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We discuss a hybrid quantum system where a dielectric membrane situated inside an optical cavity is coupled
to a distant atomic ensemble trapped in an optical lattice. The coupling is mediated by the exchange of sideband
photons of the lattice laser, and is enhanced by the cavity finesse as well as the square root of the number of
atoms. In addition to observing coherent dynamics between the two systems, one can also switch on a tailored
dissipation by laser cooling the atoms, thereby allowing for sympathetic cooling of the membrane. The resulting
cooling scheme does not require resolved sideband conditions for the cavity, which relaxes a constraint present
in standard optomechanical cavity cooling. We present a quantum mechanical treatment of this modular open
system which takes into account the dominant imperfections, and identify optimal operation points for both
coherent dynamics and sympathetic cooling. In particular, we find that ground state cooling of a cryogenically
precooled membrane is possible for realistic parameters.
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I. INTRODUCTION

Micromechanical resonators coupled to cold atoms have
recently attracted much interest as a promising class of
hybrid quantum systems [1–3]. On the one hand, advances in
nanoscale fabrication techniques have led to the development
of high-quality micromechanical resonators in various forms,
driven in particular by the interest in preparing quantum states
of macroscopic devices [4]. An attractive feature of these
resonators is that they may be functionalized by attaching ad-
ditional elements, which enables optical, magnetic, or charge-
based coupling to other systems [3]. Many such devices are op-
timized for the interaction with light in cavity-optomechanical
setups [5–8], which, e.g., enable optomechanical laser cooling
[9–18] of the mechanical resonator to its ground state [19–21].
In addition to being useful for applications in metrology [22],
the control of these devices on a single quantum level will also
enable addressing questions in quantum foundations [4,23,24]
and applications related to quantum information [25–34]. On
the other hand, cold atomic gases are systems over which an
unprecedented level of quantum control has been reached,
involving both internal and external (motional) degrees of
freedom [35]. Here, a comprehensive toolbox for cooling, state
preparation, and readout is available, profiting from ongoing
efforts in metrology [36,37] and quantum simulation [38].
These efforts have also enabled an atomic realization of
optomechanics [39–41].

In light of these developments, a combination of mechanical
and atomic systems promises new ways to control and manip-
ulate the mechanical resonator via the atoms, but may also lead
to novel ways of realizing interesting atomic dynamics. Along
these lines, direct [2,3] and optical [42–48] coupling schemes
between atoms and micromechanical systems have been

proposed, and first experiments have been realized [49–51].
Many of these setups pose great experimental challenges as
they require the combination of a functionalized mechanical
resonator with atomic trapping and manipulation techniques
within the same vacuum chamber or cryostat and, possibly,
within the same optical cavity.

A modular setup that circumvents the need for integration
of atoms and mechanics within the same vacuum chamber
has recently been proposed [48] and later realized [51]
by some of the authors. The experiment demonstrates a
light-mediated coherent coupling of the vibrations of a
micromechanical membrane to the center-of-mass motion of
an atomic ensemble, which is kept at a distance (1 m in the
experiment [51]) in a separate vacuum chamber. Motivated
by these experimental developments, we analyze in this work
a more sophisticated setup as displayed in Fig. 1(a). Here,
the membrane is enclosed in an optical cavity, as in the
standard “membrane-in-the-middle” configuration [16], while
the atoms are trapped outside of the cavity in the optical
lattice potential provided by the light field reflected off the
cavity. Adding the cavity preserves the modularity, while the
coherent coupling between the two systems is enhanced by
the cavity finesse in addition to a collective enhancement by
the square root of the number of atoms. As we will show, the
coupling strength can be leveraged so as to exceed the various
decoherence rates. First of all, this coherent coupling enables
a resonant exchange of excitations between the two systems.
Furthermore, one can switch on laser cooling of the atomic
motion [52], thereby effectively tailoring the dissipation of the
membrane. This leads to a sympathetic cooling scheme for
the membrane which is analogous to standard optomechanical
cavity cooling [9,10], with the role of the cavity played by
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FIG. 1. (Color online) (a) Micromechanical membrane in a cavity
coupled to a distant atomic ensemble by means of a laser (red,
frequency ωL). The motion of the membrane shifts the optical lattice
dipole trap of the atoms, while the motion of the atoms changes the
radiation pressure on the membrane. Inset: The atoms are modeled
as two-level systems, which are far off resonant with respect to the
laser. (b) Refractive index profile used in the one-dimensional model
[Eq. (6)].

the atoms. However, in addition to being tunable, our scheme
does not require the cavity linewidth to be much less than
the mechanical frequency and thus relaxes the experimental
requirements on the cavity.

The aim of this work is to provide a rigorous, quantum
mechanical treatment of the proposed setup. In addition to
deriving the exact form of the coherent coupling, this also
yields a consistent description of quantum noise in the problem
such that we are able to describe the dynamics of the system
on the level of a few quanta. In particular, we analyze the
possibility of observing quantum coherent excitation exchange
between the two systems, and address the question whether the
membrane can be cooled to its quantum mechanical ground
state by laser cooling the atoms. Our results allow us to identify
optimal experimental parameters for both scenarios.

The remainder of this paper is structured as follows: In
Sec. II, we first give a simple semiclassical estimate for
the coupling, and then present a full quantum model of the
problem from which we obtain a linearized interaction of the
atoms and the membrane with the light field. Section III then
deals with eliminating the light field to obtain an effective
description of the atoms and the membrane alone, which
includes the dominant sources of decoherence. The resulting
effective dynamics is subsequently discussed in Sec. IV, where
we analyze the scenarios of coherent dynamics (Sec. IV A) and
sympathetic cooling of the membrane (Sec. IV B). Finally,
Sec. V comments on the experimental realization of our
proposal, and concluding remarks can be found in Sec. VI.

II. MODEL

We consider a system as shown in Fig. 1(a), where a
mechanical resonator residing in a single-sided cavity of
finesseF is coupled to the motion of a distant atomic ensemble
outside the cavity. Before discussing our full quantum model
below, we present a brief estimate of the expected coupling
based on a quasistatic picture: The membrane is taken to be a
standard SiN membrane with a resonance at frequency ωm and
effective mass M , such that its zero-point motion is given by

lm = √
h̄/Mωm. Its coupling to the atoms is mediated by a laser

beam of wavelength λL, which is reflected off the cavity and
forms an optical lattice for the atoms by means of the dipole
force [53]. We assume the lattice to be deep enough to treat its
wells as independent harmonic traps of frequency ωat ≈ ωm.
If the laser is resonant with the cavity, then a displacement
of the membrane by an amplitude lm corresponding to its
zero-point motion leads to a phase shift δφ ∼ F lm/λL of the
reflected light. For a single atom, the resulting shift of the
standing wave pattern outside the cavity would lead to a force
∝mω2

atδφ/kL, where m is the mass of one atom and kL is
the wave number of the laser. However, since all atoms are
affected equally the membrane couples to the center-of-mass
motion of the atoms, which, on a single quantum level, leads
to a collectively enhanced coupling rate of the form [48,51]

g ∝ mω2
at

δφ

kL

lat

√
N

h̄
∝ ωat

√
m

M
F

√
N. (1)

Here, N is the number of atoms and lat = √
h̄/mωat is the

atomic zero-point motion. This estimate shows that the small
mass ratio m/M can be compensated by both a large atom
number and a high finesse. In reverse, if the atoms depart
from their equilibrium positions, then their restoring force
originates from redistribution of photons between the right-
and left-propagating components of the standing wave. As a
result, the intensity inside the cavity changes and thus the
radiation pressure on the membrane such that it experiences
a force. The quantum model presented in the following will
confirm the above estimate.

A. Quantum description

We describe our setup by a one-dimensional (1D) model
with Hamiltonian

H = Hm + Hat + Hfield + Hm-f + Hat-f + Hdec. (2)

Here, Hm, Hat, and Hfield describe the free evolution of the
mechanics, the external atomic degrees of freedom, and the
field modes, respectively. Further, Hm-f represents the coupling
between the mechanical oscillator and the field modes, and
Hat-f the interaction between atoms and field modes. The last
term in Eq. (2) summarizes decoherence effects, which will be
introduced explicitly in Sec. III B.

The first term in Eq. (2) describes the harmonic vibrations
of the mechanical resonator and reads

Hm = p2
m

2M
+ Mω2

mz2
m

2
≡ h̄ωm

(
a†

mam + 1

2

)
, (3)

where zm, pm, and am are the position, momentum, and
annihilation operators, respectively. The second term in
Eq. (2) is given by Hat = ∑N

j=1 p2
j /2m and represents the

kinetic energy of the atoms, where the pj are the momenta
of the individual atoms. The free field Hamiltonian reads
Hfield = ∫

dω h̄ω b†ωbω, where the mode operators obey the

commutation relation [bω,b
†
ω′ ] = δ(ω − ω′), and all frequency

integrals are understood to run over a bandwidth 2θ around
the laser frequency ωL introduced below. In the spirit of a
“modes of the universe” approach we take care of the cavity
by explicitly including it in the mode functions uω(z), which
are associated with the bω and defined by writing the positive
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frequency parts of the fields as [54]

Ê(+)(z) = i

∫
dω Eωuω(z)bω, (4)

B̂(+)(z) = i

c

∫
dω Eωūω(z)bω. (5)

Here, Eω = √
h̄ω/πε0cA, ūω(z) = ∂zuω(z)/ik, and A is the

cross-sectional area of the modes. In the following we discuss
the particular case of a membrane-in-the-middle setup [16]
based on a single-sided cavity, as shown in Fig. 1(a). However,
other arrangements can be treated analogously by using
the appropriate mode functions. This is shown explicitly in
Appendix A for a setup with a movable end mirror instead of
the membrane.

We model the membrane and the semitransparent end
mirror of the cavity by dielectric slabs at positions 
 and L,
respectively [16,55]. The wave equation for the mode functions
thus has to be solved for the refractive index profile

n(z) =

⎧⎪⎨
⎪⎩

nm if z ∈ [
,
 + dm]

n if z ∈ [L,L + d]

1 otherwise,

(6)

which is illustrated in Fig. 1(b), and with the boundary
condition of a vanishing field at z = 0. The latter corresponds
to the limiting case of an ideal mirror at position z = 0. In the
above equation, thickness (d,dm) and refractive index (n,nm)
of each slab determine the associated amplitude reflection and
transmission coefficients, which read [56]

r = (n2 − 1) sin(kdn)

2in cos(kdn) + (1 + n2) sin(kdn)
, (7)

t = 2in

2in cos(kdn) + (1 + n2) sin(kdn)
, (8)

for the end mirror and analogous expressions hold for the
coefficients rm and tm of the membrane. As a result, the
properly normalized mode functions read

uω(z) = 1

2i

⎧⎪⎪⎨
⎪⎪⎩

Tω(eikz − e−ikz) if 0 < z < 


Tω

(
eikz

A∗
ω

− e−ikz

Aω

)
if 
 + dm < z < L

Tω

T ∗
ω
eikz − e−ikz if z > L + d,

(9)

where we have defined the coefficients

Aω = tme−ikdm

1 − rme2ik

≡ |Aω|eiϕ′

ω , (10)

Tω = Aω

te−ikd

1 − re2i(kL+ϕ′
ω)

≡ |Tω|eiϕω . (11)

Clearly, ϕω is the phase by which the standing wave pattern out-
side the cavity is shifted. In the limit of an almost transparent
membrane and a high reflectivity end mirror, given by rm → 0,
|r| → 1, the factor Tω represents the response of an empty
single-sided Fabry-Pérot cavity with well-defined resonance
frequencies ων = νπc/L, where ν = 1,2, . . . . Around the
latter, |Tω|2 can be approximated by a Lorentzian, i.e.,

|Tω|2
∣∣∣
ω≈ων

≈ 2F
π

κ2

κ2 + (ω − ων)2
. (12)

Here, κ = c(1 − |r|)/2L|r|1/2 is half of the cavity linewidth
andF = πc/2κL is the finesse, which we assume to be limited
by the semitransparent end mirror. For small displacements zm

the radiation pressure interaction between the membrane and
the field in Eq. (2) is given by [48,57]

Hm-f = ε0
(
n2

m − 1
)
A

2

[
Ê(−)(
 + dm)Ê(+)(
 + dm)

− Ê(−)(
)Ê(+)(
)
]
zm, (13)

which we will evaluate below.
Finally, Hat-f in Eq. (2) describes the dipole interaction of

the atoms with the light field. We model the atoms as two-level
systems of transition frequency ωeg, from which the frequency
ωL of the trapping laser is far detuned by δ = ωL − ωeg [see
inset in Fig. 1(a)]. We further anticipate that all relevant field
modes will lie within a bandwidth 2θ � |δ| around the laser
frequency, such that we can eliminate the upper level of the
atoms and describe the atom-field interaction by an ac-Stark
shift for atoms in the ground state

Hat-f = μ2

h̄δ

N∑
j=1

Ê(−)(zj )Ê(+)(zj ), (14)

where μ is the atomic dipole moment and the zj are the
positions of the atoms.

B. Linearization around laser drive

We now introduce the laser displayed in Fig. 1(a), which
provides the optical lattice for the atoms and mediates the
coupling between the atoms and the mechanical resonator. To
do so, we carry out the replacement for the field mode operators

bω → bω + δ(ω − ωL)αe−iωLt , (15)

where the amplitude α is related to the running wave power
P = h̄ωLα2/2π of the incident laser. In the following we
assume α � 1, which allows us to linearize the interaction
Hamiltonians Hm-f and Hat-f around the laser by only keeping
terms of order α and α2.

1. Membrane-field interaction

We start with the membrane-field interaction Hm-f by
inserting the field expansion in Eq. (4) together with the
mode functions given in Eq. (9) into Eq. (13), and then
apply the above replacement to the field operators. The
contribution ∝α2 yields a constant force on the membrane
that can be accounted for by a redefinition of its equilibrium
position. The contribution linear in α provides the relevant
interaction between mechanics and light field. For convenience
we introduce λl,ω = uω(
) and λr,ω = uω(
 + dm) for the mode
functions such that in a rotating frame with respect to the laser
frequency the linearized membrane-field interaction Hm-f is
given by the contribution linear in α:

Hm-f = ε0
(
n2

m − 1
)
Aα

2

∫
dω

[{
λ∗

r,ωL
λr,ω − λ∗

l,ωL
λl,ω

}
bω

− {
λ∗

r,ωλr,ωL − λ∗
l,ωλl,ωL

}
b†ω

]
EωEωLzm. (16)

At this point we need to make assumptions on the frequency
dependence of the mode functions uω(z) in order to proceed.
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FIG. 2. (Color online) Light fields involved in mediating the ef-
fective coupling. The laser-enhanced interactions (coupling constants
gm and gat) correspond to a conversion between laser photons ωL

(black) and sideband photons ωL ± ωat,m [blue (dark) and red (light)].
The response profile of the cavity is indicated by the green dashed
line and easily accommodates both sidebands in the bad cavity regime
discussed in the text.

We focus on the case of a small membrane reflection |rm|,
such that the cavity response is not altered significantly by the
presence of the membrane and assume that the laser is resonant
with a cavity mode. As motivated in Sec. III below, we further
assume a “bad cavity” regime, where the cavity half-linewidth
κ is much larger than the separation of the relevant sidebands
from the laser frequency ωL (see Fig. 2). In this case we may
approximate |Tω| ≈ |TωL |, such that uω(z) ≈ uωL (z), and by
using Eω ≈ EωL we obtain

Hm-f ≈ h̄gm

∫
dω√
2π

(bωei�ϕω + b†ωe−i�ϕω )(am + a†
m), (17)

with the phase difference �ϕω = ϕω − ϕωL and the membrane-
field coupling constant

gm =
√

π

2h̄
ε0

(
n2

m − 1
)
AαE2

ωL
lm

(∣∣λr,ωL

∣∣2 − ∣∣λl,ωL

∣∣2)
. (18)

In the limit kLdm → 0 of a thin membrane and small but
constant reflection |rm| ≈ kLdm(n2

m − 1)/2 we can write the
membrane-field coupling constant as

gm = αkLlm√
π

|rm| sin(2kL
)
∣∣TωL

∣∣2
(19)

= αkLlm√
π

|rm| 2F
π

, (20)

where we assumed sin(2kL
) = 1 in the second line. This
corresponds to placing the membrane on the slope of the
intracavity intensity, where the coupling is maximal. In
contrast, at points of zero intensity the coupling vanishes
and higher orders in zm would have to be considered [16].
However, these points will not be relevant in this work. Note
that the coupling in Eq. (20) is enhanced by the finesse
and that a similar calculation for a cavity with movable end
mirror yields exactly the same interaction in Eq. (17), but with
gm → g′

m = 2αkLlmF/π3/2, as detailed in Appendix A.

2. Atom-field interaction

The next step is the expansion of the ac-Stark shift
Hamiltonian Hat-f in powers of α. We insert Eq. (4) with

the mode functions of Eq. (9) into Eq. (14) and apply the
replacement, Eq. (15). The resulting contribution proportional
to α2 provides an optical lattice trap that is seen by each atom
and that is described by the potential V (zj ) = V0 sin2(kLzj +
ϕωL ) with lattice depth V0 = μ2E2

ωL
|α|2/h̄δ. The minima z̄j

for blue detuning (δ > 0) are determined by the condition
kLz̄j + ϕωL = νπ , where ν = 1,2, . . . . Combined with the
kinetic energy of the atoms in Hat a harmonic approximation
around the trap minima defines the atomic trap frequency ωat

via mω2
at/2 = V0k

2
L. The contribution linear in α yields the

interaction between light field and atomic ensemble. By apply-
ing a Lamb-Dicke expansion around the equilibrium positions
of the atoms z̄j , we obtain a linear interaction between the
field modes bω and the fluctuations around the equilibrium
position of each atom given by zj = lat(a

†
j + aj )/

√
2, where

[aj ,a
†
j ] = 1. In carrying out the remaining sum in Eq. (14) we

replace the z̄j by the center-of-mass position z̄ of the whole
ensemble, which is a good approximation if ωatLat/c � 1,
where Lat is the linear extension of the ensemble. For typical
experimental parameters this assumption is fulfilled in general
(see Sec. V). As a result, the light field only couples to the
atomic center-of-mass mode aat = ∑

j aj /
√

N according to

Hat-f = h̄gat

∫
dω√
2π

(bωei�ϕω + b†ωe−i�ϕω )(aat + a
†
at)

× sin [(k − kL)z̄ + �ϕω], (21)

where the atom-field coupling

gat = ωat

2αkLlat

√
π

√
N (22)

is enhanced by the square root of the number of atoms.

3. Final linearized Hamiltonian

In summary, the final linearized Hamiltonian contains
interactions between the field modes and the mechanical
and atomic center-of-mass motion. We neglect the constant
contribution in Eq. (3) and together with Eq. (17) and Eq. (21)
the linearized Hamiltonian in a frame rotating at the laser
frequency reads

Hlin =h̄ωma†
mam + h̄ωata

†
ataat +

∫
dω h̄�ω b†ωbω

+ h̄gm

∫
dω√
2π

(bω + b†ω)(am + a†
m)

+ h̄gat

∫
dω√
2π

(bω + b†ω)(aat + a
†
at) sin(�ωz̄/c +�ϕω).

(23)

Here, �ω = ω − ωL and we have absorbed the phase factors
e±i�ϕω appearing in Eqs. (17) and (21) into the field operators
bω. The effect of the cavity response Tω enters both via the
membrane-field coupling gm, which depends on |TωL |2, and
the phase ϕω = arg{Tω} contained in �ϕω.

III. EFFECTIVE DYNAMICS

We are interested in deriving the effective equations of
motion (EOMs) describing the coupling between the atoms and
the mechanical oscillator, which are obtained by eliminating
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the light field in a Born-Markov approximation. Motivated by
the experimental considerations presented below in Sec. V,
we focus in the following on the bad cavity regime, where
the cavity half-linewidth κ is much larger than the atomic
and mechanical frequency, i.e. κ � ωat,ωm as depicted in
Fig. 2. Also assuming the weak-coupling conditions ωat,ωm �
g2

at,g
2
m,gatgm we find that the resonant terms in Eq. (23) involve

field operators at the sideband frequencies ω = ωL ± ωat,m,
and we choose ωat ≈ ωm to ensure resonant interactions.
We further assume that the laser is resonant with a cavity
mode, i.e., ωL ≈ ων as shown in Fig. 2, which yields a high
intracavity intensity, but also ensures that both sidebands enter
the cavity equally well, i.e., that there is no spectral filtering.
In the described regime the cavity adiabatically follows the
mechanical oscillator and the atoms and needs not be treated
as an independent degree of freedom. The opposite “resolved
sideband” limit, where κ � ωm,ωat, would require a different
treatment and is not considered in this work. Finally, note
that the assumptions described here already entered in the
derivation of Eq. (23).

A. Elimination of the light field

We start by stating the complete hierarchy of time scales
for our calculation

δ � θ � 1

τ
,κ � ωat,ωm � g2

m,g2
at,gmgat, (24)

where τ = z̄/c is the propagation time between mechanics and
atomic ensemble. The leftmost inequality is needed to model
the atom-light interaction by an ac-Stark shift as described in
Sec. II A. We assume a broad spectrum of field modes such that
its bandwidth 2θ is large compared to all frequencies associ-
ated with the system evolution. Below, this allows us to distin-
guish the temporal order of the light field’s interactions with the
atoms and the mechanical resonator. Motivated by experimen-
tal parameters (see Sec. V), we assume that the retardation time
between the two systems is short compared to the system’s evo-
lution, i.e., 1/τ � ωat,ωm. Finally, we have the bad cavity as-
sumption as well as the weak-coupling assumptions ωat,ωm �
g2

at,g
2
m,gatgm as discussed in the previous paragraph.

To derive the effective EOMs for the mechanical oscillator
and the atoms we start with the Heisenberg EOMs for the
quadrature operators obtained from the linearized Hamiltonian
given in Eq. (23) (see Appendix B for details). We then
formally integrate the EOMs for the field quadratures. By
inserting the resulting expressions into the Heisenberg equa-
tions for mechanics and atoms and applying the Born-Markov
approximation, we obtain effective quantum Langevin equa-
tions (QLEs) with interactions retarded by a time τ̃ = τ + 1/κ .
The additional contribution 1/κ represents the retardation due
to the cavity and follows from the Taylor expansion of �ϕω

around the cavity resonance. From Eq. (24) we see that ωatτ̃ �
1, so that we can neglect these retardations in the following,
and thus obtain effective QLEs that are local in time:

ṗm = −ωmxm + gxat +
√

γ diff
m Fm(t), (25a)

ẋm = ωmpm, (25b)

ṗat = −ωatxat + gxm, (25c)

ẋat = ωatpat. (25d)

Here, Fm(t) and γ diff
m are defined below, and g = 2gatgm is

the effective coupling between the two systems. From the
above equations we can read off the corresponding effective
Hamiltonian

Heff = h̄ωma†
mam + h̄ωata

†
ataat − h̄gxmxat, (26)

where the effective coherent coupling g contains the desired
enhancements and is explicitly given by

g = 2gatgm = ωat
lm

lat
|rm|

√
N

2F
π

. (27)

The noise operator Fm(t) appearing in Eq. (25a) is
Hermitian and represents the radiation pressure noise origi-
nating from the intracavity light field. It is characterized by
the two-time correlation function

〈Fm(t)Fm(t ′)〉 = δθ (t − t ′), (28)

and the associated diffusion rate

γ diff
m = 2g2

m = 4P

Mc2

ωL

ωm
|rm|2

(
2F
π

)2

(29)

appearing in Eq. (25a). The expression δθ (t − t ′) denotes a
representation of the δ-function that is peaked on the time scale
1/θ . As explained in Appendix B this momentum diffusion rate
appears as a fundamental limitation in any optomechanical
system, and it was recently observed in an experiment [58].

B. Decoherence and imperfections

In the following we will discuss the main decoherence
channels of the mechanical oscillator and the atoms. In addition
to the radiation pressure noise derived above, these include
thermal decoherence due to finite support temperature and
absorption of laser photons in the membrane, as well as
light-induced momentum diffusion of the atoms.

The mechanical resonator is coupled to a support of
temperature T0, which leads to a finite linewidth γm due
to clamping losses, but also to thermal decoherence at rate
γmNm ≈ kBT0

h̄Qm
, where kB is the Boltzmann constant and

Qm = ωm/γm is the mechanical quality factor. In addition,
the membrane is also heated by absorbing photons from the
coupling laser. We model this heating effect by introducing an
effective bath temperature Teff = T0 + δT , where δT = Pabs

Kth
is

the temperature increase due to absorbed laser power Pabs

in the center of the membrane, representing a worst-case
estimate [45]. The thermal link Kth connects the center of
the membrane to the support and depends on the thermal
conductivity and the thickness of the membrane, as well as the
beam waist of the laser (see Appendix C). Further, the absorbed
power for a membrane sitting on a slope of the intracavity
intensity is given by Pabs = a2

m
4F
π

P , where a2
m = 1 − r2

m − t2
m

is the power absorption coefficient. The resulting effective bath
occupation is thus given by

Nm ≈ kBTeff

h̄ωm
= kB

h̄ωm

(
T0 + a2

m

Kth

4F
π

P

)
, (30)

as described in more detail in Appendix C.
Atoms in a three-dimensional (3D) standing wave undergo

diffusion processes. In our treatment these diffusion processes
drop out as an artifact of the 1D model, as already mentioned
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in Appendix B and in Ref. [48]. Therefore, we have to
add the proper momentum diffusion for atoms in a 3D
standing wave as, e.g., derived in Ref. [59] and given by
γ diff

at = (kLlat)2γseV0/h̄|δ|, where γse is the natural linewidth
of the transition.

Taking all of these noise sources into account, we can now
give the full QLEs describing the effective dynamics of the
system:

ȧm(t) = − i

h̄
[am,Heff] − γm

2
am(t) + i

√
γ diff

m

2
Fm(t) +√

γmξ (t),

(31)

ȧat(t) = − i

h̄
[aat,Heff] + i

√
γ diff

at

2
Fat(t). (32)

Here, the operator ξ (t) models thermal mechanical noise and
is characterized by [ξ (t),ξ †(t ′)] = δ(t − t ′) and 〈ξ †(t)ξ (t ′)〉 =
Nmδ(t − t ′) [54]. In analogy to Fm(t), the Hermitian noise
operator Fat(t) accounts for atomic diffusion and satisfies
〈Fat(t)Fat(t ′)〉 = δ(t − t ′).

Finally, we comment on photon loss on the optical path
between the membrane and the atoms. Such loss could be
modeled by placing a beam splitter of suitable reflectivity
between the two systems, such that the light fields bω are
coupled to additional vacuum modes. Integrating out the light
fields as above would then yield a reduced coherent coupling,
analogous to the situation treated in Refs. [48,51]. There, a
similar setup without cavity was discussed, and photon loss
through the membrane into the −z direction was included (cf.
Fig. 1).

IV. DISCUSSION AND APPLICATIONS

In the previous sections, we have reduced the description
of our setup to the effective QLEs (31) and (32), which feature
a coherent coupling between the atoms and the membrane as
described by the effective Hamiltonian (26). However, they
also contain a number of thermal and light-induced noise
sources, whose impact we discuss in the following for two
different scenarios. Our final goal is to establish interesting
regimes of operation for the proposed setup.

A. Coherent dynamics

As a first scenario we consider the observation of the
coherent dynamics induced by the interaction term in the
Hamiltonian (26). A signature of the coupling is the normal
mode splitting ∼g, which is visible in the fluctuation spectra
of the oscillators, as soon as it exceeds their amplitude decay
rates (see Ref. [60] for an analogous discussion in standard
optomechanics). Note that normal mode splitting also occurs
for classical oscillators and that it is visible also at high
temperatures [60]. This effect could be observed with an
additional weak probe laser coupled to the cavity that reads out
the membrane vibrations. Analyzing the frequency spectrum
of the reflected light would reveal the normal modes. In the
time domain, the same effect gives rise to an oscillatory
exchange of excitations between the membrane and the atomic
vibrations. These oscillations could be observed with the probe
laser after exciting the membrane with a piezo at frequency ωm.

10 50 100 500 1000 50001 104
0.001

0.01

0.1

1

10

100

FIG. 3. (Color online) Coherent dynamics: We plot the ratios
γ diff

at /g, γ diff
m /g, and γ th

m /g as a function of finesse to illustrate
the strong-coupling conditions in Eq. (34). One clearly observes a
tradeoff between mechanical heating (γ th

m ) and radiation pressure
noise (γ diff

m ). Parameters other than F are taken from Table I.

Ultimately, one would like to observe the effects of
the coherent coupling on a single quantum level. In this
context, the regime g � ωm ≈ ωat appears naturally, where
the effective interaction in Eq. (26) can be approximated by a
beam-splitter Hamiltonian according to

Heff ≈ h̄ωma†
mam + h̄ωata

†
ataat − h̄g

2
(a†

maat + a
†
atam), (33)

which enables the coherent transfer of single excitations
between the atoms and the membrane. Since all decoherence
mechanisms are detrimental in this case, the coupling has
to exceed all of the associated rates as expressed by the
strong-coupling conditions

g � γ diff
at ,γ diff

m ,γ th
m , (34)

where γ th
m = γmNm. In order to identify a regime where all of

these inequalities can be fulfilled, we plot in Fig. 3 the ratios
γ diff

at /g, γ diff
m /g, and γ th

m /g as a function of finesse, while fixing
all other system parameters to the values of Table I. Note that
g ∝ F , such that the relative importance γ diff

at /g of the atomic
decoherence decreases as 1/F , although γ diff

at is constant.
In contrast, the mechanical radiation pressure noise grows
quadratically with F , such that γ diff

m /g ∝ F . Finally, γ th
m /g

scales as 1/F for small finesses and then saturates due to the
laser-induced heating of the membrane for large finesses. The
plot shows that the atomic heating is irrelevant for the chosen
parameters (which is due to the chosen large detuning δ),

TABLE I. Optimized parameter set based on the considerations
in Secs. IV and V. The two leftmost columns show the mechanical
and atomic parameters, respectively, while the column on the right
displays the resulting coupling and decoherence rates.

ωm 2π × 400 kHz ωat 2π × 400 kHz g 214 kHz
M 3.6 × 10−11 kg ωL 2π × 384 THz γ diff

m 60 kHz
Qm 107 δ 2π × 1.0 GHz γ diff

at 8 kHz
T0 1.6 K m 1.44 × 10−25 kg γ th

m 73 kHz
Kth 4 × 10−7 W/K N 108 δT 4 K
a2

m 10−6 A 9.6 × 10−8 m2

rm 0.47 μ 1.5 × 10−29 C m
F 450 P 2.8 mW
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whereas there is a clear tradeoff between mechanical heating
and radiation pressure noise, with the latter dominating at
high finesses. To illustrate this, the plot also shows the sum
�/g of the above ratios, where � = γ diff

at + γ diff
m + γ th

m . While
�/g � 10 over the whole plot range, one clearly sees that
there is an optimal value of the finesse at F ≈ 300, where
�/g ≈ 1. Interestingly, the condition g � γ diff

m implies an
asymmetry in the coupling constants according to gat � gm

[cf. Eqs. (27) and (29)].
The above estimates show that observing normal mode

splitting, as well as quantum coherent dynamics, is possible
for present-day parameters. Going further, the interaction in
Eq. (33) can be the basis for a quantum state transfer protocol
between the two systems (see, e.g., Ref. [61]), which could
become feasible for a more optimized setup.

B. Sympathetic cooling

The versatility of the atoms allows one to switch on dissipa-
tion, e.g., by laser cooling their motion [51,52]. Together with
the resonant phonon exchange between the mechanics and the
atoms contained in the Hamiltonian in Eq. (26), this gives rise
to a sympathetic cooling effect for the membrane in analogy
to optomechanical cavity cooling. To describe this effect, we
model the laser cooling by introducing an amplitude decay
rate γ cool

at /2 for the atomic center-of-mass mode, such that the
QLE (32) is replaced by

ȧat(t) = − i

h̄
[aat,Heff] − γ cool

at

2
aat(t) + i

√
γ diff

at

2
Fat(t)

+
√

γ cool
at Fcool(t). (35)

Here, Fcool is a bosonic δ-correlated vacuum noise operator
with 〈Fcool(t)F

†
cool(t

′)〉 = δ(t − t ′) [54].
To gain insight into the cooling dynamics, we first consider

the adiabatic limit g � γ cool
at , where the atomic decay is so fast

that the atoms adiabatically follow the membrane. In this case,
we may eliminate the atoms and obtain an effective QLE for
the mechanical resonator, from which we calculate the EOM
for its mean occupation n = 〈a†

mam〉:

ṅ(t) = −
(

γm

2
+ �cool

2

)
[n(t) − nss]. (36)

Here, we have introduced the sympathetic cooling rate

�cool = g2

γ cool
at

1

1 + (
γ cool

at

/
4ωm

)2 , (37)

as well as the steady-state occupation of the mechanical
oscillator

nss ≈ γmNm + γ diff
m

/
2

γm + �cool
+

(
γ cool

at

4ωat

)2

+ γ diff
at

2γ cool
at

≡ nss,1 + nss,2 + nss,3. (38)

The nss,i represent the contributions due to mechanical heating,
“rotating” terms in the coupling (amaat, a

†
ma

†
at), and atomic

heating, respectively, and we display them in Fig. 4(a) as a
function of finesse for the parameters of Table I. It is clear that
the total occupation number is dominated by the mechanical
noise nss,1, which we thus discuss in detail in the following.
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FIG. 4. (Color online) Sympathetic cooling of the membrane:
Mechanical steady-state occupation number. (a) Approximate total
occupation number nss with its individual contributions in the
adiabatic limit [Eq. (38)] as a function of F and for γ cool

at = 240 kHz.
For comparison, the exact mechanical occupation nexact

ss , which results
from solving the QLEs (31) and (35), is depicted as a black line. (b)
Exact steady-state occupation number nexact

ss as a function of F and
γ cool

at . The top axis displays the corresponding coherent coupling g

and the contours indicate the associated occupation numbers. For
both plots the parameters from Table I have been used.

Note that we have �cool ∝ F2, while γ diff
m ∝ F2, and the laser-

induced contribution to Nm scales as F . For γm � �cool we
thus obtain

nss,1 ≈ 2γ cool
at ωL

Nω3
atmc2

P

(
1 + a

F

)
+ b

Nm

F2
, (39)

where a = πkBMc2a2
mγm/2h̄ωL|rm|2Kth and b =

γ cool
at Mπ2γm/4ω2

atm|rm|2N . Here, the three contributions are
due to light-induced diffusion, laser-induced heating, and
nonzero support temperature, respectively. With the prefactors
in the above expression fixed by the considerations of Sec. V,
we conclude that within the adiabatic limit it is advantageous
to work with high finesses.

While the above argument yields simple analytic expres-
sions that can be used to guide the search for optimal
parameters, it is only valid as long as g � γ cool

at . However,
to optimize the parameters we need a solution also valid
for larger coupling g, which can be obtained by solving the
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QLEs (31) and (35) exactly. For small finesses F < 500 and
fixed laser cooling rate the resulting mechanical occupation
number nexact

ss is displayed as a black line in Fig. 4(a), showing
that the deviations of the two approaches in this parameter
range are not too large. For higher finesses, a more complete
picture can be gained from Fig. 4(b), where we show the
full solution as a function of finesse (coupling) and cooling
rate. Clearly, increasing the finesse beyond a certain optimal
value does not yield lower occupation numbers, in contrast
to the tendency derived above. However, the optimal value
of the finesse roughly occurs for g ≈ γ cool

at , which is on the
border of the adiabatic regime. In particular, we find nexact

ss � 1
for F ≈ 450 and γ cool

at ≈ 220 kHz. We thus conclude that
ground-state cooling of the membrane is possible for realistic
experimental parameters.

Besides the formal similarity of our cooling scheme to
optomechanical cavity cooling, there are two important differ-
ences. First, the atomic dissipation is tunable, i.e., after cooling
the membrane close to its ground state one can switch off the
dissipation and then observe coherent dynamics between the
two systems (Sec. IV A). This is not the case in cavity optome-
chanics, where the cavity decay is fixed. Second, our scheme
does not require “resolved sideband” conditions for the cavity.
On the contrary, we want to operate in a regime where κ �
ωm,ωat, which greatly relaxes the experimental requirements
on the cavity. In this sense, the cooling scheme described here
is complementary to standard optomechanical cavity cooling.

V. EXPERIMENTAL REALIZATION

In order to experimentally realize this proposal, we intend
to use a micromechanical membrane in a Fabry-Pérot cavity
in the so-called membrane-in-the-middle geometry [16,55].
We will precool the membrane-cavity setup in a cryostat
where high mechanical quality factors up to 107 [62] as well
as low absorption of 10−6 in the near infrared [63] have
been observed. In particular, we aim to use a stoichiometric
SiN membrane of dimension 1 mm2 with a thickness of
dm = 50 nm. Such a membrane has an effective mass of
M = 3.6 × 10−11 kg and a fundamental mechanical mode near
ωm = 2π × 400 kHz.

On the atomic side, we consider using an ultracold gas of
87Rb atoms. Because the coupling g scales as

√
N , obtaining

large atom numbers is crucial to reaching the quantum coherent
regime and achieving ground-state sympathetic cooling. Atom
numbers as large as 3×108 have been prepared in the ground
state of a large volume 3D lattice using Raman sideband
cooling [52]. We envision using a far detuned two-dimensional
(2D) lattice to provide confinement in the transverse direction
in addition to the longitudinal lattice that provides the coupling
to the membrane. The resulting 3D lattice isolates the atoms
from each other, mitigating trap loss due to light-assisted
collisions [52]. Choosing blue detuning for the coupling lattice
reduces spontaneous photon scattering, allowing for reduced
laser detunings. This enables lower input powers to achieve the
same trap frequency so that larger values of the cavity finesse
can be obtained without causing too much absorption-induced
heating of the membrane.

Using the expressions for couplings and decoherence
processes (including membrane heating), one can find

experimental parameters that optimize the ratio of total
decoherence to coherent coupling or the ground-state
membrane occupation. In doing so, a clear trend towards
minimizing the atomic detuning emerges. However, such a
prediction neglects the multilevel structure of the atom. For a
sufficiently large lattice detuning and linear polarization, all
ground-state hyperfine mF levels experience the same trapping
potential [53]. At smaller detunings, the potential becomes
state dependent and optical pumping between different mF

levels induced by scattering of photons from the lattice light
will reduce the coupling to the membrane. These effects can
be reduced by tailoring the lattice polarization or choosing a
laser cooling technique that spin polarizes the atoms [52]. In
order to limit such effects, we consider δ/2π = 1 GHz as a
compromise. At the position of the atoms, we set the waist of
the beam to 350 μm, which corresponds to A = 9.6 × 10−8

m2. Fixing the value of δ and A fixes the value of the input
laser power so as to match the trap frequency to the mechanical
frequency of the membrane. This leaves F as the remaining
experimental parameter, which can be chosen by following
the discussion in Secs. IV A and IV B. As an example, we
provide an optimized parameter set for ωm/2π = 400 kHz
and δ/2π = 1 GHz in Table I. Values for N , Qm, and a2

m
have been measured previously [18,52,62,63]. The value of
Kth is more uncertain as it is related to the heat conductivity
of the membrane, which depends strongly on temperature,
material composition, and other factors. We have chosen a
value consistent with available literature (see Appendix C).

The inhomogeneous intensity profile of the lattice laser
beams will lead to some spread �ωat of atomic vibrational
frequencies across the lattice, leading to dephasing of the
atomic center-of-mass vibrations. This effect can be neglected
as long as �ωat � γ cool

at while laser cooling is applied, or
�ωat � g in the case of coherent dynamics. For the numbers
in Table I, both conditions correspond to �ωat/ωat � 0.1.

VI. CONCLUSIONS AND OUTLOOK

In this work, we have discussed a hybrid quantum system,
where a micromechanical membrane in a cavity is coupled
to the center-of-mass motion of a distant atomic ensemble.
Placing a cavity around the membrane enhances the coupling
compared to the setup demonstrated in Ref. [51], while
preserving the modularity. Apart from observing coherent
dynamics, the setup also enables bringing a cryogenically
precooled membrane close to its ground state by making use
of the tunable atomic dissipation.

In addition to cooling and manipulating micromechanical
membranes, the proposed setup could also be used for manip-
ulating other objects, such as levitated dielectric nanospheres
[64,65], or even molecules. Finally, coupling to the internal
atomic degrees of freedom [46,61] instead of the motional
ones could open additional possibilities for manipulation and
cooling, and might also enable even higher couplings.
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APPENDIX A: TREATMENT OF SUSPENDED END
MIRROR

For the sake of completeness we also treat the standard
optomechanical setup consisting of a Fabry-Pérot cavity with
a movable end mirror. The refractive index profile modeling
this setup is given by Eq. (6) with nm = 0, such that the mode
functions read

u′
ω(z) = 1

2i

{
T ′

ω(eikz − e−ikz) if 0 < z < L

T ′
ω

T
′∗
ω

eikz − e−ikz if z > L + d.
(A1)

Here, the cavity response is given by T ′
ω = Tω|nm=0 =

te−ikd/(1 − re2ikL), which for |r| → 1 has exactly the
Lorentzian resonances given in Eq. (12). For small displace-
ments of the end mirror, the coupling of the latter to the light
field can be modeled by the Hamiltonian

H ′
m-f = A

μ0
B̂(−)(0)B̂(+)(0)zm, (A2)

as obtained by evaluating Maxwell’s stress tensor for an ideal
mirror, which is assumed here for simplicity. Linearizing the
interaction Hamiltonian given in Eq. (A2) analogously to
Sec. II B1 provides us with the same expression as in the
case of the membrane given in Eq. (17), but with a modified
coupling constant g′

m = 2αkLlmF/π3/2.

APPENDIX B: ELIMINATION OF THE LIGHT FIELD

We briefly describe the elimination of the light field to
obtain effective EOMs for the atomic and mechanical degrees
of freedom. To this end we start from the Heisenberg EOMs
for the quadrature operators defined by xj = (a†

j + aj )/
√

2

and pj = i(a†
j − aj )/

√
2, where j = {m,at} as well as xω =

(b†ω + bω)/
√

2 and pω = i(b†ω − bω)/
√

2. From the linearized
Hamiltonian in Eq. (23) we obtain

ẋm = ωmpm, (B1)

ṗm = −ωmxm − 2gm

∫
dω√
2π

xω, (B2)

ẋat = ωatpat, (B3)

ṗat = −ωatxat − 2gat

∫
dω√
2π

xω sin[�ωτ + �ϕω], (B4)

ẋω = �ωpω, (B5)

ṗω = −�ωxω − 2gmxm − 2gatxat sin[�ωτ + �ϕω], (B6)

where again τ = z/c is the propagation time between the
two systems, �ω = ω − ωL and �ϕω = ϕω − ϕωL . Solving the
Heisenberg equations (B5) and (B6) for the field quadratures
xω yields

xω(t) = cos [�ω(t − t0)]xω(t0) + sin [�ω(t − t0)]pω(t0)

− 2
∫ t

t0

ds sin [�ω(t − s)]

×{gmxm(s) + gatxat(s) sin[�ωτ + �ϕω]}, (B7)

where the first line contains the initial conditions at some time
t0. Under the bad cavity assumption made in the main text, the
phase difference �ϕω varies slowly over the frequency range
of interest. Therefore, we may expand it to first order around
the laser frequency according to �ϕω≈ωL ≈ �ω/κ , where we
have assumed that the laser is resonant with a cavity resonance
and that |r| → 1. Note that these assumptions are equivalent
to the ones we made to obtain the Lorentzian in Eq. (12). In
the following we thus approximate

�ωτ + �ϕω ≈ �ωτ̃ , (B8)

with the modified retardation time τ̃ = τ + 1/κ consisting of
the propagation time between the two systems τ as well as the
cavity lifetime 1/κ .

To proceed, we eliminate the field quadratures xω by
inserting the solution in Eq. (B7) into Eq. (B2), which yields
the following EOM for the mechanics:

ṗm = −ωmxm(t) +
√

γ diff
m Fm(t)

− 2gmgat

∫ t

t0

ds xat(s)[δθ (t + τ̃ − s) − δθ (t − τ̃ − s)].

(B9)

Here, Fm(t) is a noise term defined below in Eq. (B12),
and δθ (t − s) = ∫ ωL+θ

ωL−θ
dω
2π

e−i�ω(t−s) is a representation of the
δ-function peaked on a time scale ∼1/θ . The diffusion rate of
the mechanical oscillator is defined as γ diff

m = 2g2
m. The EOMs

for the atomic quadrature operator pat are obtained analogously
by inserting Eq. (B7) into Eq. (B4).

Summarizing these results leads to the following QLEs with
retarded interactions:

ṗm(t) = −ωmxm(t) + gxat(t − τ̃ ) +
√

γ diff
m Fm(t), (B10)

ṗat(t) = −ωatxat(t) + gxm(t − τ̃ ) +
√

2gatFat(t), (B11)

where g = 2gatgm denotes the effective coupling between
the mechanical oscillator and the center-of-mass mode of
the atoms, and the atomic noise term Fat(t) is given below
in Eq. (B13). In the above equations we can neglect the
retardation in the coupling terms since the system operators
evolve with rates ωat,ωm, g much slower than τ̃−1 as indicated
by the hierarchy of time scales given in Eq. (24). Up to the
atomic noise discussed below we thus recover the EOMs given
in Eq. (25) of the main text.

The noise operators appearing in the above equations are
Hermitian and given by

Fm(t) = −
√

2
∫

dω√
2π

{cos [�ω(t − t0)]xω(t0)

+ sin [�ω(t − t0)]pω(t0)}, (B12)

Fat(t) = −
√

2
∫

dω√
2π

sin[�ωτ̃ ]{cos [�ω(t − t0)]xω(t0)

+ sin [�ω(t − t0)]pω(t0)}. (B13)

To obtain the corresponding correlation functions, we assume
that the field modes bω are initially in the vacuum state and
therefore obey 〈bω(t0)b†ω′ (t0)〉 = δ(ω − ω′).

For the correlation function of the mechanical noise term
we obtain 〈Fm(t)Fm(t ′)〉 = δθ (t − t ′). Note that in the absence
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of the atoms our setup is exactly the one considered in
standard cavity optomechanics, and we should thus find similar
decoherence mechanisms. In order to compare the above
diffusion rate γ diff

m to the optomechanical cooling literature

we can express it as γ diff
m ∝ (g0αc)2

κ
, where the intracavity

amplitude is given by αc = α/
√

2κ and the single photon
optomechanical coupling can be expressed as g0 = ∂ωc

∂zm
lm =

2|rm|ωclm/L [16]. When taking into account that we assumed
the bad cavity regime where κ � ωm and that we drive the
cavity on resonance, we obtain the same scaling of the diffusion
rate as presented in [66], which was recently observed in an
experiment [59].

The correlation function for the atomic noise term reads
〈Fat(t)Fat(t ′)〉 = − 1

4 [δθ (t + 2τ̃ − t ′) + δθ (t − 2τ̃ − t ′) −
2δθ (t − t ′)]. On the time scale ω−1

at of the atomic evolution the
three δ kicks in the correlation function average to zero due
to our assumption of small retardation times [ωatτ̃ � 1; see
Eq. (24)]. For this reason the atomic noise operator Fat(t) does
not occur in the QLEs in the main text in Eqs. (25). However,
this is an artifact of the 1D treatment, since atoms in a standing
wave are well known to undergo momentum diffusion [59].
This effect is introduced in Sec. III B.

APPENDIX C: MEMBRANE HEATING DUE TO LASER
ABSORPTION

In this section membrane heating due to laser absorption
is explicitly modeled. For a circular membrane of diameter l,
a simple analytical solution can be obtained and the case of
the square membrane can then be approximately described by
including a “geometric prefactor” of order unity. The results
of the analytical model are checked against a finite element
method (FEM) simulation.

Heat transport inside the SiN membrane is governed by the
heat equation for the temperature T :

ρcp

∂T

∂t
= κth�T + Qth, (C1)

where κth is the thermal conductivity, ρ is the mass density, cp

is the specific heat capacity of the membrane material, � is the
Laplace operator, and Qth is a source term describing the power
dissipated per unit volume. For a 2D temperature distribution
inside a thin membrane (thickness dm � l) in steady state
(∂T /∂t = 0), the heat equation reads

�T = 1

r

∂

∂r

(
r
∂T

∂r

)
+ 1

r2

∂

∂φ

(
∂T

∂φ

)
= −Qth/κth. (C2)

To obtain a simple analytic solution, the case of a circular mem-
brane placed in the center of the intracavity electric field mode
is considered. For simplicity, we assume that the power Pabs is
absorbed within a circle of area Am = πw2

m, where wm is the
waist (e−2 radius) of the Gaussian field mode at the position
of the membrane. Thus, Qth = Pabs/(Amdm). The absorbed
power for a membrane sitting on a slope of the intracavity
intensity standing wave is given by Pabs = a2

m2Pcirc = a2
m

4F
π

P

with the power absorption coefficient a2
m = 1 − r2

m − t2
m. Here,

Pcirc is the intracavity circulating running wave power defined

by Pcirc = 2F
π

P and P is the power of the incident laser. The
peak laser power for a standing wave inside the cavity is
given by Pst = 4Pcirc, such that we obtain half peak power
at the position of the membrane. Making use of the azimuthal
symmetry (∂T /∂φ = 0), the equation simplifies to

1

r

∂

∂r

(
r
∂T

∂r

)
=

{
−Qth/κth for 0 � r � wm

0 for wm < r � l/2.
(C3)

We solve this equation subject to the boundary condition
that the frame is at constant temperature, T (r = l/2) = T0,
yielding the temperature distribution

T (r) =
{

T0 + δT − Qth
4κth

r2 for 0 � r � wm

T0 + Qthw
2
m

2κth
ln

(
l

2r

)
for wm < r � l/2,

(C4)

where

δT = T (r = 0) − T0 = Qthw
2
m

2κth

[
ln

(
l

2wm

)
+ 1

2

]
(C5)

is the temperature increase of the membrane center compared
to the frame. The average membrane temperature, obtained by
integrating T (r) over the membrane, is

Tavg = T0 + Qthw
2
m

4κth

[
1 − 2

(
l

wm

)2]
. (C6)

The thermal link Kth connecting the membrane center to the
frame is defined as Kth = Pabs/δT . Using Pabs = Qthπw2

mdm,
we find

Kth = Pabs

δT
= 2πκthdm

ln
(

l
2wm

) + 1
2

. (C7)

The values for δT and Kth calculated above for a circular
membrane are confirmed by a FEM simulation. Running the
FEM simulation instead for a square membrane of side length
l, keeping all other parameters fixed, we obtain similar results
but with a geometric prefactor fg so that

δTsquare = fg δT and Kth,square = Kth/fg (C8)

are the corresponding quantities for the center of the square
membrane. We find that fg decreases from fg = 1.075 for
wm/l = 0.3 to fg = 1.017 for wm/l = 0.01. This shows
that the model of a circular membrane gives an excellent
approximation for the square membrane over the relevant
parameter range, well within the errors of other parameters
(such as κth). Note that in general wm/l < 0.3 to avoid clipping
of the beam at the membrane frame.

As shown in Eq. (C7), the thermal link Kth depends on
the membrane geometry, the beam waist, and the thermal
conductivity κth. Because κth depends strongly on temperature,
material composition, and other factors its value is not
precisely known. In [67], a room-temperature value of κth =
25–36 W K−1 m−1 is given for stoichiometric SiN grown by
chemical vapor deposition. We extrapolate this value to low
temperatures using a temperature dependence as in [68].
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