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FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD
FOR THE WAVE EQUATION: LONG-TIME EFFECTS*

ASSYR ABDULLE', MARCUS J. GROTE!, AND CHRISTIAN STOHRERS

Abstract. A new finite element heterogeneous multiscale method (FE-HMM) is proposed for
the numerical solution of the wave equation over long times in a rapidly varying medium. Our
new FE-HMM-L method captures not only the short-time behavior of the wave field, well described
by classical homogenization theory, but also more subtle long-time dispersive effects, both at a
computational cost independent of the microscale. Optimal error estimates in the energy norm
and the L2-norm are proved over finite time intervals, which imply convergence to the solution from
classical homogenization theory when both the macro- and the microscale are refined simultaneously.
Numerical experiments illustrate the usefulness of the FE-HMM-L method and corroborate the
theory.
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1. Introduction. Wave propagation across heterogeneous media, whether man-
made or natural, is ubiquitous throughout scientific and engineering applications.
When heterogeneities occur everywhere, and at a microscopic scale € much smaller
than the scales of interest, standard numerical methods become prohibitively ex-
pensive. Indeed classical finite difference (FD) methods or finite element methods
(FEMsS) require grid resolution down to the finest scale in the medium, even when the
typical wave length occurs at the macroscopic scale. In contrast, homogenization the-
ory yields properly averaged equations that capture the essential effects of the rapidly
varying medium in the limit e — 0 [12, 13, 18]. Since these homogenized equations are
explicitly available only in very few situations, such as periodic or random stationary
fields, numerical multiscale methods that overcome these limitations are needed.

For wave phenomena in strongly heterogeneous media, the wave equation

(1.1) opu® — V- (a°Vu')=F

with a rapidly varying coefficient, a®(x), often serves as a model. Here € represents
a small scale in the problem, 0 < ¢ < 1, which characterizes the multiscale nature
of the tensor a®. In the limit ¢ — 0, classical homogenization theory yields the
(nondispersive) homogenized wave equation, identical to (1.1) but with a® replaced
by its G-limit a”, which no longer exhibits any small-scale behavior [13]. In practice,
however, it is hardly available except in a few rather special situations.
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In [21], a numerical method based on asymptotic expansions [12] was proposed
for the homogenization of (1.1) with a® uniformly periodic and with special symme-
try. Alternatively, upscaling methods [35, 32, 14] make no assumption about scale
separation or the structure of a® but compute an effective coarse-scale model directly
from the fully resolved wave equation in the entire computational domain; hence, the
initial set-up cost for the coarse (upscaled) model increases as ¢ — 0.

In contrast, heterogeneous multiscale methods (HMMs) (see, e.g., [22, 6, 7]) com-
pute “on the fly” an effective equation at the macroscale from local microproblems
restricted to sampling domains proportional in size to ; hence, the total computa-
tional cost remains independent of the microscale. Recently, Engquist, Holst, and
Runborg [24] proposed an FD-HMM scheme for (1.1). A finite element heterogeneous
multiscale method (FE-HMM) was later proposed in [8] and shown to yield optimal
convergence to the limit, u°, from classical homogenization theory at finite time and
for a locally periodic medium.

For limited time the propagation of waves in a strongly heterogeneous medium
is well described by the classical homogenized wave equation. With increasing time,
however, the true solution, u?, deviates from the classical homogenization limit, 1",
as dispersive effects develop. To understand these dispersive effects at later times
T = O(1/?), Santosa and Symes [34] derived a higher order effective equation by
using Bloch waves. In one space dimension and for periodic a®, their derivation yields
an explicit expression in the form of an effective Boussinesg-type equation:

(12) attueff _ aoamwueff _ £2b081111ueﬂ“ - F

Here a® corresponds to the effective coefficient from classical homogenization theory,

whereas b° > 0, which was later rederived by formal asymptotic expansion in [15].
In [25], the FD-HMM from [24] was enhanced to capture those long-time dispersive
effects, but it now requires increasingly larger space-time sampling domains as ¢ — 0,
together with high-order macro-micro coupling and correction to the initial data.
Moreover, since the FD-HMM solution converges with decreasing mesh size to the
solution of (1.2), which is ill-posed, regularization is also needed.

In [30], Lamacz rigorously proved that u® can be approximated with error O(g)
(in an L>-norm) up to time 7' = O(1/:2) by the solution u* of the well-posed one-
dimensional limit equation

bO
(13) atifud-f - aOazzuoff — 62—08tt8mudf =F.
a

Even for one-dimensional problems, however, the coefficient »° > 0 relies on a “cas-
cade” of cell problems and is therefore hardly straightforward to calculate. Note that
(1.3) coincides with (1.2) if time derivatives are formally replaced by space derivatives
in the third term. By using Bloch-wave techniques, the analysis from [30] was recently
extended to higher dimensions [20].

The weak formulation of (1.3) suggests that an effective correction at the macro-
scale is also needed in the L? inner product term that involves d;;u. This insight led
in [9] to a new FE heterogeneous multiscale method for long times, which we named
FE-HMM-L. In contrast to the FD-HMM from [24], the FE-HMM-L relies on time-
independent cell problems, approximates a well-posed effective equation, and requires
no particular high-order numerical approximation at the macro-level. Moreover, the
FE-HMM-L adds no computational cost and makes the same assumptions about the
structure of a® as the FE-HMM, that is, stationarity and scale separation, which
underlie all HMM schemes.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/25/18 to 131.152.112.139. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

1232 A. ABDULLE, M. J. GROTE, AND C. STOHRER

The remainder of this paper is organized as follows. In section 2, we first recall
some known analytical results from homogenization theory. Next, in section 3, we
present the FE-HMM-L method for the wave equation (1.1). In section 4, we first
establish that the FE-HMM-L method is well defined regardless of ¢ or the mesh size.
Then, we state optimal a priori error bounds with respect to the energy norm and
the L?-norm for finite time T > 0, which are proved subsequently. As a consequence,
the FE-HMM-L approach is consistent with classical numerical homogenization on
any fixed time interval [0,7]. Finally in section 5, we present a series of numerical
experiments in one and two space dimensions that corroborate the expected optimal
convergence rates of the FE-HMM-L and demonstrate its ability to capture the long-
time dispersive effects on much longer time intervals [0,7'/£2].

1.1. Notation. Let 2 C R? be open and denote by W*P(Q) the standard
Sobolev space. For p = 2, we also use H*(€2) and H}(Q2), and we denote by HE, (Y)
the closure of C32,(Y) (the subset of C*°(R?) of periodic functions in the unit cube
Y = (—1/2,1/2)%) with respect to the H*mnorm. Next, we let Wl (V) = {v €

per

H}..(Y); [, vde =0} and denote by |D| the measure of a set D C Q. For T > 0 and

per
B a Banach space with norm ||-|| 5, we denote by LP(0,7;B) = L?(B), 1 < p < o0,
the Bochner space of functions v: (0,7') — B. Equipped with the norm

1
. s
o] _ (fo ot dt)” for p < oo,
L?(0,T;B)
esssup |[v(t)| 5 for p = oo,

the space L?(0,T; B) is also a Banach space [27].

2. Model problem. We let € be a convex polyhedron in R¢, 1 < d < 3, and
consider the following variational formulation of the wave equation (1.1):
Find u® : [0,T] — H}(Q) such that

(2.1)

(Ous(t),v) + B (us(t),v) = (F(t),v) Yo € H}(Q),
u (0)=f, 0Ow(0)=yg in Q,

where (-, -) denotes the standard L? inner product over € and the bilinear form B¢ is
given by

(2.2) B (v,w) = /Qas(a:)Vv(x) -Vw(z) dx Yo, w € Hy(Q).

We also assume that a® € L>(2; R4*?) is symmetric, uniformly elliptic, and bounded;
i.e., there exist 0 < A < A such that for all £ € R? and for all € > 0

(2.3) MeP <af(z)€-E<AE)] ae zeq.

Hence the bilinear form B¢ is symmetric, uniformly elliptic, and bounded on H{ (€2).
Furthermore, we make the following standard regularity assumptions:

(2.4) FeL?(0,T;L%(Q)), feHy(Q), geL*).

In (2.1), we have imposed homogeneous Dirichlet conditions for simplicity, but clearly
other boundary conditions could be used.
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Under assumptions (2.3), (2.4), the wave equation (2.1) has a unique (weak)
solution u® € L%(0,T; H}(Q)) with d,u® € L2(0,7;L?(2)). In fact, the solution is
more regular, as u® € L*(0,T; H}(Q)) with d,u € L>°(0,T; L*(Q)). We even have

u® € C([0,T]; Hy()), s € C([0,T); L*())

after redefinition on a set of measure zero [31].

2.1. Homogenization theory. Following the macro- to microscale HMM ap-
proach [3, 4, 7], we must first identify an appropriate macroscale model. For limited
time the propagation of waves in a rapidly varying medium is well described by the
(nondispersive) homogenized wave equation whose variational formulation reads as
follows:

Find u° : [0,T] — Ha () such that

(Ouu®(t),v) + B (u’(t),v) = F Vv € Hy(%),
(2.5) 0 0 .
w(0)=f, Owu’(0)=g in €,
where
(2.6) BY(v,w) = / a®(x)Vo(z) - Vw(z)de Yo,w € H} (Q).
Q

Note that a®, the G-limit of a®, no longer exhibits any microscopic behavior and
also satisfies (2.3); see [18, 12] for details. Hence, on a fixed time interval [0, T], the
true solution u® of (1.1) indeed converges in a weak sense to u’, the solution of the
homogenized wave equation (2.5).

With increasing time, however, u® deviates from the classical homogenization
limit, as a large secondary wave train develops unexpectedly because of a subtle
interplay between smaller scales. To capture this dispersive behavior, Lamacz [30]
proposed the effective Boussinesqg-type equation (1.3) and proved that its solution
approximates u® with error O(e) (in an L°°-norm), even on increasingly longer time
intervals [0, T'/&?].

Now, multiplication of (1.3) with a test function and integration by parts moti-
vates the following effective macroscale model:

Find w°® : [0, T] — H}(2) such that

(27) { (D (6),0) ™ + B (1), 0) =0 Vo € HY(9),
u®(0) = f, Ow(0)=g in €,

where the effective inner product (-, -)thf may depend on the spatial derivative of its
arguments. Note that we recover the classical homogenized wave equation by replacing
the effective inner product with the standard L?-product. On the other hand, if we
let

(2.8) (v, )" = (v,w) + £ (Z—ZW,W) :

we recover the variational formulation of the dispersive effective equation (1.3).
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3. Multiscale FEM for the wave equation. In this section, we propose a
new finite element heterogeneous multiscale method for long-time wave propagation
(FE-HMM-L), which is based on the macroscale model (2.7). In (2.7), neither the
effective bilinear form nor the effective inner product is available, as a® and b° are
not explicitly known a priori. Instead, the FE-HMM-L method recovers the required
information locally by solving “on-the-fly” appropriate microscale problems which
yield the following:

1. A modified bilinear form By based on microfunctions defined on sampling
domains;

2. A modified inner product (-,)g = (-,")g + ;)5 where (vh,wn)y de-
notes the standard L? inner product with numerical quadrature, whereas the
additional inner product (vy,wg),, (defined below) utilizes the same micro-
functions as Bpy.

Both the modified bilinear form and the two inner products are based on numerical
quadrature. Hence, let (&;,w;) for j = 1,...,J, respectively, denote the quadrature
nodes and weights of a quadrature formula (QF) for the reference element K. We
assume that

3.1 w; >0, =1,...,J,
( fi J

and that there exists a A > 0 such that

J
(3.2) ng Vh(@;)[* > MVl 72z, vp € RY(K),

(3.3) /kﬁ(i) di =y @;p(d;) Vp e RO(K).

Here 0 = max(2¢ — 2, () and R (K {) is the space P°(K) of polynomials on K of total
degree at most o if K is a simplicial element, or o = max(2¢ — 1,¢ + 1) and R?(K)
is the space Q7 (K ) of polynomials on K of degree at most o in each variable if K is
a quadrilateral element. Moreover, for the QF used in (-, ), we assume that

J
(3.4) Zw 2> MIpl 72k vp e RY(K).

Remark 3.1. Assumptions (3.1)—(3.3) are standard for retaining optimal con-
vergence rates of FEMs with numerical quadrature [16]. In fact, for time-dependent
problems, (3.4) must hold for the QF used in the assembly of the mass-matrix; see
[33] for parabolic and [11] for hyperbolic problems. Note that (3.4) implies (3.2).

3.1. Macro- and micro-FE spaces. We consider a shape-regular macroscopic
triangulation, Tg, of © into simplicial or quadrilateral elements K of maximal diam-
eter H; for simplicity, we assume that  is a polygon. By macroscopic we mean that
Tu does not have to resolve the microstructure of the medium, i.e., H > ¢ is allowed.
On Ty we define the standard FE space

(3.5) S Ty) = {vy € Hy (s vy |k € RYK) VK € Tu} .

Every element K in Ty is assumed affine equivalent to the reference element, K , and
we denote the associated affine mapping by Fx: K — K.
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For the microproblems we consider inside each K sampling domains K of size ¢,
centered about suitable quadrature points. In general, § > ¢ is comparable in size to
e, yet for locally periodic problems we usually set § = €. On each sampling domain,
we then consider a (micro-)partition 7, of K into simplicial or quadrilateral elements
Q@ € Tr, and a micro-FE space of periodic functions

(3.6) Sq(Kg,'ﬁI) = {’Uh S W(Kg);vhk;) S RQ(Q) VQ S 771},

where for a periodic coupling

(3.7) W(Ks) = Woer(Ks) = {U € Hyo(Ks); /Ké vdr = 0},

and for a coupling through Dirichlet boundary conditions
(3.8) W (K5) = Hy (Ks).

3.2. The FE-HMM-L method. To define the FE-HMM-L method, we first
choose on each element K € Ty two QFs, (2 j,wk ;) forj=1,...,J and (x’K_’j,w’K’j)
for j =1,...,J’, both usually determined through the affine mapping x = Fg (&). To
each quadrature node xx ; we associate a sampling domain K, centered about v ;,

(3.9) K(s:Kg(ZIJK_’j)ZxK_’j—I—CSK Y = (-1/2, 1/2)d,
together with the linearization v jin(2) of any function vy € S§(Q, Tu),
(310) UH,lin(f) = ’l}H(ﬁK,j) + ($ — Q'K,j) . V’UH({EKJ‘).

Then, the FE-HMM-L method is defined as follows:
Find ug : [0,T] — S§(Q, Trr) such that

(3.11) { (Oweurr (), vrm) g + Bu(un (t),v) = (F(t),vm) Vou € S§(Q, Tar),
' wir(0) = fa,  Oun(0) = gu in Q.

where fr, g € S5(S2, Tir) are suitable approximations of the initial conditions, and

(312) Bu(vw,wn)= Y. Z“Kﬂ (£)Von(z) - Ven (z) da,
(313)  (vm,wr)g = (z;m H + <vH,wH>M,
(314) (vmwn)y = ) iwk,ij<xk,j>wH<xk,j>,
KeTw i1
(3.15)  (vir,wir)y, KGZT 21“1“ () = v in(2)) (W () = Vi1 () da

Both Bpg(-,-) and (-,-),, involve microfunctions vy, (resp., wy) that are given by the
following:
Find vy, with (v, — viiin) € SYU(Ks, Th), such that

(3.16) / a®(x)Vup - Vzpder =0 Yz, € SYUKs,Th)-
Ks

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Because of (2.3) and the Lax—Milgram theorem, every microproblem (3.16) has a
unique solution. The microfunctions vy, (resp., wy) depend on the corresponding
macrofunctions vy (resp., wy) through the periodic coupling across the boundaries
of the sampling domains in (3.16); note that v jin, defined in (3.10), also depends on
TK,j-

Following [7], we shall now reformulate the bilinear form By directly in terms of
the macrofunctions vy, wgy. To do so, we first write vj, as

(3.17) vp(x) = v in(x) + Yn(x) - Vg (rk ;),

where each component ¢! € SY(Ks,Tp) of ¥p(z) = (V1 (2), ¥2(2), ..., ¢ ()T solves

(3.18) / a® (z)Vh -V do = —/ a®(x)e; - Vzp dx Vzn, € SUKs,Th),
Ks

Ks

with e; the ith canonical basis vector of RY. By using (3.17) in (3.12), we now
reformulate By as

J
BH(’UH,’LUH) = Z ZOJKJ' a'}((xKJ)VvH(xKJ) . V’LUH({EKJ‘).
KeTh j=1
Here a% (2 ;) is defined by
1

(3.19) a% (zx ) a®(x)(I + Jgh(a:)) dz,

N m Ks(zr,j)

where J:‘fh (x) corresponds to the d x d matrix

(i (@), = i)

with ¢! given by (3.18). We also define

1

3.20 % (rr ) = ——
( ) K( ;]) |K6]~| K(gj

a®(z) (I + Jg(x)) dz,

where Jy ;) is defined similarly as Jy, (), but with i replaced by v, the solutions
of the continuous counterpart of (3.18) set in the Sobolev space W (Ks) (see (3.7),
(3.8)).

Remark 3.2. In (3.12), (3.13), the inner product (-, -), corresponds to the stan-
dard approximation of the L? inner product with the QF {2k js Wi ;}, whereas By

corresponds to the standard FE-HMM bilinear form; see [7, 3] for a review. Since
the modified inner product in (3.13) relies on the same microfunctions as By, no
additional microproblems need to be solved. Hence by choosing the same QF for By
and (-, -),,, we keep the computational cost identical to that of the FE-HMM method
from [8], where no effective inner product was used. In fact, the analysis below would
remain valid with the inclusion of a third QF, or even numerical integration for the
source term, though without any added insight.
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4. Error estimates. We now establish the well-posedness of the FE-HMM-L
method from section 3.2, regardless of ¢ or the mesh size. Then, we state optimal a
priori error bounds with respect to the energy norm and the L?-norm for finite time
T > 0, which are proved subsequently. Hence, on [0,7], the FE-HMM-L approach
is indeed consistent with classical numerical homogenization. We remark that in
the definition (3.11) of the FE-HMM-L method, we have not yet specified how to
approximate the initial conditions. Here we shall use standard nodal interpolation,
fu = Igf and gy = Iyg, but wish to emphasize that other approximations are
possible.

4.1. Preliminaries. Here we assume that the homogenized tensor a° is suffi-

ciently regular. In particular, for a® € (W1°°(Q2))4*?¢ we consider the bilinear form

BO ’UH,’LUH Z Zw}{d ij V’UH({EKJ) VwH(xK,j),
KeTw j=1

which results from applying a standard FEM with numerical quadrature to (2.5).
For m > 1, the following broken norms will sometimes be used for piecewise smooth
functions:

1/2
(4.1) [l gm () = < > Ivll?qm> :

KeTu

Then, provided that there is sufficient regularity of a’ and that assumptions (3.1)—
(3.4) hold, we have the following estimates for vy, wgy € S*(Q, Tz) and p = 0, 1:

|BO(UH,wH) BH(UHawH)‘ < CH““maXHaUHWHHo(Q)

(4.2) Moa |l gevn o) 1wl gienq) -
(4.3) | B (vmr, wn) — By (v, wir)| < CHH}%X H“%HWLx(Q) sl ) w0 |l g
(4.4) By (vi, o) > CHUHH?LP(Q) )

(4.5) (v, wir) = (v, wi) | < CHY log || gesu g |lwrll grn ) »
and, for HUHH; = (vH,vH) g,

(4.6) vl < lvellg < ez llvallpzg, -

Here the constants C.c,c1,co > 0 are all independent of H. Note that only as-
sumptions (3.1)—(3.3) are needed for (4.2)—(4.4), whereas to prove (4.6), the stricter
assumption (3.4) for (' ;,wi ;) is necessary; see [16, 17] for details.

We also let Iy denote an interpolation operator, such as the standard nodal
interpolant (see [16, Chap. 3.2]), which satisfies, for all integers m, k with 0 < m <1
and 2 <k </+1,

(4.7) v — IHUHHm(Q) < CH"™™ HUHHk(Q)

for all v € H*(Q) N HY(Q) and Ixv € S§(Q, Tr). Clearly, other interpolants which
might require less regularity could also be used.
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The following lemma has been proved in various forms [3, 5, 23].
LEMMA 4.1. Suppose that (3.1)-(3.3) hold. Then, for all vy, wyg € S*(Q, Tw),
we have

| By (ver, wir) = Br(ve, wir)| < emnm |[Vor || 2o IVwr || L2

where

(4.8) €HMM = Sup ||a0(33K,j) - a?{(l’K,j)HF
KeTu
1<5<J

and ||| denotes the Frobenius norm.
Moreover, for all vy, wg € S*(Q, T), we have

(4.9) By (vh,vn) > '7||’UHH§{1(Q)

and

(4.10) |Br (v, wi)| < Tllvall g lwill g q) -
where v, ' > 0.

Next, we decompose the combined modeling error and microerror, egy, in (4.8)
as

a®(zk;) — a (xx ;) llF < [a®(zk,;) — a% (wr i) |lF + ak (2K ;) — a%(zr ;)| F -

€T mod eTTmic

Here a°(zk ;) corresponds to the homogenized tensor evaluated at the quadrature
point zk_ j, whereas the tensors a°(zf ;) and a%(2k ;) (numerical approximations of
a®(zk,;j)) are defined in (3.20) and (3.19), respectively.

The microerror, err,,;., describes the error due to the micro-FEM and can be
analyzed without any assumption about spatial structure (e.g., periodicity or random
stationarity). For piecewise linear microfunctions [1, 2] or for higher-order piecewise
polynomial microfunctions [5, Lemma 5.2], the following result holds.

If the solutions 1 of the continuous counterpart of (3.18) in the Sobolev space
W (Ks,) satisfy " € HT(K5) and

|wi|Hq+1(K5) < Ce™V/|Ks, KeTu, i=1,....d,

then we have for any K € Ty the estimate

h\*
(4.11) errmic = ||a% —a%||p < C <E> .

The modeling error, erry, q, quantifies how well the upscaling procedure captures
the effective homogenized coefficient a’. To estimate it, an assumption about spatial
structure, such as local periodicity or random stationarity, is needed. For instance, in
the case of locally periodic data, i.e., where a°(z) = a(z, £) = a(z,y) is periodic in y
and a;;(z,y) € WHo(Q,L>(Y)), 1 <1i,j < d (see [23, 10]), the modeling error can
be estimated as

0 if W(K;)=WL,(Ks) and 2 € N,

per
C

412 mod = [l (k) — A |lF <
(4.12)  errmed = |la (zx) —ay||r < { if W(Ks)= H}(Ks) and 6 > ¢.

SEl]
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Here we have also assumed that a® is collocated in the slow variable, that is, a®(x) =
a(xg,xz/e); without this assumption, an additional term of size ¢ typically appears
in both estimates. The modeling error has also been analyzed for random stationary
tensors [23, Appendix A].

Next we derive a key identity for the (-,-)ps correction to the L? inner product
which, in particular, implies that (-, "), defined in (3.13) itself is a true inner product.

To do so, we consider the solutions 1/3}1 e S1(Y, ﬁ), i=1,...,d, of the cell problems
[ as V0 0) - Vindy == [ an e Vindy Vi€ SUY.T)
Y Y

Here ag, ,(y) = a°(xk; + dy), and 75, denotes the mesh on the reference cell Y
obtained from the affine mapping Fk,: Y — Kj; see (3.9). Then the following lemma
holds true [9].

LEMMA 4.2. For all vy, wy € S*(, Tr) we have

J
(v wr)y = > > wiiM(ek,;)Vor(wi,;) - Voou (2k ),
KeTu j=1

where the symmetric d x d matrizc M (xk ;) is defined by

N’ [ s
Matewy) = (2) [ G an
Moreover, for all v, wg € S*(Q, Tw), we have
(4.13) (vr,vm)p > 0,
and if § = koe, with ko independent of €,

(4.14) |(vr wi) | < Ce? HVUHHL2(Q) ||VwHHL2(Q) J

where C' is independent of H, h, €, 6.
From Lemma 4.2 we infer that

(veswi)g = (v, wH) g + e (Mvw,w)

when both QFs (zk j, wk ;) and (2 ;, wi ;) are identical. Hence (-, ), approximates
an effective inner product with numerical quadrature. It is also closely related to the
effective inner product (2.8). Since (-, ") is a true L2-product, (3.11) is equivalent to
a system of linear ordinary differential equations, and there exists a unique solution
ug [0, T] = SYQ, Ty ) of (3.11). We summarize this result in the following corollary.

COROLLARY 4.3. The FE-HMM-L method (3.11)—(3.15) has a unique solution
upg € L=(0,T; 84, Tr)) for all e,h, H > 0.

4.2. Main results. For ¢, H,h — 0, the FE-HMM-L solution uy converges to
the solution u° of the homogenized wave equation (2.5) at finite time. In the following
two theorems we state the precise error bounds which lead to optimal convergence
rates with respect to the energy and the L2?-norm. Their proofs are postponed to
section 4.3.

THEOREM 4.4. Let u® and up be the solutions of (2.5) and (3.11), respectively.
Suppose that (4.2)—(4.6) hold for ;1 =0, and also that (4.7) holds. Moreover, assume
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that
oFul e L2(0,T; HH(Q), 92t Fu® e L2(0,T; H (), k=0,1,2,
al, e WHR(Q), ij=1,....d, fe HTYQ), ge H H™>2H(Q),
Ofug € L*(0,T; H'(Q)), 0<k<2, e || o, msm () < €
independently of H. Then,
(4.15) [|oe(u” ~ uH)||L°°(O,T;L2(Q))+HuO - U’HHLOO(O,T;Hl(Q)) < C(H' +enum+e?)

fore < H < Hy.

THEOREM 4.5. Let u® and uy be the solutions of (2.5) and (3.11), respectively.
Suppose that (4.2)-(4.6) hold for p =1, and also that (4.7) hold. Moreover, assume
that

oFu® € L2(0,T; HT' (), 9} € L2(0,T; HY(Q)), k=0,1,2,3,
a), e WHL(Q), ij=1,....d, feHT(Q),
OFup € L2(0,T; HY()), k=0,1, s || 20,7220 < €

independently of H. Then,
(4.16) Huo — uHHLOO(O,T;L2(Q)) <C (HéJrl +enpmm + 82)

fore < H < Hy.

By combining the results of Theorems 4.4 and 4.5 with the error bound for ey
described in section 4.1, we obtain the following two fully discrete error estimates
under appropriate regularity of the microsolution (see (4.11)):

H@t(uo - “H)HLoo(o,T;m(Q

h\*
S c <H€ + <_> + errmod + 52) )
3

h\*
[ = watl| o o, 1:200) < € <H£+1 + (g) + errmod + 82> :

n T H“O - “HHLoo(o,T;Hl(Q))

The modeling error err,,o,q can be further analyzed under appropriate assumptions
about the structure of a°, such as local periodicity or random stationarity (see (4.12)).

4.3. Proof of the main results. We shall now proceed with the proofs of
Theorems 4.4 and 4.5 from the previous section. To do so, we first let myu® denote
the elliptic projection

(4.17)
By (rpu’,ve) = B°(u®,vg) + (9uu’, vy) — (IH(attuo),vH)Q Vog € SYQ, Tw),

where By (-,-) is defined by (3.12). For higher derivatives, the projection 7 (9Fu®)
is defined accordingly. Since By is coercive and bounded, and the right-hand side of
(4.17) is linear in vg, the projection mru® € S¥(Q, Tyr) is uniquely defined due to the
Lax—Milgram theorem. Moreover, since By and B® do not depend on time, we have

af (ﬂ'H’U,O) = TH (65’110),
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provided that there is sufficient regularity. Note that if we set vy = mgu® in (4.17) and
use the coercivity and boundedness of By, Lemma 4.2, (4.6), and standard interpola-
tion results and assume sufficient regularity of u® (e.g., u® € L2(0,T; H'(Q)), 9Fu’ €
L2(0,T; L*(2)),k = 1,2), we obtain

(4.18) <

0
H”HU ||L2(O,T;H1(Q))
In Lemmas 4.6 and 4.7 below, we establish bounds on the difference between 1"
and its projection myu’. They are later used in the proofs of Theorems 4.4 and 4.5.

LEMMA 4.6. Suppose that (4.2)—(4.6) hold for p =0 and that (4.7) holds. More-
over, assume that

OFu’ e L2(0,T; HY(Q)), 97 *u® e L2(0,T; HY(Q)), k=0,1,2,

af; € Wb (Q), i,j=1,...,d.

Then

(4.19) 1050 = 7 (OFu) | oo s ) < C (H + eman + %) .

Proof. We now prove (4.19) for k = 0. For higher k, the proof follows by differ-
entiating (4.17).
Starting from (4.17), we first derive the estimate
By (rgu® — Igu®,vg) = B®(u® — Igu®,vy) + B°(Igu®,vy) — BY (Igu®,vy)
+ B?{(IHUO, ’UH) - BH(IHUO, ’UH)
+ (attuo - IH(attuO)a'UH) - (IH(attUO)WH)M
+ (I (0u®),v) — (I (0uu®), vm)
SCHE(A-i—maXHa 0‘
1‘)]

?jHWe,oo ) ||u He+1 HUHHHl

+ Cexam ||[u°|| o lvmll g + cH* |0re® || e vl g

+ 0 || 0’| o loa |l

where we have used the boundedness of B®, Lemma 4.1, (4.2), (4.7), and Lemma 4.2.
Next we set vy = myu’ — Izu® and use the coercivity of By. By integrating the
resulting expression from 0 to 7', we obtain

[’ — IH”O||L2(H1) = C(HZ( H”OHH(HHI) + Hatt“OHm(He)) + enmm H“0||L2(H1)
00 )

Finally, the triangle inequality yields

(420 lwau® =l oy < llmm® = T oy + ([ Ta® = w0 oy -

Together with (4.7) to estimate the last term in (4.20), this concludes the proof. O
LEMMA 4.7. Suppose that (4.2)—(4.6) hold for n = 1 and that (4.7) holds. Assume
in addition that

oFu® e L2(0,T; HL(Q)), 02T*u° e L*(0,T; H1(Q)), k=01,
a) ; € WL (Q), ij=1,....d
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Then

(4.21) |0Fu® — WH(aqu)HLQ(QT;LQ(Q)) < C(H"™ +egmm +€°)

for H < Hy.

Proof. Again we show only the proof for £ = 0. For higher k, the proof follows
by differentiation.

Following a standard Aubin-Nitsche duality argument, we let ¢4(t) € Hg(Q) be
the solution of

(4.22) B (v, 04(t)) = (v,9(t)) Yo € H} (),
for any g € L2(0,T; L?(€2)). Our regularity assumptions then imply that
(4.23) pg € L2(0,Ts H*(Q) N Hy () and  logll 22y < Cllgllparey -

We now set v = myu’ — u” in (4.22) and use (4.17) to obtain

O —u® py) — Bu(rgu’,vg) + B(u’, vy)

+ (0w’ vnr) — (I (Ouu),vm)

= BO(’]THUO — P, Py — VH)

(7THUO — uo,g) = BY(rgu

+ BO(TFHUO — IHuO,vH) — BH(ﬂ'HuO — Igu®, vy)
+ BO(IH’LLO,’UH) — BH(IH’LLO,’UH)
+ (0nu® — I (0ru), vr) + (T (0uu®),ver) — (In (Oseu®), vmr)

— (IH(é)ttuO),vH)M .

Next, we set vg = Igpy and integrate from 0 to 7', which yields

T T
/0 (wHuO -0 g, ) dt| < /0 ‘BO(wHuO — uo,cpg — IHcpg)‘ dt

T
—l—/ ‘BO(ﬂ'HuO — IHuO,IHcpg) — By (rgu® — IHUO,IH(pg)| dt
0

T
+/ |B(Igu®, Ipy) — Bu(Inu®, Inp,)| dt
0
+ CHZ-H HattUOHLz(Hul) (”(»09”L2(L2) + H(Pg||L2(H2))
+Ce? Hatt“OHp(Hl) H%HLz(Hl) )

where we have used (4.5) with gy = 1, (4.7), and Lemma 4.2 to bound the last four
terms.

We shall now estimate the three remaining integrals on the right-hand side of the
above inequality. Since B is bounded, we immediately deduce for the first integral
that

T
/0 |BO(7THUO - uO’ Pg — IHSDg)| dt <C HWHUO - UOHL2(H1) ”909 - IH(P9||L2(H1)

<C (HE’Ll + enmm + 52) H<Pg||L2(H2)
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for H < Hy. Here we have used Lemma 4.6, (4.7), and the fact that ¢, (t) € H?().
For the second integral we have for H < Hj

T
/ ‘BO(T(HU,O — Igu®, Inpg) — By (rgu® — Igu®, IHcpg)| dt
0
T
< / |BY(rgu® — Inu®, Inpg) — By (mpu’ — Inu®, Inp,)| dt
0

T
+ / |BY (mau’® — Inu®, Ipy) — B (muu® — Inu®, Inpg)| dt
0

<CH H?THUO - IHUOHLQ(Hl) HSDQHLQ(Hl)
+ Cegnm Hﬂ'HuO - IHUOHLz(Hl) ||909HL2(H1)

<C (HZJrl + enmm + 52) ||<Pg||L2(H2) :

Here we first used (4.3) and Lemma 4.1, and then Lemma 4.6 together with (4.18)
for myu® and a similar bound for Iyu.

To derive an upper bound for the third integral, we again use Lemma 4.1 and
(4.2) with p = 1, which yields

T
/ |B°(Igu®, Inpy) — Bu(Inu®, Ine,)| dt
0
T
g/ |B°(Igu®, Inpy) — By (Inu®, Inpg)| dt
0

T
+/ |BY(Inu’, Ingy) — Bu(Inu®, Inp,)| dt
0
<C (HZJrl + eHMM) ”SDgHLQ(HQ) .

Finally, we combine the upper bounds derived above with (4.23) to estimate the
numerator in

. o ‘fOT(wHuO —u®, g)dt
[mru’ - u ||L2(L2) = sup g1l ’
9EL2(L2)g#0 Illz2(z2)

which yields (4.21) with k& = 0. O

We are now in a position to prove our two main results stated in Theorems 4.4
and 4.5.

Proof of Theorem 4.4. We consider u° and wuy, solutions of (2.5) and (3.11),
respectively, and let (g = ug — mru’. Then, a direct calculation yields

(OuCrr,vi) g + Br(Covn) = (Fyvm) — (Ou(mau’),vi) o — Bu(rru®, vm)
= Bo(uo,vH) + (8ttu0,vH) — (ﬂ'H(attuO),vH)Q — BH(ﬂ'HuO,vH)

(4.24) = (I (Ouu”) — 711 (Bus®), 01 )

where we have used (4.17) for the last equality. Next, we set vy = 9y and exploit
the symmetry of (-, ), and By to rewrite (4.24) as

1d

5 E ((at<H7 8t<H)Q + BH (CH, CH)) = (IH (attuo) — TH (8ttuo), 8t<H)Q .
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For 0 <t < T, we now let

n(t) = (0:Cu, 0Cr ) g + Bu(Cu, Car)
and use (3.13), Lemma 4.2, and Young’s inequality to obtain

%%W(t) = (T (0uu®) — 71 (0uu®), 0:Cur ) 5y + (I (Oreu®) — wr (8u®), 0l ,,
< O( |10 = 7 (@) | 2 106 2
+ 2| VU @) = 72 (@) 2 19 (@) 12 )
< (|10 = m (@) + 10:u 3
(4.25) + |V (0uu®) — 7TH(<91ttuO))||2L2 + M|V (0elulze )
Since by assumption ||ug| g1 (0,7;m1(0)) < ¢ independently of H and (4.18) holds,

IV (0:Crr )|l .2 is also bounded independently of H on [0,T]. Moreover, from (4.6) and
Lemma 4.2, we deduce that

10172 < C19ua % < C (10l + e DCanar ) = C (O1Cir i) -

Thus by adding By ((g,Cx) > 0 to the right-hand side of inequality (4.25), we find

1d 2
5&7](1&) S C (T](t) + HIH(attUO) — WH(attUO)HHl + 64) .
Gronwall’s inequality then yields
(4.26) sup n(t) < C (7](0) + |11 (Ouu®) — WH(attuO)H2L2(H1) + 54) .
0<t<T

For the second term on the right-hand side of (4.26), an upper bound immediately
follows from Lemma 4.6 with & = 2:

2
111 (@) — 71 (Oeew®) || o gy < CCH + e +€7).

It remains to bound the first term on the right-hand side of (4.26). By Lemma
4.2, we have

1(0) = (9:Ca (0),9:Cr (0)) g + Br (Cu(0), ¢ (0))
(4.27) <C (||3tCH(0)||§1 +2 | V(0:¢u (0))][72 + Br (¢u (0), CH(O))) :

We shall now estimate each term on the right-hand side of (4.27). For the last term,
we easily derive the upper bound

[Brr (¢ (0),Car (0))] < C IS O = C||Tn f — mu®(O)|3,
< (s = £l + ]| (©) = m°O) )
< C (B ||}
[ = ma® | gy + 1|0 — WH@tuO)IIiz(Hl))

< C(H%—i—e%{MM—Fa‘L),
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where we have used (4.7), the embedding of H'(0,T; H(Q)) into C(0,T; H*(f)),
and Lemma 4.6. To estimate the first term on the right-hand side of (4.27), we use
(4.6) and the continuous embedding of H*(0,T; L*(2)) into C(0,T; L?(2)):

10:Ca(0)]1 g < 2 10:Ca (0) 2 = 2 [Trg — wr (0eu®(0))]| L.
< ez (Irg = gll 2 + [|00u’(0) — 7 (0:u®(0)) [ )
< C(H" |lgll e
+ ||0eu® — ﬂ'H(atuO)HL?(L?) + ||Owu® — WH(attUO)HLz(Lz))
<C (Hé + ermMm +€2) )

Similarly we infer that the second term is bounded as
IV @)z < € (H™HD femng+22)
By combining the above three estimates with (4.27), we thus conclude that
n(0) < C (H” + X 4 et F 2 (HPx(220-2) o2y 54)) ,
which reduces to
n(0) < C (H* + efpyp + %)
Finally, we split the quantity of interest as
e = || < [ = 7] + Gl

and use Lemma 4.6 to bound the first term on the right. To bound the last term, the

continuous embeddings of H'(0,7; H'(Q2)) into C(0,7; H*(Q)) and H'(0,T; L*())
into C(0,T; L*(Q2)) imply

2 2
¢ (10 1) + 160 sy ) < sup_ (),
0<t<T

which together with (4.26) concludes the proof. O
Proof of Theorem 4.5. Following the proof of Theorem 4.4, we let (g = ug—7Hu
and recall from (4.24) that

0

(4.28) (OuCrr,vm) g + Bu(Cuyvn) = (In(0uu’) — w1 (0uu®), vm) -
Next, we define
Uy = Ig(0u®) — 7 (0,u°) — 0:Car, Oy = I (9,u°) — 7 (0pu)
and rewrite (4.28) as
—(0iCh, Ovn) g + Bu(Cuyvn) = — (0, Orvn) g + (0¥, vm) g
= — (0iCH, Ovm)g + % (U, vm)g — (Yr, Owm)g

d
=7 (Y, va)g — (P, dvn)g
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for all vy € L2(0,T; SYQ, Ty)) with Oy € L2(0,T; SY(Q, Tr)).
For fixed s < T, we now set

() = /t " tulr) dr

and use dyvg = —(g to infer that
ld
2 dt

Integration from 0 to s then yields

((CH, CH)g — BH('UHavH)) = % (e, vr)g + (P, Cr)g -

3 ((€(5): G (90 = (€0): (0 + Bulwn(0),0)) = [ (@.Ca)g .

because v (s) = Uy (0) = 0. Moreover, Lemma 4.1 implies that By (vi(0), v (0))
is positive. By using Lemma 4.2, the Cauchy—Schwarz inequality, Young’s inequality,
and (4.6), we thus obtain

1132 < € (IO + 2 IVCa O)7.)
+ @) = 7 @), o + CrllCa])?
- || 1 (0”) — ma (Opu )||L2(L2) K |[Ca Loo(L2)
2
+ Ce? (HIH(&UO) — WH(atu0)||L2(H1) + ||CHH%2(H1))
for any x > 0. Taking the supremum over s now yields, for x sufficiently small,
(4.29)
2 <C )22 + || Iu (940 00|
¢l 2 < € (ICa (O3 + |2 @) = 78 (D))
2
+C=2 (IVCa O3 + |11 (00®) = 71 @) gy + It ay ) -

To complete the proof, we must now estimate each term on the right-hand side of
(4.29). For the first term, we easily find using (4.7) that

1€ 0)| 2 < ||mru®(0) = u(0)| o + [[u®(0) = Tuu®(0)]
<C (HéJrl + eavmm + 62) .

Similarly, the second and fourth terms on the right-hand side of (4.29) are immediately
estimated by Lemmas 4.6 and 4.7. To derive an upper bound for the third term, we
use the continuous embedding from H'(0,7; H'(2)) into C(0,7; H(Q)) and then
Lemma 4.6, as follows:
V€t )l 2 < ([T f — u®(0)]| 0 + [Ju®(0) = mau’ (0)]] s

< O (H 4 [ = s oy + 100 = 720012

< C(HZ + epmM —|—82) .
The remaining last term in (4.29) is bounded above independently of H due to
llur || 20,7511 () < ¢ and (4.18). Finally, we combine the above estimates for (4.29)

with an argument similar to that used at the end of the proof of Theorem 4.4, which
completes the proof. O
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5. Numerical experiments. We shall now demonstrate the accuracy and use-
fulness of our FE-HMM-L scheme during both finite- and long-time regimes. First, we
validate the optimal convergence rates of Theorems 4.4 and 4.5 for a one-dimensional
periodic model problem, where an exact solution is available for comparison. Our
FE-HMM-L scheme, however, is not restricted to periodic media, as shown in a sec-
ond example where the oscillatory tensor is not uniformly periodic. We also illustrate
the versatility of the FE-HMM-L scheme by applying it to a two-dimensional prob-
lem with complex geometry. Then, we demonstrate the accuracy of FE-HMM-L for
long-time simulations, when dispersive effects induced by the microstructures in the
medium can no longer be neglected. Neither classical homogenization nor the former
FE-HMM scheme from [8] can capture these dispersive effects; hence, they are both
inadequate for numerical wave propagation over long times.

For the spatial discretization, we use standard FEMs for the macro- and the
microsolver. The resulting second-order system of ordinary differential equations is
integrated in time with the second-order leapfrog scheme. Since the CFL condition
on At is dictated by H and not by the micro mesh size h, much larger time steps are
admissible than in a fully resolved numerical solution. This leads to an additional
significant reduction in the computational effort. Clearly, other time discretization
schemes, such as Runge-Kutta or multistep methods, can be used.

5.1. Short-time regime.

One-dimensional periodic medium. We consider (2.1) with F' = 0 in the
interval Q = [—1,1] with homogeneous Dirichlet boundary conditions. The highly
oscillatory (squared) velocity field is given by

(5.1) af(z) = V2 + sin (27r§) .

Because of the simple structure of a%, it is possible to compute the constant homoge-
nized wave speed v/a% = 1. Hence the solution of the homogenized wave equation (2.5)
with initial data f(z) = sin(mz) and g(z) = 0 is given by u®(x,t) = sin(7x) cos(nt).
We emphasize that FE-HMM-L is not restricted to periodic media, whereas a° cannot
be calculated in general.

First we let ¢ = 27! and use P! finite elements on a uniform macroscopic mesh
Tx for the sequence of meshes H = 27, k = 2,3,...,8. For numerical quadrature
we use the trapezoidal rule which results in two microproblems per macro finite el-
ement. The microproblems, defined on the sampling domains K of diameter § = ¢
with periodic coupling conditions, are also discretized with P! elements on a uniform
micromesh with 2 = ¢ - 27%. For each macromesh, we set the time step At = H/s
proportional to H according to the CFL stability condition. In Figure 1, we show
the L2- and H'-errors between uy and u® at the final time 7" = 2.75. As predicted
by Theorems 4.4 and 4.5, we observe second-order convergence in the L2-norm and
first-order convergence in the H'-norm.

To achieve optimal convergence, it is crucial to refine simultaneously the macro-
and the micromesh. Otherwise, if we fix the resolution of the microproblem while
refining only at the macroscale, then FE-HMM-L fails to achieve optimal second-
order convergence, as shown in Figure 2. Indeed, if A remains constant, then egnm,
which scales as (7/¢)?? [1, 3], eventually dominates in the error estimates (4.15) and
(4.16).

The error bounds in Theorems 4.4 and 4.5 differ from those previously derived
for the former FE-HMM [8, Theorem 4.3] mainly through their explicit quadratic
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FIG. 1. One-dimensional periodic medium. L2%-error (left) and H'-error (right) |ug — u®| at
time T' = 2.75, with simultaneous refinement of the macro mesh size H and the micro mesh size h.
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—«— h=¢/32, —— h=¢/64, —B— h=¢/128

FIG. 2. One-dimensional periodic medium. L%-error (left) and H'-error (right) |ug — u®| at
time T = 2.75, where only the macro mesh size H is refined, but the micro mesh size h is kept fized.
The different lines correspond to different values of h.

dependence on ¢ in the case of FE-HMM-L. To exhibit this dependence, we choose a
very fine macro- and micromesh with H = 27 and h = § - 2710 to ensure that dis-
cretization errors are minimal. In the left frame of Figure 3, we observe the predicted
second-order convergence with respect to €. Note that only the L2-error is shown,
since the H'-error behaves similarly.

For this simple periodic example, the choice § = € for the size of the sampling
domain is quite obvious. In practice, however, the precise value of ¢ may vary or be
unknown. Still, the FE-HMM-L scheme can be applied. To illustrate this fact, we fix
the values e = /100, H = 275 and h = §-275, but let § vary. Clearly § > ¢ is needed
to obtain reliable results, as the microproblems must cover at least one period in the
microstructure. In the right frame of Figure 3, we observe that overestimating € does
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F1G. 3. One-dimensional periodic medium. Error |up — u®|| at time T = 2.75. Left: L%-error
versus the period €. Right: Relative L?-error versus the ratio between 6 and e.

not dramatically increase the relative L2-error, while, as expected, the best results
are achieved if d is a multiple of €.

One-dimensional nonperiodic medium. To show that FE-HMM-L also ap-
plies to more general media, we now consider (2.1) with 2 = [0, 3], f(z) = g(x) =0,
and no source. At x = 1, we impose a homogeneous Dirichlet condition, whereas at
x = 0 we impose the time-dependent boundary condition

1—cos(47t) fort <0
(0, 8) = ——— fort <0.5,
0 for t > 0.5,

which corresponds to a left-incoming sinusoidal pulse. The (squared) velocity is given
by

(r+0.3)2
€

2 (x)=1 .2sin | 2
(5.2)  a°(x) +0 sm(ﬂ' 2106

) (1+ 0.4sin (277)) —|—tanh< 0.5 ) ;

with ¢ = 0.002. As shown in Figure 4, a°(x) is highly oscillatory but nonperiodic:
both the amplitude and the phase of the oscillations vary with distance, while the
fast and slow scale dependencies do not explicitly separate.

In Figure 5, we compare the FE-HMM-L solution and an FEM solution, both
computed on the same coarse mesh, with a reference solution computed on a finer
mesh that fully resolves the oscillations of a°; see Figure 5. For the FE-HMM-L
solution we use H = 1/150, § = 1/300, and piecewise linear FEs for both the macro-
and the microsolver. Although the convergence theory from the previous section does
not apply to this very general medium, we observe that the FE-HMM-L approximates
well the macroscopic behavior of the true solution.

Two-dimensional layered topography. Next, we consider (2.1) with FF =0
in the two-dimensional domain € = [0,2] x [—1, 1] and set homogeneous Neumann
boundary conditions on its entire boundary. The computational domain consists of
four distinct subdomains, ;, ¢ = 1,...,4, shown in Figure 6. Inside each subdomain
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Fia. 4. One-dimensional nonperiodic medium. Top: Multiscale tensor a®(x) for e = 1/500 with
a zoom at x = 3. Bottom: Change of the period (left) and the amplitude (right).

the (squared) velocity tensor a®(x) varies in the vertical direction as

\/_+251n 2rL2 ))IQXQ for x € Qq,
V5 + sin( 27T—))12><2 for z € Qo,
\/_+ 5 sin(27ag) + 5 8 Sln(27‘f’—))[2><2 for z € Qo,
Iyya for x € Qy,

(V5
(5.3) a®(z) = E

where ¢ = 1073 and oo is the 2 x 2 identity matrix. The initial conditions f, g
are chosen to induce a downward moving plane wave with Gaussian profile, initially
centered about x5 = 0.5.

At the macroscale we use P! FEs on a triangular mesh, which respects the dis-
continuities of a® across interior interfaces, as shown in Figure 6. At the microscale we
use Q' FEs on square sampling domains of size § = ¢ = 1072. Note that if the same
micro mesh size h was used everywhere throughout 2, the FE mesh would contain
about 400 million instead of 65,526 elements at the macroscale.

In Figure 7, snapshots of the FE-HMM-L solution uz are shown at three different
times. For comparison, we also display the numerical solution of the homogenized
wave equation (2.5) with a® computed analytically, but also that with a® replaced by a
simple locally averaged medium. Both uz and u° coincide as the initial Gaussian pulse
propagates across the medium while generating multiple reflections at the interfaces.
In contrast, the solution with a “naively” averaged medium displays errors in both
phase and amplitude. In particular, it completely misses the interface between 24
and o, where the amplitude but not the mean of the oscillations in a® changes.
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0 1 2 3 0 1 2 3
—— reference solution u®, x FE-HMM-L, + FEM (coarse mesh)

Fic. 5. One-dimensional nonperiodic medium. Snapshots of the reference, the FE-HMM-L, and
the FEM solution on a coarse mesh at times T = 0.5,1.0,1.5,2.0. The (unresolved) FEM solution
deviates from the (true) fully resolved reference solution, whereas the FE-HMM-L, computed on the
same coarse mesh, approximates well its macroscopic behavior.
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Fia. 6. Two-dimensional layered topography. Left: The computational domain 0 with its
subdomains. Right: A sample triangulation of 2 which respects the inner interfaces.

5.2. Long-time regime. For short times, the solution u° of the homogenized
wave equation (2.5) yields a good approximation of the true solution u®. At later
times, however, dispersive wave trains develop, which are not captured by u°. Not

surprisingly, since the FE-HMM scheme presented in [8] is based on (2.5), its solution
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Fic. 7. Two-dimensional layered topography. Snapshots of the FE-HMM-L solution ugy (left),
the solution u® of the homogenized equation (2.5) (middle), and that with a locally averaged tensor
(right) are shown at times T = 0.3,0.6,0.9.

is also unable to reproduce those dispersive effects. In contrast, the FE-HMM-L
method is based on the Boussinesq equation (1.3), which admits dispersive solutions,
and thus it is indeed able to capture that dispersive behavior.

One-dimensional periodic medium. We consider again the one-dimensional
periodic medium from section 5.1 with € = /50, but now impose periodic boundary
conditions on £ = [—1,1]. As initial data, we choose the Gaussian pulse

(5.9 f(@) = exp (‘U—””)

with 02 = 1/100 and g(z) = 0. The initial pulse splits into a left- and a right-moving
wave, which meet again at x = 0 every time T = 2,4,6, ..., because of periodicity.
Since the homogenized wave equation (2.5) has constant velocity a® = 1, its solution
u” coincides with the initial condition at every even integer time T = 2,4,6,....

However, the true solution u®, computed with a fully resolved FEM, deviates from
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homogenized and FE-HMM Boussinesq and FE-HMM-L

T =

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
x x
— reference, ——  reference,
----- homogenized, --- Boussinesq,
o FE-HMM x  FE-HMM-L

FIG. 8. One-dimensional periodic medium. Left: The true solution u®, the solution u® of (2.5),
and the FE-HMM scheme from (8] are shown at T'= 100. Right: The true solution u®, the solution
uf of the Boussinesq equation (1.3), and the FE-HMM-L solution ug all coincide at T = 100.

uY, as shown in Figure 8. By T = 100, that is, after 50 revolutions, its amplitude has
decreased about 25%, while secondary dispersive wave trains develop. Neither «° nor
the FE-HMM solution from [8] recovers those dispersive effects. Here, for the FE-
HMM and the FE-HMM-L solutions, we use P? FEs at the macro- and the microscale
with H = 278 for improved accuracy. Still, piecewise linear or quadratic FEs could be
used just as well, unlike with the FD-HMM from [25, 26], where high-order numerical
approximation is necessary at the macroscale.

To underpin the improved long-time accuracy of the Boussinesq equation, we also
show in Figure 8 the numerical solution u®f of (1.3). Both ug and u°f coincide with
the reference solution u®, even at later times. For this simple purely periodic one-
dimensional example, the effective coefficients a® = 1 and b = 9.09632625 - 10~3 in
(1.3) can be computed with Maple [29]. They are used here only for the numerical
approximation of u°f, whereas FE-HMM-L requires no a priori knowledge of any
effective quantity.

What if we let time increase even further? To address this question, we compare
in Figure 9 u®, u°f, and uy at times 7" = 200 and T = 2000. While all three still
coincide at T' = 200, we observe at the exceedingly large time 7' = 2000 how u*®
eventually deviates from the solution of (1.3). The FE-HMM-L and the Boussinesq
solutions still coincide. To capture those secondary dispersive effects at exceedingly
large times, an even more refined asymptotic analysis would be needed. However,
the time frame for the validity of the Boussinesq model and thus also for FE-HMM-L
depends not only on 7', but also on the frequency content of the initial conditions.
As shown in Figure 9, if we replace the initial Gaussian pulse with 02 = 1/100 by the
wider Gaussian with 62 = 1/20, both the FE-HMM-L and the Boussinesq solutions
still provide reliable approximations of u® even at T = 2000. This behavior is not
surprising, since higher frequencies “see” more details of the medium than lower ones,
and hence their primary and secondary dispersive effects are stronger.
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F1G. 9. One-dimensional periodic medium. The solutions uf, u, and wy are shown for two

different initial conditions at T = 200 (top) and T = 2000 (bottom). Left: Narrow initial Gaussian
pulse (02 = 1/100). Right: Wide initial Gaussian pulse (02 = 1/20). In the lower left frame uT and
up coincide, yet both differ from uc.

Two-dimensional wave guide. Finally, we consider (2.1) with ' = 0 in a
two-dimensional periodic, anisotropic wave guide, Q@ = [—1,1] x [0, 0.25]. We impose
homogeneous Neumann boundary conditions at the top and bottom boundaries, x5 =
0,0.25, and a periodic boundary condition at the lateral boundaries, 1 = —1,1. As
initial condition, we set f to a Gaussian pulse in the x; direction and g = 0. Inside
the wave guide, the material is anisotropic, and its (squared) velocity tensor is given
by

o (z) = V2 + sin (27r$6—1)

2+ sin (272

with € = 1/20. In Figure 10, snapshots of the FE-HMM-L solution ug, the fully
resolved reference solution u®, and the FE-HMM solution computed with the scheme
from [8] are shown at different times. Both HMM schemes use Q! FEs with two-point
Gauss quadrature for the micro- and the macrodiscretizations, where H = 5-1073 and
h = 5-10~% With increasing time, the true solution displays a striking dispersive
behavior, which is also captured by the FE-HMM-L scheme at the macroscale. In
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Fic. 10. Two-dimensional wave guide. Snapshots of the FE-HMM-L ug (left), the reference
u® (middle), and the FE-HMM (right) solutions at times T = 8, 20, 30. The physical dispersive
effects are correctly captured by the FE-HMM-L but not by the FE-HMM scheme.

contrast, the FE-HMM scheme from [8], as expected, is unable to capture those
dispersive effects.

6. Conclusion. We have presented a multiscale FEM for wave propagation in
heterogeneous media, which captures not only the short but also the long-time be-
havior, yet avoids the high computational cost of fully resolved simulations. It is
based on an FE discretization of an effective equation at the macroscale, whose a pri-
ori unknown coefficients are computed on sampling domains at the microscale within
each macro-FE. Optimal error estimates in the energy norm and the L?-norm are
proved over finite time intervals. They imply convergence to the solution from clas-
sical homogenization theory, when both the macro- and the microscale are refined
simultaneously, as corroborated by our numerical experiments.

Since the sampling domains themselves scale with the smallest scale, e, in the
problem, the computational work needed for the effective FE-HMM-L stiffness ma-
trix is independent of the fine-scale features of the medium. Moreover, the FE-HMM-L
stiffness matrix is computed initially and only once. Then, all subsequent computa-
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tions during the time-stepping procedure occur only on the coarse mesh, while any
stability restriction on the time step now depends only on the coarse mesh size H.
The combined effect of a coarser mesh size with a larger time step yields additional
significant savings in computational time, increasingly so at smaller €.

Because our FE-HMM-L approach leads to a standard Galerkin FE formulation
at the macroscale, it immediately applies to higher-dimensional problems, complex ge-
ometry, and high-order discretizations. It also easily generalizes to more complicated
second-order hyperbolic equations, such as those from electromagnetics or elastic-
ity. The FE-HMM-L method can also be combined with discontinuous Galerkin FE
discretizations for the wave equation [5, 28], which provide greater flexibility in the
underlying mesh design, waive the need for mass-lumping, and thus lead to inherently
parallel fully explicit (local) time-stepping schemes [19].
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