
a valid approach for more complex networks?
Two aspects of the loop opening are particularly
relevant to more complex networks: (1) the theorem
that deduces the existence of bistability from
open-loop properties and (2) the stochasticity in the
open loop.
With respect to the first aspect, a general

theorem states that if the open‐loop function is
sigmoidal (i.e., the open‐loop function has an S
higher than one) and satisfies some general
conditions, the parent feedback loop is bistable,
independent of the time scale of the reactions [13].
Positive feedback loops with cooperative binding
and dimerization, which were used in our work,
satisfy the general conditions. However, if a
network contains also a negative feedback loop,
bistability is not guaranteed. In such dual positive–
negative feedback loops, the concentrations of the
components may oscillate over time rather than
converge to one of the stable states. In the
experimental practice, however, such restrictions
may be less severe as the feedback system can be
directly measured whether it displays oscillations.
If it does not oscillate but displays signs of
bistability, bimodality, and hysteresis, it is likely
that the open‐loop function will correctly predict the
ex is tence of b is tab i l i t y , even i f a more
complex network contains a negative feedback
loop.
The aforementioned theorem is defined in a

deterministic framework. We are not aware of the
theoretical studies that formulate the open-loop
approach in a stochastic framework, which is
relevant to noisy gene networks. Therefore, we
performed the following tests to show that the
deterministic and stochastic descriptions of the
open loop are similar. First, we showed that
there is no hysteresis after 24 h in the open loop.
Second, the distribution of gene expression is
unimodal. Third, we compared the fOLM, which is
defined deterministically, to the mean value of the
output calculated using the expanded model upon
the identification of the time scale of the main
reactions. The two values were similar, that is,
there is no marked stochastic deviant effect [27].
Further studies will be needed to explore how the
open‐loop function is affected by noise in more
complex networks.
Feedback opening and the subsequent model

extension are expected to be useful to predict
transition rates and identify the main determinants
of cell fate transitions: bistability in the deterministic
sense, noise, and transient kinetics. This distinc-
tion may also help in engineering cell fate
transitions.
Materials and Methods

Design of synthetic circuits and yeast strains

Three major strain types were used in this study: the
feedback, Input/Output, and Equivalence Assessment
cells (Table S1). The feedback cells contained a
feedback circuit, a fluorescent reporter construct
(P[tetO]2- yEGFP), and a construct to adjust the high
condition (PGAL- (sc-)rtTA), which is identical to the
open-loop input construct.
The Input/Output cells contained the open-loop

output, open-loop input constructs, and a constitutively
expressed GEV. The Equivalence Assessment cells
contained the ghost output (PGAL–(sc-)rtTAΔ(45/45)::
yellow fluorescent protein), the open-loop input
construct, and a constitutively expressed GEV. The
expression of the open-loop input and ghost-output
constructs was controlled by GEV. GEV is a transcription
activator consisting of a Gal4p DNA-binding domain, an
estradiol receptor, and a VP16 activation domain.
RNA expression was tuned over a broad range by
adding estradiol at a concentration between 0 and
200 nM [41].

Design of the output construct

The two requirements, lack of interference and
preservation of expression properties, make opposing
demands on the optimal scale of the mutation to
construct the output. For example, if the output
gene contains a minor (e.g., point) mutation in the
DNA-binding domain of the TF, the properties of the
encoding mRNAs are likely to be preserved, and the loop
is successfully broken because the TF will not bind to the
DNA. However, a TF with a minor mutation may still
cross-dimerize with the wild-type TF translated from the
input RNA, interfering with the signaling in the open loop.
A large-scale mutation, whereby the entire coding region
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is replaced by a heterologous sequence, eliminates the
interference, but the dynamic range of the expression
may be reduced. To find the maximal length of the
replacement with a minimal effect on mRNA expression,
we built a series of genetic replacement constructs by
varying the length of the sequence retained from the
original gene (Fig. S1a and b).

Construction of yeast strains

All yeast strains are derivatives of S. cerevisiaeW303,
except for the strains to test the expression range of
GAL2 gene as a function of the length of the replaced
open reading frame (ORF). All genetic constructs were
integrated into the chromosome with a single copy, with
the exception of the GEV construct, which has around five
copies, and the P[tetO]2-GFP construct, which has three
copies.
The feedback, open-loop input, the open-loop output, and

ghost output constructs share a common core promoter and
transcriptional terminator ofCYC1. The input andghost output
were controlledby thePGAL,whereas the feedbackandoutput
constructs were controlled by P[tetO]1 or P[tetO]7 for noncoop-
erative and cooperative binding, respectively. Into each
feedback construct, an optimized stem-loop was inserted to
avoid growth alterations [20]. The same stem-loop was also
inserted in the corresponding open-loop input, open-loop
output, and ghost output constructs.
To construct the open-loop output and ghost output

constructs, we flanked the yellow fluorescent protein
sequence with 45-bp sequences from both ends of the rtTA
ORF. The flanking sequences of sc-rtTA and rtTA ORFs are
identical because sc-rtTA was constructed by inserting
humanized tetR sequence into the rtTA sequence [20].
To minimize the position effect, we integrated the

genes with promoters containing tet operators to the ura3
locus and those with PGAL to the ade2 locus. Using diploid
cells for the optimized constructs made it possible to have
two constructs with the same promoter at the same locus,
which is essential for constructing the Equivalence
Assessment strains. In addition, the transformations
followed the order of (1) GEV, (2) open-loop input, and
then (3) open-loop output, ghost output, or feedback
construct, in order to have identical sequence and copy
number of GEV and open-loop input constructs between
the different strains.
Growth conditions

Cultures were grown at 30 °C, and the OD600 was kept
below 1.0; were refreshed by diluting the cultures twice a
day. A sample was collected for measurement, and the
cell density was between 0.6 and 1.0. For the
steady-state RNA measurements, cultures were grown
for 24 h. To set the initial condition in the feedback loops,
we added 0.5% galactose to the medium to drive
expression under the control of the PGAL promoter
through the endogenous Gal4p, as previously described
[20].
To determine RNA decay rate constants, shutoff

assays were performed. The cells were cultured over-
night with 0.5% galactose and transferred to a refresh-
ment medium containing 0.04% galactose for further
growth for 4 h. To shut off transcription, the cells were
pelleted and cultured further in medium without galac-
tose. As described, 5 ml culture was collected with dry
ice-cooled methanol [41]. Decay rates were obtained by
linear regression.
Flow cytometry [20] and beta-galactosidase assay [14]

were performed as described previously.

RNA quantification

RNA was quantified with qPCR and smFISH as
previously described [20]. The overall efficiency for the
input primer pair, which was identical for both the rtTA/
sc-rtTA primer pairs, was 1.931; the efficiency for the
output primer pair (F: 5′-CGGGGGATCCATGCCTA-
GATTA-3′; R: 5′-ACTGACAGAAAATTTGTGCCCAT-3′)
was 1.934. The forward primer sequence is identical for
the input and the output.
Absolute quantification of cellular RNA molecules was

performed by smFISH. The results from smFISH were
utilized for assessing the noise in gene expression in the
feedback strains and for converting the RNA quantified
in qPCR to the absolute mRNA number in the cell. We
obtained the constant rat io α (Supplementary
Information, Scaling of output signal for f i t ted
equivalence) by quantifying the RNA at high expression
state with the dimeric–cooperative and monomeric–
cooperative feedback strains with both qPCR and
smFISH. In the indicated experimental conditions, all
cells were PRE2 positive with 10.51 ± 0.75 (mean ± sd)
RNA molecule per cell. The background level of
rtTA RNA (false positive) count was ~0.03 spots per
cell, in cells without the rtTA construct (Table S1,
Ych294). The spot intensity distribution was unimodal,
indicating that a single molecule was detected at each
spot (Fig. S5) [42].
Fitting of transition rates

To fit transition rates with the low initial condition,
samples were collected at 2.5, 5, 7.5, 24, 48, and 72 h.
With the high initial condition, sampleswere collected at 24,
48, and 72 h; earlier time points were omitted because of
the slow dilution of the GFP signal during cell division.
The ON and OFF cell population was separated by

a threshold value. The threshold was set equal to the
geometric mean of the maximally induced (at 19.5 μM dox)
fluorescence intensity and the uninduced fluorescence
intensity measured at 72 h.
At most dox concentrations, detectable transitions of

sufficientratesoccuronlyinonedirection.Inthesecases,we
obtained the best fits for the transition rates with data
expressingOFFcellproportion(r)andwithinverse-square
(Y−2)weighting.The low-to-highstate transitionwas fitted
withthelowinitialcondition,r (t) =e−kupt,andthehigh-to-low
statetransitionwasfittedwiththehighinitialcondition,r (t) =
1−e−kdownt .
When the bistable range is narrow, transitions occur

in both directions. Consequently, the percentage of OFF
cells stays between 4% and 96% at 72 h. In
t h e s e c a s e s , w e p e r f o r m e d f i t t i n g w i t h
equations describing bidirectional transitions without
weighting.
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For the low initial condition:

r tð Þ ¼ kdown þ kup e
− kupþkdownð Þt

kup þ kdown

For the high initial condition:

r tð Þ ¼ kdown−kdown e
− kupþkdownð Þt

kup þ kdown

The values with the lower standard error were taken
from the fitting.
Due to the fluctuations in conditions, we did not consider the

data that were close to the detection limit of a change, less
than 4%difference between r(2.5 h) and r(72 h). This imposes
the upper and lower detection limit of transition rates. For the
low initial condition experiments, the limits are kup = 1.3 h−1,
when r(2.5 h) = 0.04; and kup = 5.6 10−4 h−1 , when
r(72 h) = 0.96. A similar detection limit can be established
for the reverse transition: kdown = 0.13 h−1, when r(24 h) =
0.96; and kdown = 5.6 10−4 h−1, when r(72 h) = 0.04.
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