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Abstract 

With a goal of designing dye-sensitized solar cells (DSCs) containing only Earth-

abundant components to achieve sustainable energy conversion, DSCs with 

heteroleptic copper(I)-based dyes and homoleptic copper(I)/(II) redox shuttles have 

been investigated. By using a phosphonic acid anchor, and 4,4'-dimethoxy-6,6'-

dimethyl-2,2'-bipyridine as the ancillary ligand in the dye and in the electrolyte, a DSC 

photoconversion efficiency of 2.06% (38.1% relative to N719 set at 100%) was 

achieved. The results demonstrate the potential for all-copper-based DSCs, opening 

the way for further dye and electrolyte optimization.  
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1. Introduction 

Exceptionally high levels of greenhouse gases on Earth were recorded in 2017 

[1]. The impact on global temperatures is well-established [2] and a drastic 

reduction of greenhouse gas emissions must be targeted. The combustion of 

fossil fuels is a major contributor to CO2 emissions and a paradigm shift to 

renewable energy sources is essential. Towards this end, our interests lie in 

the development of dye-sensitized solar cells (DSCs) which first came to the 

fore with the work of O’Regan and Grätzel [3]. Since these pioneering studies, 

the area has matured [4], with photoconversion efficiencies (η) reaching ~11–

14% with ruthenium-based, metal-free organic or zinc(II) porphyrin-based 

sensitizers [5]. While state-of-the-art ruthenium dyes and high DSC efficiencies 

are synonymous, the scarcity of ruthenium in the Earth's crust (≈0.001 ppm [6]) 

and its associated high cost are a disadvantage for large scale applications. In 

contrast, DSCs based on copper(I) sensitizers could provide a sustainable 

alternative as the Earth's crust abundance of Cu is ≈50 ppm [6]. 

We and others [7,8] have demonstrated the viability of DSCs sensitized by 

bis(diimine)copper(I) complexes. Effective screening of dyes is carried out 

using a 'surface-as-ligand' approach in which heteroleptic [Cu(Lanchor)(Lancillary)]+ 

dyes are assembled in situ on FTO/TiO2 electrodes [7]. We have focused upon 

dye optimization through variously functionalizing the anchoring and ancillary 

ligands [9-14]. With an I–/I3– redox shuttle [15], copper-based dyes reach values 

of η >3% compared to η = 7.12–7.63% for the benchmark ruthenium dye N719 

[9,11,16,17] and we have also shown that combining copper(I) dyes with a 

Co2+/Co3+-based electrolyte is advantageous [18]. 
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The choice of electrolyte is essential in ensuring efficient transport of 

electrons in a DSC to regenerate the dye. The I–/I3– redox shuttle is the 

conventional choice, but uses a non-abundant element (Earth's crust 

abundance of iodine ≈0.14 ppm, seawater abundance ≈0.05 ppm [6]). Among 

alternative redox couples [19,20], Cu+/Cu2+ has emerged as a potential 

candidate. Initial studies with N719 as dye and [Cu(dmphen)2]+/2+ as electrolyte 

(dmphen = 2,9-dimethyl-1,10-phenanthroline) achieved η = 1.4% [21]. Brugnati 

et al. described a wider screening of ligands in the copper complexes [22], and 

Bai et al. improved the performance to 7.0% using an organic sensitizer [23]. 

Combining the organic dye LEG4 (Scheme S1†) with [Cu(dmphen)2]+/2+ gave η 

= 8.3%,24 thereby reviving interest in copper redox shuttles [25-30]. A 

significant advantage of these systems is that the copper(I/II) redox couple 

increases VOC. A combination of a Cu+/Cu2+ couple with a copper(I) sensitizer 

is attractive in terms of DSCs with Earth-abundant components. We have 

already demonstrated their compatibility for DSC applications by using 

scanning electrochemical microscopy (SECM) to probe the surface charges in 

DSCs containing a heteroleptic [Cu(Lanchor)(Lancillary)]+ dye and a homoleptic 

[Cu(Lancillary)2]+/2+ redox couple [31]. An advantage of such systems is that labile 

[Cu(Lancillary)2]+ present in the electrolyte provides a source of Lancillary to 

regenerate the dye [10,12].  

We now present an investigation of DSCs containing [Cu(Lanchor)(Lancillary)]+ 

dyes and [Cu(Lancillary)2]+/2+ electrolytes in which Lanchor is the phosphonic acid 1 

and Lancillary is one of the diimines 2–6 (Scheme 1).   
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Scheme 1: Structure of anchoring ligand 1 and ligands 2-6 used as ancillary ligands 

in the dyes and in homoleptic copper(I)/(II) redox couples. Labelling in 3 and 6 is for 

NMR spectroscopic assignments. 

 

2. Results and Discussion  

2.1 Copper(I) complexes for dyes and electrolytes 

We have previously shown that dyes incorporating 1 as the anchoring ligand give 

superior DSC performances over those with related carboxylic acid anchors [32,33]. 

An initial combination was [Cu(1)(2)]+ and [Cu(2)2]+/2+ in order to parallel one of the 

combinations used in our previously reported SECM study [31]. Ligand 3 (Scheme 1) 

contains one 4-bromophenyl unit and a methyl group in the bpy 6-position to stabilize 

the copper(I) species, but is sterically less demanding than 2. Ligands 4 and 5 have 

previously been used in copper-based electrolytes [21,23-26,30]. Ligand 6 (Scheme 

1) contains electron-donating methoxy groups. The compounds [Cu(2)2][PF6] [33], 

[Cu(4)2][PF6] [34] and [Cu(5)2][PF6] [30] have been reported. Ligand 6 was prepared 

according to the methods summarized in Scheme 2. The 1H and 13C NMR spectra 
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were consistent with the expected substitution pattern, the methoxy group being 

characterized by signals at δ 3.92 ppm and δ 55.3 ppm in the 1H and 13C NMR 

spectra, respectively. The methyl groups adjacent to the N atoms in 6 gave rise to 1H 

and 13C NMR resonances at δ 2.57 ppm and δ 24.8 ppm, respectively. In the 

electrospray (ESI) mass spectrum, the base peak at m/z 245.10 corresponded to the 

[6+H]+ ion. 

 

Scheme 2. Synthetic route to compound 6. 

 

 The complexes [Cu(3)2][PF6] and [Cu(6)2][PF6] were prepared by treatment of 

[Cu(MeCN)4][PF6] with two equivalents of 3 or 6 and were isolated as dark red or 

orange solids in 97 and 83% yields, respectively. The ESI mass spectrum of each 

complex exhibited a peak envelope arising from the [CuL2]+ ion (m/z = 712.98 for 

[Cu(3)2]+ and 551.16 for [Cu(6)2]+). 1H and 13C NMR data (see Experimental Section) 

were assigned using 2D methods. The solution absorption spectra of [CuL2][PF6] (L = 

2–6) show a characteristic metal-to-ligand charge transfer (MLCT) band at λmax = 

488, 467, 453, 455, 444 nm, respectively, for complexes with L = 2 [33], 3 (Fig. 1), 4 

[34], 5 [30] or 6 (Fig. 1). The MLCT band for [Cu(2)2][PF6] is the most red shifted as a 
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result of the extended π-system. The absorption spectra also show intense bands in 

the UV region assigned to ligand-based π*←π and π*←n transitions.  

 

 

Fig. 1: Solution absorption spectra of [Cu(3)2][PF6] and [Cu(6)2][PF6] (CH2Cl2, 

5 × 10–5 mol dm–3).   

 

Table 1:  Cyclic voltammetric data for [CuL2][PF6] (L = 2–6) with respect to 

Fc/Fc+; CH2Cl2 solutions with [nBu4N][PF6] as supporting electrolyte and scan rate of 

0.1 V s–1. Processes are reversible. 

Complex 𝐸!/!!"  / V  

(Epc – Epa/mV) 

Reference 

[Cu(2)2][PF6] +0.42 (94) 34 

[Cu(3)2][PF6] +0.17 (105) this work 

[Cu(4)2][PF6] +0.35b 26 

[Cu(5)2][PF6] +0.41 (66)a this work 

[Cu(6)2][PF6] +0.19 (75) this work 

a This value compares with +0.93 V vs. SHE from ref. 26, and with +0.50 V vs. Fc/Fc+ from ref. [36]. 

bThe original value was +0.97 V vs. SHE and was adjusted by –0.62 V to be vs. Fc/Fc+ [37]. 
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 Each homoleptic compound undergoes a reversible oxidation process and the 

oxidation potentials (vs. Fc/Fc+) are summarized in Table 1. Fig. S1 shows cyclic 

voltammograms of [Cu(3)2][PF6], [Cu(5)2][PF6] and [Cu(6)2][PF6]. Oxidation of 

copper(I) in [Cu(2)2][PF6], [Cu(4)2][PF6] and [Cu(5)2][PF6] occurs at similar potentials. 

In each of these complexes, the ligand has a 6,6'-Me2bpy unit with the 6,6'-

substituents stabilizing the tetrahedral geometry of Cu+. In contrast, in [Cu(3)2][PF6] 

each ligand has one 6-Me group and oxidation occurs at lower potential. This trend is 

consistent with that observed on going from [Cu(4)2]+ (Table 1, 4 = 6,6'-Me2bpy) to 

[Cu(6-Mebpy)2]+ for which the Cu+/Cu2+ oxidation is at +0.03 V; the original value was 

reported as +0.41 V vs. SCE [38] and has been adjusted by –0.38 V [37] to be vs. 

Fc/Fc+. The introduction of electron-donating methoxy groups in [Cu(6)2][PF6] also 

results in a lowering of the oxidation potential compared to [Cu(4)2][PF6]. 

 

2.2 Assembly of DSCs 

Working electrodes were first prepared using our 'surfaces-as-ligands' strategy [7] 

which involves initially functionalizing the TiO2 electrode with the anchoring ligand (in 

this case ligand 1) followed by treatment with a homoleptic copper(I) complex which 

undegoes ligand exchange to yield heteroleptic copper(I) sensitizers. The dyes 

[Cu(1)(2)]+, [Cu(1)(3)]+, [Cu(1)(4)]+, [Cu(1)(5)]+ and [Cu(1)(6)]+ were assembled on 

screen-printed TiO2 electrodes with or without a scattering layer for DSC fabrication 

or recording solid-state absorption spectra, respectively. The absorption spectra (Fig. 

S2) of the dye-functionalized electrodes showed MLCT bands at ~465 nm. 

 The electrolytes comprised [CuL2][PF6] (L = 2–6) and [CuL2][PF6]2 in a nominal 

5:1 ratio in MeCN with LiPF6 and 4-tert-butylpyridine (TBP) additives. The copper(II) 

salts were prepared by oxidation of the corresponding copper(I) salt using [NO][BF4]. 

After anion exchange using NH4PF6, the copper(II) salts with ligands 3–6 were 
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isolated as blue-green solids. For 2, the product turned from green to brown-red 

indicating reduction or partial reduction to copper(I). Variation in colour of 

[Cu(tmby)2][TFSI]2 (tmby = 4,4,6,6-tetramethyl-2,2'-bipyridine, TFSI– = 

trifluorosulfonylimide) arising from copper(I) species has been noted in the 

preparation of [Cu(tmbp)2]+/2+ electrolytes, [39] underlining the difficulties of stabilizing 

the copper(II) component of the electrolyte with bpy ligands that contain a 6,6'-

dimethyl substitution pattern designed to stablize the copper(I) species. We note that 

this is an inherent issue with electrolytes based on [CuL2]+/2+ redox couples which 

have a significant change in preferred coordination geometry (and number) between 

the two oxidation states. This is not an issue for other metal-based electrolytes, for 

example [Co(bpy)3]2+/3+ redox couples, in which the ground state geometries are 

extremely similar. This problem is exacerbated by the fact that the ligand design for 

the electrolyte is predicated upon the need to stabilize the copper(I) state through the 

presence of 6,6'-dimethyl substituents which in turn destabilize the [CuL2]2+ species. 

Mass spectrometric data for the [CuL2][PF6]2 (L = 2–6) salts are given in the 

experimental section. Table 2 gives the nominal compositions of each electrolyte. 

The ratio of [CuL2][PF6] (L = 2–6) and [CuL2][PF6]2 was 5 : 1. However the exact ratio 

assumes pure copper(I) and copper(II) salts; the degree of copper(I) species in the 

copper(II) salts has not been quantified but appears from colour not to be significant 

for [CuL2][PF6] with L = 3–6. Differing solubilities of the salts in MeCN resulted in the 

different concentrations shown in Table 2. The complexes containing ligand 2 were 

particularly poorly soluble. 

 For each dye/electrolyte combination, duplicate DSCs were made and cells 

were fully masked. 
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Table 2. Electrolyte compositions. The solvent was MeCN.  

 
[Cu(L)2][PF6] 

/ mol dm–3 

[Cu(L)2][PF6]2 

/ mol dm–3 

4-tert-Butylpyridine 

/ mol dm–3 

LiPF6 

/ mol dm–3 

[Cu(2)2]+/2+ 0.02 0.004 0.5 0.1 

[Cu(3)2]+/2+ 0.10 0.02 0.5 0.1 

[Cu(4)2]+/2+ 0.20 0.04 0.5 0.1 

[Cu(5)2]+/2+ 0.20 0.04 0.5 0.1 

[Cu(6)2]+/2+ 0.20 0.04 0.5 0.1 

 

2.3 DSC performances 

Table 3 summarizes the DSC parameters of the best performing cell of each 

duplicate set; Table S1 presents all data. Fig. 2 and S3 show J-V curves. The 

combination of [Cu(1)(2)]+ and [Cu(2)2]+/2+ (the system studied by SECM [31]) did not 

perform well and showed the lowest overall efficiency (ƞ = 0.33%). The low value of 

JSC (1.10 mA cm–2) was consistent with the low maximum external quantum efficiency 

(EQEmax) (<1% at λmax = 490 nm). A contributing factor to the poor performance is 

likely to be the poor solubility of [Cu(2)2][PF6] and [Cu(2)2][PF6]2 in MeCN, and the 

difficulty in isolating the latter complex (see above). A change to dye [Cu(1)(3)]+ and 

redox couple [Cu(3)2]+/2+ lead to a small increase in JSC (1.10 to 1.69 mA cm–2) and 

VOC (558 to 662 mV). However, it is significant that for the [Cu(1)(3)]+/[Cu(3)2]+/2+ 

combination, VOC (Table 3 and Fig. S3a) exceeds that for N719 (662 vs. 614 mV). 

This trend becomes more pronounced on going to other Cu+/2+ electrolytes (see 

below). For the better performing electrolyte [Cu(3)2]+/2+, ancillary ligands 4 and 5 

were also investigated, but ff values and photoconversion efficiencies remained low 

(ff ≤55%, ƞ = 0.54–0.64%). All DSCs with the [Cu(3)2]+/2+ electrolyte showed 

comparable EQE spectra, exemplified in Fig. 3 for dye [Cu(1)(4)]+ (EQEmax 15% at 

λmax = 490 nm). 
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Table 3. DSC parameters using [Cu(1)(L)]+ with L = 2–6 and [CuL2]+/2+. 

Measurementsa were made on the day of sealing the cell. See also Table S1.  

Dye Electrolyte JSC /  

mA cm–2 

VOC / mV ff / % ƞ / % Rel. ƞ / % 

[Cu(1)(2)]+ [Cu(2)2]+/2+ 1.10 558 55 0.33 6.1 

[Cu(1)(3)]+ [Cu(3)2]+/2+ 1.69 662 55 0.61 11.3 

[Cu(1)(4)]+ [Cu(3)2]+/2+ 1.97 648 43 0.54 10.0 

[Cu(1)(5)]+ [Cu(3)2]+/2+ 1.88 655 52 0.64 11.9 

[Cu(1)(2)]+ [Cu(4)2]+/2+ 2.14 784 66 1.12 20.7 

[Cu(1)(3)]+ [Cu(4)2]+/2+ 2.15 710 55 0.84 15.6 

[Cu(1)(4)]+ [Cu(4)2]+/2+ 2.29 689 60 0.95 17.6 

[Cu(1)(5)]+ [Cu(4)2]+/2+ 2.21 679 64 0.97 18.0 

[Cu(1)(6)]+ [Cu(4)2]+/2+ 2.27 702 61 0.97 18.0 

[Cu(1)(3)]+ [Cu(5)2]+/2+ 3.09 812 72 1.82 33.7 

[Cu(1)(4)]+ [Cu(5)2]+/2+ 2.80 796 73 1.63 30.2 

[Cu(1)(5)]+ [Cu(5)2]+/2+ 2.98 804 74 1.76 32.6 

[Cu(1)(6)]+ [Cu(5)2]+/2+ 2.66 788 73 1.53 28.3 

[Cu(1)(4)]+ [Cu(6)2]+/2+ 3.85 686 76 2.00 37.0 

[Cu(1)(5)]+ [Cu(6)2]+/2+ 3.44 681 75 1.76 32.6 

[Cu(1)(6)]+ [Cu(6)2]+/2+ 4.01 684 75 2.06 38.1 

N719 I–/I3– 12.54 614 70 5.40 100.0 

a JSC = short-circuit current density; VOC = open-circuit voltage; ff = fill factor; ƞ = photoconversion 

efficiency; Rel. ƞ = ƞ relative to N719 set to 100%. 

 

 
 
Fig. 2. J-V curves for the DSCs containing the dye [Cu(1)(4)]+ and electrolytes 
[Cu(3)2]+/2+, [Cu(4)2]+/2+, [Cu(5)2]+/2+, [Cu(6)2]+/2+ on the day of sealing the DSCs. 
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Fig. 3. EQE spectra for the DSCs containing the dye [Cu(1)(4)]+ and electrolytes 
[Cu(3)2]+/2+, [Cu(4)2]+/2+, [Cu(5)2]+/2+ or [Cu(6)2]+/2+ recorded 1 day after sealing the 
DSCs. 
 

 Both [Cu(4)2]+/2+ and [Cu(5)2]+/2+ are efficient redox couples when combined 

with organic sensitizers [23,24,26,30]. In comparison to the copper-based 

DSCs detailed above, those containing dyes [Cu(1)(L)]+ (L = 2, 3, 4 or 5) and 

[Cu(4)2]+/2+ electrolyte exhibited improved efficiencies (up to 20.7% relative to 

N719 set at 100%, Table 3 and S1). Higher JSC (2.14–2.29 mA cm–2) and VOC 

(679–784 mV) were observed (Fig. 2), although the fill factors remained 

relatively low (55–66%, Table 3). DSC performance was not significantly 

affected by the ancillary ligand (Table 3). A change from [Cu(4)2]+/2+ to 

[Cu(5)2]+/2+ (i.e. from 6,6'-Me2bpy to 2,9-Me2phen copper-binding domains) 

lead to higher JSC, VOC (Fig. 2) and ff values (Table 3). The best performing 

DSC had JSC = 3.09 mA cm–2, VOC = 812 mV and ff = 72%. The latter value is 

comparable with the ff for the N719 reference DSC, and again, the VOC was 

significantly higher for the copper- vs. N719-based DSC (812 vs. 614 mV). 

Further improvement was achieved by changing to a [Cu(6)2]+/2+ redox couple, 

as is seen in both the J-V curves and EQE spectra (Figs. 2 and 3), although 

the gain in JSC is at the expense of VOC. DSCs with [Cu(1)(L)]+ (L = 3, 4 or 5) 
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and [Cu(6)2]+/2+ gave the highest JSC values (3.44 to 4.01 mA cm–2). With high 

VOC (Table 3) and ff values of 75 or 76%, these DSCs gave the best overall 

efficiencies. A DSC with [Cu(1)(6)]+ and [Cu(6)2]+/2+ had an overall efficiency of 

2.06% relative to 5.40% for N719. The relative efficiency of 38.1% (Table 3) is 

comparable to some of the best performing copper-based DSCs that contain 

an I–/I3– redox shuttle [9] and also compares favourably with DSCs with a 

copper-based dye and Co2+/3+ electrolyte [18]. The improvement in JSC is the 

dominant contributing factor to enhanced photoconversion efficiency on 

changing the electrolyte from [Cu(3)2]+/2+, [Cu(4)2]+/2+, [Cu(5)2]+/2+ to [Cu(6)2]+/2+, 

as demonstrated for DSCs containing the dye [Cu(1)(4)]+ in Fig. 2 and 3. 

Similar trends are observed for other dyes (Figs. S3 and S4). Fig. 4 displays 

the relative performances of the DSCs in Table 3, confirming that the effects of 

the electrolyte outweigh those of the ancillary ligand. The best performing all-

copper DSC showed little change in performance over a period of 3 days 

(Table S2) indicating that the devices are stable. 

    

 
 
Fig. 4. Photoconversion efficiencies of the DSCs in Table 3 as a function of ancillary 
ligand and electrolyte. 
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2.4 Electrochemical impedance spectroscopy (EIS) 

 Electrochemical impedance spectroscopy (EIS) is a valuable tool for the 

investigation of processes in DSCs, and has been applied to copper-based devices 

[9,13,18,29]. EIS measurements with DSCs containing 2 or 3 as ancillary ligand and 

in the electrolyte, and the best performing DSCs with electrolytes [CuL2]+/2+ (L = 4–6) 

were performed 3 days after sealing the cells. EIS parameters are given in Table 4, 

and the Nyquist plots are shown in Fig. 5; the right-hand semicircle in each plot is 

associated with the diffusion resistance (Rd). We focus on the effects of the 

electrolyte and its interaction with the dye/semiconductor interface. A known problem 

with Cu(I)/(II) redox shuttles is the high Rd [29]. This was observed in all the DSCs 

(Table 4) where Rd is between 115 and 1005 Ω. With a high Rd value, the electron 

transport in the electrolyte is rather low and regeneration of the oxidized sensitizer is 

not optimal. This results in low JSC values (Table 3). Smaller Rd values are 

associated with smaller molecular sizes of the redox couple. On the other hand, a 

high Rd also results in a high recombination resistance (Rrec) (Table 4) between the 

semiconductor/dye/electrolyte interface because of low diffusion of reduced 

electrolyte species. 

 

Table 4. EIS parameters of DSCs with the best-performing combination of dye and 
each electrolyte. 

Dye Electrolyte Rrec / Ω Rd / Ω 

[Cu(1)(2)]+ [Cu(2)2]+/2+ 886 806 

[Cu(1)(3)]+ [Cu(3)2]+/2+ 1195 1005 

[Cu(1)(2)]+ [Cu(4)2]+/2+ 643 663 

[Cu(1)(3)]+ [Cu(5)2]+/2+ 387 517 

[Cu(1)(6)]+ [Cu(6)2]+/2+ 261 115 
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Fig. 5.  Nyquist plots for DSCs containing the best-performing combination of dye 
and each electrolyte. 

 

3. Experimental  

3.1 General   

1H and 13C NMR spectra were recorded on a Bruker Avance III-500 NMR 

spectrometer at 295 K; 1H and 13C chemical shifts were referenced to residual 

solvent peaks with respect to δ(TMS) = 0 ppm. Spectra were assigned using COSY, 

NOESY, HMQC and HMBC methods. Solution absorption spectra were recorded on 

an Agilent 8453 spectrophotometer and solid state absorption spectra were recorded 

on a Cary 5000 spectrophotometer. Electrospray ionization (ESI) mass spectra were 

recorded on a Shimadzu LCMS-2020 instrument, and high resolution ESI mass 

spectra on a Bruker maXis 4G QTOF instrument.  

 Electrochemical measurements were made using a CH Instruments 900B 

potentiostat with glassy carbon, platinum wire and leakless Ag+/AgCl (eDAQ  ET069-

1) as the working, counter, and reference electrodes, respectively. Compounds were 

dissolved in HPLC grade CH2Cl2 (ca. 10–5 mol dm–3) containing 0.1 mol dm–3 
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[nBu4N][PF6] as the supporting electrolyte; all solutions were degassed with argon. 

Cp2Fe was used as internal reference. The scan rate was 0.1 V s–1. 

 Compounds 1 [34], 2 [33] and 3 [40] were prepared as previously reported. 

Compounds 4 and 5 were purchased from Sigma-Aldrich and TCI, respectively. 

Homoleptic copper(I) complexes were made from [Cu(MeCN)4][PF6] [41] (see below); 

[Cu(2)2][PF6] [34], [Cu(4)2][PF6] [35], [Cu(5)2][PF6] [30] have previously been reported. 

  

3.2 [Cu(3)2][PF6]  

Compound 3 (1.960 g, 6.04 mmol) and [Cu(MeCN)4][PF6] (1.120 g, 3.01 mmol) were 

dissolved in CH2Cl2 (25 mL). The dark red solution was stirred overnight at room 

temperature and the solution was concentrated under vacuum. Diethyl ether was 

added to precipitate the product. The solid was filtered and dried to yield 

[Cu(3)2][PF6] as a dark red solid (2.50 g, 2.92 mmol, 97%). 1H NMR (500 MHz, 

CD2Cl2) δ / ppm 8.53 (m, 1H, HB6), 8.45 (d, J = 8.2 Hz, 1H, HB3), 8.33 (s, 1H, HA3), 

8.12 (m, 1H, HB4), 7.75–7.67 (overlapping m, 4H, HC2+C3), 7.65 (s, 1H, HA5), 7.57 (m, 

1H, HB5),     2.34 (s, 3H, HMe). 13C NMR (126 MHz, CD2Cl2) δ / ppm 158.4 (CA6), 

152.6 (CA2+B2), 149.8 (CA4), 149.2 (CB6), 138.6 (CB4), 136.4 (CC1), 133.2 (CC2/C3), 

129.3 (CC2/C3) 126.9 (CB5), 124.8 (CC4), 124.0 (CA5), 122.7 (CB3), 117.5 (CA3), 25.5 

(CMe). ESI MS: m/z 712.93 [Cu(3)2]+ (base peak, calc. 712.98). UV-VIS (CH2Cl2, 5 × 

10–5 mol dm–3): λ / nm (ε / dm3 mol–1 cm–1) 253 sh (35600), 273 (47100), 304 sh 

(27700), 347 sh (5100), 467 (7400). 

 

3.3 Compounds 6a and 6b 

Compounds 6a and 6b (see Scheme 2) were prepared according to the literature 

procedure [42]. 
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3.4 Compound 6c  

Compound 6c was prepared according to the literature procedure adapted to our 

substrate [43]. 6,6´-Dimethyl-4,4´-dinitro-2,2´-bipyridine (612 mg, 2.0 mmol) was 

suspended in MeOH, then K2CO3 (691 mg, 5 mmol) was added. The reaction mixture 

was refluxed overnight. The cooled to room temperature mixture was evaporated, 

then redissolved in MeCN, filtrated and the filtrate was evaporated. Crude 6c was 

isolated as pale brown solid and was used without further purification (450 mg, 1.62 

mmol, 81%). 1H NMR (500 MHz, DMSO-d6) δ / ppm 7.24 (2H, HA3), 7.11 (2H, HA5), 

3.82 (6H, HOMe), 2.35 (6H, HMe). 13C NMR (126 MHz, DMSO-d6) δ / ppm 154.7 (CA4), 

148.6 (CA2/A6), 143.3 (CA2/A6), 112.5 (CA5), 111.7 (CA3), 56.2 (COMe), 17.7 (CMe).   

 

 

3.5 Compound 6 

PBr3 (16.3 mmol, 1 M solution in degassed CH2Cl2) was slowly added to a cooled 

(ice bath) suspension of 6c (450 mg, 1.63 mmol) in CH2Cl2 (10 mL). The reaction 

mixture was warmed to room temperature and then heated at reflux overnight, then 

cooled down to room temperature. The cooled solution was poured on ice, the pH 

adjusted to 10 with aqueous 1 M NaOH solution. The product was extracted with 

CH2Cl2. Compound 6 was isolated as a white solid (309 mg, 1.26 mmol, 77%). 1H 

NMR (500 MHz, CDCl3) δ / ppm  7.76 (d, J = 1.1 Hz, 2H, HA3),  7.68 (d, J = 1.1 Hz, 

2H, HA5), 3.92 (s, 6H, HOMe), 2.57 (s, 6H, HMe). 13C NMR (126 MHz, CDCl3) δ / ppm 

167.0 (CA4), 159.3 (CA2/A6), 157.7 (CA2/A6), 109.8 (CA5), 104.1 (CA3), 55.3 (COMe), 24.8 

(CMe). ESI MS m/z: 245.10 [6+H]+ (calc. 245.12). 

 

3.6 [Cu(6)2][PF6] 
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A solution of [Cu(MeCN)4][PF6] (234 mg, 0.62 mmol) in CH2Cl2 (4 mL) was added 

dropwise to a solution of 6 (309 mg, 1.26 mmol) in CH2Cl2 (6 mL). The red solution 

was stirred for 30 min and then Et2O (15 mL) was added, the mixture was filtered. 

The solid was collected, washed with EtOH and Et2O, then dried. [Cu(6)2][PF6] was 

obtained as a dark orange solid (365 mg, 0.53 mmol, 83%). 1H NMR (500 MHz, 

DMSO-d6) δ / ppm 8.08 (4 HA3), 7.19 (4 HA5), 3.99 (12 HOMe), 2.14 (12 HMe). 13C NMR 

(126 MHz, DMSO-d6) δ / ppm 166.9 (CA2), 158.0 (CA4), 152.9 (CA6), 110.9 (CA5), 

106.7 (CA3), 56.1 (COMe), 24.5 (CMe). ESI MS: m/z 551.16 [Cu(6)2]+ (calc. 551.17). 

High resolution ESI MS: m/z 551.1720 [Cu(6)2]+ (calc. 551.1714), 245.1285 [6+H]+ 

(calc. 245.1285). UV-VIS CH2Cl2, 5 × 10–5 mol dm–3): λ / nm (ε / dm3 mol–1 cm–) 269 

(43700), 290 (24900), 335 (5800), 444 (5500). 

 

3.7 Solar cell fabrication 

Each working electrode was made from an FTO glass plate (Solaronix TCO22-7, 2.2 

mm thickness, sheet resistance ≈7 Ω square–1) which was cleaned by sonicating in a 

2% surfactant solution in milliQ water (Sonoswiss cleaner, SW-C L2), and rinsed with 

milliQ water and EtOH. After surface activation in a UV-O3 system (Model 256-220, 

Jelight Company Inc) for 18 min, the FTO plates were immersed in aqueous TiCl4 (40 

mmol dm–3) at 70 oC for 30 min, and then washed with milliQ water and EtOH. The 

electrodes were dried in N2 and a layer of TiO2 paste (Dyenamo, DN-GPS-18TS) was 

screen printed (90T, Serilith AG, Switzerland). The printed plates were kept in an 

EtOH chamber for 3 min for all printing cycles, to reduce surface irregularities of the 

printed layer and dried for 6 min at 125 oC on a heating plate. The screen printing 

process was repeated 4 times,and then a final scattering layer was printed on top 

(Dyenamo, DN-GPS-22OS). The electrodes were gradually heated at 75 °C for 30 

min, at 135 °C for 15 min, at 325 °C for 5 min, at 375 °C for 5 min, at 450 °C for 15 
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min and at 500 °C for 15 min. The annealed TiO2 film was post-treated with 40 mmol 

dm–3 aqueous TiCl4 solution, rinsed with milliQ water and EtOH and sintered at 500 

oC for 30 min. The electrodes were cooled to ca. 80°C and immersed in a 1 mM 

DMSO solution of the anchoring ligand for ca. 20 h. The colourless electrodes were 

removed from the solution, washed with DMSO and EtOH and dried in a stream of 

N2. The electrodes with adsorbed anchoring ligand were immersed in a 0.1 mM 

CH2Cl2 solution of [CuL2][PF6] (L = 2–6) for 72 h to give red-orange coloured 

electrodes. The electrodes were removed from the solution and were washed with 

CH2Cl2 and dried under a stream of N2. The reference electrode was made by 

dipping a commercial electrode in a 0.3 mM EtOH solution of dye N719 (Solaronix) 

for 3 days. After soaking in the dye-baths, the electrodes were removed, washed with 

the same solvent as used in the dye-bath and dried with a heat gun. 

 Each counter electrode was commercially available from Solaronix (Test Cell 

Platinum Electrodes Drilled). The electrodes were rinsed with EtOH and dried on a 

heating plate at 500 °C for 30 min. The TiO2 electrodes and Pt counter-electrodes 

were assembled using thermoplast hot-melt sealing foil (Solaronix, Test Cell 

Gaskets, made from Meltonix 1170-60 sealing film, 60 microns thick) by heating while 

pressing them together. The electrolytes (see below) were introduced into the cell by 

vacuum backfilling. The hole on the counter electrode was finally sealed using hot-

melt sealing foil and a cover glass.  

 The solar cell measurements used fully masked cells using black coloured 

copper sheet with a single aperture placed over the screen printed dye-sensitized 

TiO2 circle. The area of the aperture in the mask was smaller than the active area of 

the dye-sensitized TiO2 (0.237 cm2). For complete masking, tape was also applied 

over the edges and rear of the cell. Current density-voltage (J–V) measurements 

were made by irradiating from behind with a LOT Quantum Design LS0811 
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instrument (100 mW cm–2 = 1 sun at AM 1.5) and the simulated light power was 

calibrated with a silicon reference cell. The reference dye was N719 (Solaronix). 

 The external quantum efficiency (EQE) measurements were performed on a 

Spe-Quest quantum efficiency setup from Rera Systems (Netherlands) equipped with 

a 100 W halogen lamp (QTH) and a lambda 300 grating monochromator from Lot 

Oriel. The monochromatic light was modulated to 1 Hz using a chopper wheel from 

ThorLabs. The cell response was amplified with a large dynamic range IV converter 

from CVI Melles Griot and then measured with a SR830 DSP Lock-In amplifier from 

Stanford Research. 

 Electrochemical impedance spectroscopy (EIS) measurements were carried 

out on a ModuLab® XM PhotoEchem photoelectrochemical measurement system 

from Solartron Analytical or a VoltaLab PGZ 402 potentiostat from Radiometer 

Analytical. The impedance was measured in galvanostatic mode at open-circuit 

potential of the cell at different light intensities (590 nm) in the frequency range 0.05 

Hz to 400 kHz (ModuLab® XM) or 100 kHz  (VoltaLab PGZ ) using an amplitude of 

10 mV. The impedance data were analysed using ZView® software (Scribner 

Associates Inc.). 

 

3.8 Electrolyte preparation 

The copper(II) complexes were prepared as follows. 0.20 mmol copper(I) complex 

([Cu(2)2][PF6], [Cu(3)2][PF6], [Cu(4)2][PF6], [Cu(5)2][PF6] or [Cu(6)2][PF6]) was 

dissolved in a minimum volume of dry acetonitrile and 0.24 mmol (1.2 eq.) of 

[NO][BF4] was added. Over a period of 1 h stirring, the solutions turned green. Then 

1.00 mmol (5 eq.) of NH4PF6 dissolved in MeOH was added and the solutions were 

stirred for another 1 h. Et2O was then added to the solutions to precipitate the 

copper(II) complexes, which were collected by filtration and washed with water and 
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Et2O. ESI-MS (MeOH with CH2Cl2 solutions): [Cu(2)2][PF6]2: m/z 1050.80 [Cu(2)2]+ 

(calc. 1050.90), 494.94 [2+H]+ (calc. 494.99). [Cu(3)2][PF6]2: m/z 712.93 [Cu(3)2]+ 

(calc. 712.98), 356.43 [Cu(3)2]2+ (calc. 356.49). [Cu(4)2][PF6]2: m/z 431.11 [Cu(4)2]+ 

(calc. 431.13). [Cu(5)2][PF6]2: m/z 498.10 [Cu(5)2+F]+ (calc. 498.13), 479.07 [Cu(5)2]+ 

(calc. 479.13), 239.69 [Cu(5)2]2+ (calc. 239.57). [Cu(6)2][PF6]2: m/z 551.13 [Cu(6)2]+ 

(calc. 551.17). For singly or doubly charged ions, the peak separations in each peak 

envelope were in accord with the corresponding charge. 

 

4. Conclusions  

With a target of developing DSCs containing Earth-sustainable components, we have 

investigated the performances of DSCs featuring structurally simple heteroleptic 

bis(diimine)copper(I) sensitizers coupled with homoleptic bis(diimine)copper(I)/(II) 

redox shuttles. Photoconversion efficiencies are strongly influenced by the 

electrolyte, with values of JSC increasing in the order [Cu(6)2]+/2+ > [Cu(5)2]+/2+ > 

[Cu(4)2]+/2+ > [Cu(3)2]+/2+ > [Cu(2)2]+/2+. For electrolytes [Cu(6)2]+/2+, [Cu(5)2]+/2+, 

[Cu(4)2]+/2+ and [Cu(3)2]+/2+, values of VOC exceed that of a DSC with N719 with an I–

/I3– electrolyte. The best performing combination was [Cu(1)(6)]+ as dye and 

[Cu(6)2]+/2+ as redox couple, where a photoconversion efficiency of 2.06% (38.1% 

relative to N719) was achieved. Even without structural optimization, this study 

confirms the viability of all copper-based DSCs, opening the way to DSCs with Earth 

abundant components. 

 Note added in revision: After submission of this manuscript, we bacame aware 

of a near-simultaneous publication describing similar all-coppper DSCs [44]. We are 

pleased that this work supports the findings that we report in our paper. 
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Appendix A. Supplementary data 

Supplementary data related to this article can be found at http:// dx.doi.org..........  
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