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Spin squeezing and Einstein-Podolsky-Rosen entanglement of two bimodal condensates in
state-dependent potentials
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We propose and analyze a scheme to entangle the collective spin states of two spatially separated bimodal
Bose-Einstein condensates. Using a four-mode approximation for the atomic field, we show that elastic collisions
in a state-dependent potential simultaneously create spin-squeezing in each condensate and entangle the collective
spins of the two condensates. We investigate mostly analytically the nonlocal quantum correlations that arise in
this system at short times and show that Einstein-Podolsky-Rosen (EPR) entanglement is generated between the
condensates. At long times we point out macroscopic entangled states and explain their structure. The scheme
can be implemented with condensates in state-dependent microwave potentials on an atom chip.
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I. INTRODUCTION

The internal state of multicomponent Bose-Einstein con-
densates offers intriguing possibilities for the creation and
investigation of many-particle entanglement. Recent experi-
ments have reported the creation of spin-squeezed states [1–3],
continuous-variable entanglement [4], and twin-atom states
[5,6]. In these experiments, the entanglement concerns the
atoms in a single cloud and is revealed in collective measure-
ments on the entire system. Alternatively, experiments have
explored spin-squeezing with single-component condensates
in a double-well potential [7,8], which can be mapped to
the two-component internal-state case. Here we consider a
different situation where entanglement is created between
the internal states of two spatially separate and individually
addressable two-component Bose-Einstein condensates. This
system offers the possibility to perform local manipulations
and measurements on each of the two spatially separate
subsystems, and to study the nonlocal quantum correlations
between them.

To describe the interaction-based entangling scheme, we
represent each bimodal condensate, labeled by a and b, by
a collective spin that is a sum of the effective spins 1/2
representing the internal degrees of freedom of each atom.

In a single two-component condensate, the entanglement
between the internal degrees of freedom of different atoms,
created by the interactions, results in quantum correlations
between two noncommuting components of the collective
spin. As a consequence, the fluctuations of well-chosen linear
combinations of these two components are reduced below the
quantum limit for independent atoms [9–11].

In the generalization that we propose, the entanglement
between atoms belonging to different ensembles results in

additional correlations between the collective spins �̂Sa and �̂Sb.
Fluctuations in a well-chosen quadrature, linear combination
of spin a and b components are then reduced, and information
about the spin in system b can be inferred from a measurement
in system a. We show, furthermore, that these correlations are
nonclassical and nonlocal in the sense of Einstein-Podolsky-

Rosen (EPR) [12]. As a physical realization we propose to
use controlled interactions in state-dependent potentials, for
example, in an optical trap or in a microwave trap on an atom
chip.

Other strategies to create EPR-type entanglement between
two Bose condensates have been proposed in [13,14]. We also
note that in room-temperature atomic vapor cells containing
�1012 atoms, entanglement between two collective spins has
been successfully created experimentally using the interaction
of the atoms with a pulse of light followed by a measurement
[15]. The Bose-condensed system we consider here contains a
few tens to a few thousand atoms. It offers exceptional coherent
control and measurement down to the single-atom level, giving
access to the discrete variables regime. Moreover, the fact that
the system is almost isolated in principle allows for creation
of highly entangled quantum states.

We explain the scheme we have in mind in Sec. II and the
theoretical model in Sec. III. Section IV is devoted to long
times, when macroscopic superpositions entangled between
the two ensembles occur, in correspondence with sharp dips
in the entropy of entanglement. In the last section, Sec. V,
we concentrate on short-time EPR-like quantum correlations.
To highlight the nonclassical nature of these correlations,
we use a criterion introduced in [16,17] which involves
the covariance matrix of the collective spins components.
Nonclassical correlations can be obtained for a broad range
of experimental parameters.

II. CONSIDERED SCHEME

The experimental situation we consider is depicted in Fig. 1.
It involves two Bose-Einstein condensates a and b in two
spatially separated potential wells. Initially the condensates
are in the ground state |0〉 of some internal transition |0〉 − |1〉.
In the case of 87Rb atoms one can take, for example, |0〉 =
|F = 1,mF = −1〉 and |1〉 = |F = 2,mF = 1〉. At time t = 0
an electromagnetic pulse prepares each atom in an equal
superposition of internal states |0〉 and |1〉. After this we
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FIG. 1. (Color online) Sequence allowing us to entangle con-
densate a (right well) and b (left well) via controlled collisional
interaction in state-dependent trapping potentials. The interaction
phase, where the squeezing and the correlations are created, is
depicted in the central panel.

imagine that while the traps for state |0〉 do not move, the
traps for state |1〉 are moved out so that the component |1〉 of
condensate b interacts with the component |0〉 of condensate
a. After a given interaction time, the traps for state |1〉 come
back to their initial position. Due to atomic interaction within
each component |0〉 and |1〉, the two condensates a and b

are spin-squeezed. Moreover, due to the crossed interaction
between |1〉b and |0〉a , the two condensates are entangled.
This scheme is a direct generalization of the “collisional gate”
scheme proposed in [18,19] for two individual atoms. It could
be implemented using optical potentials as in [18,20], or with
microwave potentials on an atom chip [1,21].

III. FOUR-MODE MODEL

A. Hamiltonian

Collisional interactions between cold atoms occur only in
s wave and can be modeled by a zero-range potential (see,
e.g., [22]). This leads to the interaction Hamiltonian

Ĥint = g01

∫
�̂

†
0�̂0�̂

†
1�̂1 +

∑
ε∈{0,1}

gεε

2

∫
�̂†

ε �̂
†
ε �̂ε�̂ε, (1)

where �̂0(1) is the field operator for atoms in internal state
0(1), and gεε′ is the coupling constant for contact interactions
between atoms in states ε and ε′, related to the s-wave
scattering length aεε′ of the interaction potential by gεε′ =
4πh̄2aεε′/m. We now expand each of the field operators �̂0

and �̂1 over the two spatial modes that will be macroscopically
populated:

�̂0 = φ0,a â0 + φ0,bb̂0, (2)

�̂1 = φ1,a â1 + φ1,bb̂1. (3)

Just after the coupling pulse one has φ1,a = φ0,a and φ1,b =
φ0,b. In the scheme we consider, during the interaction time

(central panel of Fig. 1), only φ1,b and φ0,a have a nonzero
overlap.

For the two condensates a and b we introduce the collective
spin operators �̂Sa and �̂Sb, respectively. We have, for example,
for a,

Ŝa
x = (â†

1â0 + â
†
1â0)/2,

Ŝa
y = (â†

1â0 − â
†
0â1)/2i, (4)

Ŝa
z = (â†

1â1 − â
†
0â0)/2,

and similarly for b. The nonlinearities leading to squeezing
and entanglement will be ruled by the parameters χε,σ and χab

that depend on the interaction constants, on the modal wave
functions, and their overlap:

h̄χε,σ = gεε

2

∫
|φε,σ |4, ε = 0,1, σ = a,b, (5)

h̄χab = g01

∫
|φ0,a|2|φ1,b|2. (6)

With these notations and for a system with initially N atoms
in each well, one can rewrite the interaction Hamiltonian as

Ĥint/h̄ =
∑
ε=0,1

χε,a

(
Ŝa

z

)2 +
∑
ε=0,1

χε,b

(
Ŝb

z

)2 − χabŜ
a
z Ŝb

z

+ χabN

2

(
Ŝb

z − Ŝa
z

) +
∑

σ=a,b

NŜσ
z (χ1,σ − χ0,σ ), (7)

where we have omitted a constant term. The first and second
term generate squeezing within the condensate a and b,
respectively. The third term is the one responsible for the
a − b entanglement. The linear terms in the second line (that
give a clock shift due to interactions in each condensate) can
in principle be removed with a π pulse that reverses all the
spins at half evolution time and we shall neglect them in
the following. In the particular case where g00 = g11 and all
the wave functions have the same shape, we set

χε,σ ≡ χ/2, ∀ε = 0,1, ∀σ = a,b (8)

and simplify the nonlinear part of the Hamiltonian to

Ĥ nl
int/h̄ = χ

(
Ŝa

z

)2 + χ
(
Ŝb

z

)2 − χabŜ
a
z Ŝb

z . (9)

B. State evolution

To compute the evolution of the state under this Hamil-
tonian, we expand it in the Fock basis. Immediately after the
pulse, the state is a product of two phase states |�(0)〉 = |φa =
0〉ph|φb = 0〉ph, where

|φa = φ〉ph ≡ 1√
2NN !

(e−iφ/2a
†
0 + eiφ/2a

†
1)N |0〉. (10)

We expand the phase states over Fock states

|�(0)〉 = 1

2NN !
(â†

0 + â
†
1)N (b̂†0 + b̂

†
1)N |0〉

= 1

2N

∑
na,nb

√(
N

na

)(
N

nb

)
|na,nb〉F, (11)
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where we have introduced the notation

|na,nb〉F ≡ (â†
1)na (â†

0)N−na (b̂†1)nb (b̂†0)N−nb

√
na! (N − na)! nb! (N − nb)!

|0〉. (12)

The Hamiltonian (9) is diagonal in the Fock basis so that
during evolution each Fock state simply acquires a phase factor
ϕ(na,nb):

|�(t)〉 = 1

2N

∑
na,nb

√(
N

na

)(
N

nb

)
e−itϕ(na,nb)|na,nb〉F. (13)

Introducing the eigenvalues of Ŝa(b)
z , δna(b) ≡ na(b) − N/2, we

can write the phase factor ϕ(na,nb) as

ϕ(na,nb) = −χabδnaδnb + χ
(
δn2

a + δn2
b

)
. (14)

IV. ENTROPY OF ENTANGLEMENT AND CONDITIONAL
MACROSCOPIC SUPERPOSITIONS

To quantify the entanglement between a and b condensates,
we use the entropy of entanglement that, for the pure state
we consider here, is simply the Von Neumann entropy of the
reduced density matrix of a or b:

S = −Tr(ρa log ρa), (15)

ρa = Trb|�〉〈�|. (16)

Using the expression (13) for the state, one can work out the
elements of the reduced density matrix of system a,

(ρa)na,n′
a

= 1

2N

√(
N

na

)(
N

n′
a

)
exp

[−itχ
(
δn2

a − δn′2
a

)]

× cosN

(
χabt

2
(na − n′

a)

)
. (17)

In Fig. 2 we show the evolution of the reduced density matrix
in the Fock basis for the particular case where χab/χ = 1,
corresponding to equal coupling constants g01 = g00 = g11

and perfect overlap of φ1,b and φ0,a . At long times larger
than 1/

√
Nχab, a striped pattern appears. According to the

analysis in [23], referring to a single BEC, such structure is
characteristic of a mixture of different phase states, the distance
between the stripes being inversely proportional to the number
of phase states involved. In the extreme case of the lower right
panel at time

tπ ≡ π/χab (18)

we note a remarkable checkerboard structure. This is a partic-
ular striped pattern suggesting that the state of condensate a is
a mixture of only two phase states differing by π (see Fig. 3
in [23]). As the total state is pure, the appearance of such a
mixture in the reduced density matrix indicates that (i) the
modes a and b are entangled and (ii) that, if expressed in the
phase state basis, the global state may be a relatively simple
superposition.

In Fig. 3(a) we plot the entropy of entanglement for
χab/χ = 1. Indeed, at time tπ = π/χab we find S � log(2),
as it should be for a mixture of two almost orthogonal
states. We note that also at many other rational fractions of
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FIG. 2. (Color online) Real part of the reduced density matrix in
the Fock basis (ρa)na,n′

a
at different times (in units of 1/χab) for χab =

χ and N = 100 atoms in each of the two ensembles. We start with
the density matrix of a phase state (11). The entanglement dynamics
damps out the off-diagonal coefficients after which striped patterns
appear. The interpretation of these patterns is given in the text. The
color scale ranges from red (largest positive), green, light blue (zero),
to dark blue (negative).

tπ , t = (2m/q)tπ , the entropy of entanglement shows dips
reaching the values S � log(q).

To understand the structure of the state at these times and
the behavior of the entropy it is useful to rewrite the state (13)
at time t in the form

|�(t)〉 = eitχabŜ
a
z Ŝb

z |�a,�b〉, (19)

where |�a,�b〉 is the initial state evolved with the squeezing
Hamiltonians:

|�a,�b〉 = e−iχt[(Ŝa
z )2+(Ŝb

z )2]|00〉ph. (20)

Here we exploit the shortened notation |αβ〉ph ≡ |φa =
α〉ph|φb = β〉ph. In each mode, the state evolves from |φ = 0〉ph

first into a squeezed state [9] and then through macroscopic
superpositions [24,25], eventually back to the phase state
|φ = π〉ph.

The prefactor eitχabŜ
a
z Ŝb

z in (19) entangles modes a and b,
with the following mechanism. If t is a rational fraction m/q

of 2tπ = 2π/χab, then the operator eitχabŜ
a
z Ŝb

z can be written
as a sum of q2 terms performing rotations in a and b modes
(see Appendix A). Then acting with this operator on the state
|�a,�b〉 one obtains a superposition of q2 states. If q <

√
N

and hence χabt > 1/
√

N , one can show that the reduced
density matrix is a mixture of q states, leading to an entropy
of entanglement S = log(q) (see Appendix A). In particular,
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FIG. 3. (Color online) Entropy of entanglement between ensembles a and b as a function of time for different values of the ratio χ/χab.
The number of atoms in a and b is even: N = 50. The insets show the total density matrix in phase state basis ρφa,φb

[see Eq. (25)] at times
χabt = π/3, 2π/3, π , 4π/3, and (2π − 1

2
√

N
). The phases φa , φb range in [π/2,5π/2]. We note the appearance of simple superpositions of

phase states.

at time t = tπ we obtain

χ = χab; |�(tπ )〉 = |ππ〉ph + |0π〉ph + |π0〉ph − |00〉ph

2
(21)

for N even and

χ = χab; |�(tπ )〉 = |ππ〉ph + i|0π〉ph + i|π0〉ph + |00〉ph

2
(22)

for N odd. For N even, after measuring the phase φ ∈ {0,π}
in the left well b, the state of the system a is then projected
onto a cat state |π〉ph − eiφ|0〉ph.

In Figs. 3(b) and 3(c) we consider two other cases:
χ/χab = 0, where only the a-b entangling interaction is
kept, and χ/χab = 0.5. The latter value of χ/χab could in
principle be obtained in optical potentials using a Feshbach
resonance, e.g., for 87Rb in states |0〉 = |F = 1,mF = 1〉,
and |1〉 = |F = 2,mF = −1〉 [2,26], or in a variation of our
scheme on an atom chip [27]. Remarkably, although the
entropy of entanglement remains the same [28], very different
macroscopic superpositions are obtained for different ratios

χ/χab. For example, for t = π/χab and N even, we get

χ = 0; |�(tπ )〉 = |00〉ph+|0π〉ph+|π0〉ph−|ππ〉ph

2
, (23)

χ = 1

2
χab; |�(tπ )〉 = |00〉ph − i|ππ〉ph√

2
. (24)

To visualize these states, in the insets of Fig. 3 we show the
full density matrix in the phase state basis

ρφa,φb
= 〈φaφb|ρ|φaφb〉, (25)

with the phases φa and φb ranging in [π/2,5π/2]. We point
out that a π/2 pulse in each condensate transforms the state
(24) in a a-b entangled Greenberger–Horne–Zeilinger-like
state |N,N〉F − i|0,0〉F with the notation (12). The entangled
macroscopic superpositions discussed here, although very
interesting from the quantum information point of view, would
probably be extremely challenging to observe. Indeed, any
source of decoherence, and in particular, particle losses, should
be avoided during the interaction time (typically a fraction of
a second) [29,30].

In the following, we focus on short time evolution χabt �
1/

√
N , in a regime in which we expect two-mode spin

squeezing and EPR correlations. In Fig. 3 this is the region
in which the entropy grows monotonically.
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V. SPIN SQUEEZING AND EPR ENTANGLEMENT

A. EPR entanglement criterion

We imagine a situation where Alice (system a) and Bob
(system b) can measure X̂a(b) or P̂a(b) on our bipartite system,
where X̂ and P̂ are two noncommuting observables. To
quantify the entanglement of the state between Alice and Bob,
we introduce the conditional variances [16,17,31,32]:


2
inf(X̂b) ≡ 〈(

X̂b − X̂inf
b

)2〉
,

(26)

2

inf(P̂b) ≡ 〈(
P̂b − P̂ inf

b

)2〉
,

where X̂inf
b is an operator making an affine estimation of Bob’s

result for a measurement of X̂b using Alice’s measurement of
X̂a (and similarly, for P̂ inf

b that estimates Bob’s result for P̂b

given Alice’s result for P̂a), i.e.,

X̂inf
b = q1 + q2X̂a, P̂ inf

b = q ′
1 + q ′

2P̂a. (27)

Initially, the a and b systems are uncorrelated and


2(X̂b − X̂inf
b

) = 
2X̂b + q2
2 
2X̂a. (28)

As the two subsystems become more and more entangled,
a measurement of X̂a yields more and more information on
X̂b [in the extreme case of a perfect correlation one would
get 
2(X̂b − X̂inf

b ) = 0]. Of course, the same picture can be
drawn for 
2(P̂b − P̂ inf

b ). In a local hidden variable theory the
correlations between Alice and Bob would come from some
hidden element of reality rather than from the nonlocality of
the quantum state. If we further ask that this theory is locally
compatible with quantum mechanics, then Bob has his own
quantum state that is not affected by Alice’s measurements on
her system. In this case X̂inf

b and P̂ inf
b should be considered as

numbers, as far as Bob is concerned, so that the Heisenberg
uncertainty principle constrains the product 
2

inf(X̂b)
2
inf(P̂b).

If this constraint is violated,


2
inf(X̂b)
2

inf(P̂b) < 1
4 |〈[X̂b,P̂b]〉|2, (29)

we have to admit that Alice’s measurement changes Bob’s
state, which is at the heart of the EPR paradox.

To achieve (29) in our situation, we use the best linear
estimation of X̂b using X̂a:

X̂inf
b = 〈X̂b〉 + covar(X̂a,X̂b)


2X̂a

(X̂a − 〈X̂a〉) (30)

where covar(X̂a,X̂b) = 〈X̂aX̂b〉 − 〈X̂a〉〈X̂b〉.

B. EPR entanglement in our system

For our system of two collective spins, we choose the
noncommuting variables

X̂a = Ŝa
α, P̂a = Ŝa

α+π/2,
(31)

X̂b = Ŝb
β, P̂b = Ŝb

β+π/2.

Here Ŝa
α and Ŝa

α+π/2 are spin operators obtained from Ŝa
y and

Ŝa
z by linear combinations

Ŝa
α = cos α Ŝa

y + sin α Ŝa
z ,

(32)
Ŝa

α+π/2 = − sin α Ŝa
y + cos α Ŝa

z

with a commutator [
Ŝa

α,Ŝa
α+π/2

] = iŜa
x (33)

and similarly for b.
Rewriting (29) using these operators yields the criterion

E2
EPR ≡ 4

(

2Ŝa

α
2Ŝb
β − covar2

(
Ŝa

α,Ŝb
β

))(

2Ŝa

α+π/2

2Ŝb

β+π/2 − covar2
(
Ŝa

α+π/2,Ŝ
b
β+π/2

))
(

2Ŝa

α
2Ŝa
α+π/2

)∣∣〈Ŝb
x

〉∣∣2 < 1. (34)

The quantum averages involved in the EPR criterion (34) can
be calculated analytically and are given in Appendix B. As
EEPR depends on the angles α and β, the achievement of
the inequality (34) in general requires a careful choice of the
quadratures.

In Fig. 4, top row, we show the evolution of EEPR for
optimized quadrature angles. In order to allow the comparison
of curves with different atom number, the time has been
rescaled using the scaling of the best squeezing time in the case
of spin squeezing in a single condensate [9]. In the bottom row
we present the angular dependence of EEPR at the best time
extracted from the top-row curves.

a. Case χ = 0. The quadrature optimization gives in this
case

α = 0, β = π/2, (35)

corresponding to X̂a = Ŝa
y and X̂b = Ŝb

z . The condition (35)
can be simply explained by integrating the equation of motion
of Ŝa

y for χabt � 1/
√

N and χt � 1/
√

N [33]:

Ŝa
y (t) = Ŝa

y (0) + Nt

(
χŜa

z − χab

2
Ŝb

z

)
. (36)

Indeed, for χ = 0 and

1/N � χabt � 1/
√

N
(37)

χt � 1/
√

N,

the component Ŝa
y becomes an “enlarged copy” of Ŝb

z [34].
As shown in Fig. 4(a), for times (37) the system beats

the classical limit and satisfies (34). Using parameters as in
the experiment of [1] (N = 103 and χab = 0.5 s−1), we find
that the maximal EPR entanglement is created for t � 20 ms,
well within reach of such experiments. We note that the
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FIG. 4. (Color online) Top row: Evolution of EEPR (34) for three different ratios χ/χab. The number of atoms in each ensemble is N = 50
(black dotted line), N = 500 (blue dashed line), or N = 5000 (red solid line). The quadrature angle α has been optimized numerically, while
β is fixed by the conditions (35), (38), (39). Bottom row: Dependence of EEPR on the angle α while β is still given by the conditions (35), (38),
(39). In these curves the time is fixed to the best time (minimum of EEPR) extracted from the top-row curves, although the time dependence is
smooth in the interesting region (37).

angular width over which (34) is satisfied decreases with the
atom number, 6◦ for N = 500 and 1◦ for N = 5000, which
is, however, still compatible with the experimental control
achieved in [1,35].

b. Case χ = χab. For χ 
= 0 the squeezing Hamiltonian
correlates Ŝb

y with Ŝb
z and hence with Ŝa

y . There is then a

priori a competition between the correlation Ŝa
y -Ŝb

y and the

correlation Ŝa
y -Ŝb

z . The numerical optimization gives

α = αopt(t), β = α + π/2, (38)

where αopt is a small angle approaching zero in the interesting
time domain (37) when N tends to infinity. The results for this
case are in Fig. 4(b). As in the case χ = 0, the angular width
over which (34) is satisfied decreases with N .

c. Case χ = 0.5χab. In this case the quadrature optimization
gives

α = β = αopt(t), (39)

where αopt is a small angle approaching zero in the domain
(37) when N tends to infinity [see Fig. 4(c)]. From Eq. (36)
we have in this case

Ŝa
y (t) − Ŝa

y (0) = −(
Ŝb

y (t) − Ŝb
y (0)

)
. (40)

As far as one can neglect the initial conditions, perfectly
correlated quadratures are obtained choosing X̂a = Ŝa

y and

X̂b = Ŝb
y (and thus X̂inf

b = −Ŝa
y ), corresponding to α = β = 0.

The case χ = 0.5χab is “special” in the sense that, if we ex-
pand EEPR for times (37), the leading order in (Nt) (order four)
is identically zero independently of the quadrature angles. This
explains the fact that both EEPR and the entanglement witness

Eent defined in (42) below take very small values in this case
although χ 
= 0 (see Figs. 4 and 6). Over the three cases we
have considered, χ = 0.5χab is also the only one in which
we find a solution, that, although different from the global
minimum of EEPR over the quadrature angle, has a smooth
angular dependence of EEPR. This is obtained choosing

α = αopt, β = −α, (41)

and the result is shown in Fig. 5.

C. Entanglement criterion

We defined the EPR-entanglement criterion in (29). Note
that an ordinary entanglement criterion between ensembles a

and b would be

E2
ent ≡ 
2

inf(X̂b)
2
inf(P̂b)


2(X̂b)
2(P̂b)
< 1. (42)

Indeed, for two uncorrelated systems cov(X̂a,X̂b) = 0,

2

inf(X̂b) = 
2(X̂b) and (42) becomes an equality. We note
that while the EPR-entanglement criterion (29) implies the
entanglement criterion (42), the converse is not true.

We find that very strong a-b correlations build up in our
system so that the inferred variances become very small
compared to the original variances. This holds for a wide
choice of quadrature angles. We show an example in Fig. 6 for
three values of the ratio χ/χab.
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FIG. 5. (Color online) Top: Evolution of EEPR for χ = 0.5χab

and quadratures chosen according to (41). The atom numbers
are the same as in Fig. 4. Bottom: At the best time, depen-
dence of EEPR on the angle α, while β is still given by the
conditions (41).

D. Squeezing versus EPR entanglement

Finally, one may ask whether the squeezing of each
BEC resulting from the χ (Ŝa

z )2 and χ (Ŝb
z )2 terms in the

Hamiltonian (9) is affected by the nonlocal entanglement
between condensates a and b.

In general, if one system is entangled with another system
that is not measured, the purity of its state is degraded and
so its quantum correlations. Based on this argument we thus
expect the spin squeezing in a to be deteriorated by the EPR
correlations, which is what we investigate in this subsection.

For the quadrature Ŝa
α introduced in Eq. (32) we define the

squeezing parameter ξα [36]:

ξα =
√

N
2Ŝa
α

|〈 �̂Sa〉|
. (43)

The system is squeezed if ξα < 1. In the time regime given

by (37), one has |〈 �̂Sa〉| � N/2, so that we can focus on 
2Ŝa
α .

From the definition of Ŝa
α (32) and Eq. (36) giving Ŝa

y (t), one

can compute the values of the quadrature angle for which 
2Ŝa
α

reaches its extrema

tan 2α =
〈
Ŝa

z Ŝa
y + Ŝa

y Ŝa
z

〉

2Ŝa

y − 
2Ŝa
z

= 4η

χabNt(1 + η2)
(44)

where we introduced

η = χab/2χ. (45)

(a) χ = 0

 0.001

 0.01

 0.1

 1

 0  2  4  6  8  10

E e
nt

 N2/3 χab t

 0.001

 0.01

 0.1

 1

-1.5 -1 -0.5  0  0.5  1  1.5

E e
nt

α = β - π/2

(b) χ = χab

 0.01

 0.1

 1

 0  2  4  6  8  10

E e
nt

 N2/3 χab t

 0.01

 0.1

 1

-1.5 -1 -0.5  0  0.5  1  1.5

E e
nt

α = β - π/2

(c) χ = 0.5χab

 0.001

 0.01

 0.1

 1

 0  5  10  15  20

E e
nt

 N2/3 χab t

 0.001

 0.01

 0.1

 1

-1.5 -1 -0.5  0  0.5  1  1.5

E e
nt

α = β

FIG. 6. (Color online) Top row: Evolution of the entanglement witness Eent (42) for three different ratios χ/χab. The number of atoms in
each ensemble is N = 50 (black dotted line), N = 500 (blue dashed line), and N = 5000 (red solid line). The quadrature angle α has been
optimized numerically, while β is fixed by the conditions (35), (38), (39). Bottom row: Dependence of Eent on the angle α while β is still given
by the conditions (35), (38), (39). In these curves the time is fixed to the best time (minimum of Eent) extracted from the top-row curves.
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(a) χ = 0.5χab
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FIG. 7. (Color online) Angular dependence of the squeezing
parameter ξα (43) (solid red line) together with EEPR (dashed blue
line, already shown in Fig. 4 bottom row) for two values of the
ratio η = χab/2χ . For both ξα and EEPR the time is fixed to the
time-minimizing EEPR, as in Fig. 4. The atom number is N = 5000
in each condensate. The horizontal red dotted line shows the analytical
value of the squeezing limit (47).

Note that from (37), tan 2α � 1. Linearizing equation (44)
we find that the minimum of 
2Ŝa

α is obtained for

αmin = −π/2 + 2η

Nχabt(1 + η2)
. (46)

Expanding 
2Ŝa
α in powers of 1/Nχabt we finally obtain

ξmin = η√
1 + η2

+ O

(
1

(Nχabt)2

)
. (47)

This equation shows that the nonlocal entanglement (η 
= 0)
introduces a squeezing limit that is independent of the particle
number. The limit (47) is shown as a dotted horizontal line
in Fig. 7. Physically, the limitation of the squeezing comes
from the fact that when χab 
= 0 (η 
= 0), the state of a after
tracing out the system b is not anymore a unique squeezed
state but rather a mixture of squeezed states rotated by an
angle depending on the state of b [37]. From Fig. 7 we remark
that although squeezing in each condensate is limited, it can,
however, coexist with EPR entanglement for experimentally
relevant parameters.

VI. CONCLUSION

We consider a scheme that allows us to entangle two
spatially separated atomic ensembles using collisional interac-
tions. The system we propose is a pair of bimodal condensates
in state-dependent traps as could be realized in an optical
trap or using microwave traps on an atom chip. Within a
four-mode approximation, we find a very rich physics. At
long evolution times, the system evolves into macroscopic
superpositions entangling the two ensembles a and b. We have
shown that these states take a simple form if expressed in
the phase states basis. Correspondingly, at some remarkable
times, the entanglement entropy takes simple values. At short
times the system exhibits EPR-like entanglement that could
be revealed by variance and covariance measurements on the
collective spin components. We compared criteria for EPR
entanglement and simple entanglement. We show that they
are both satisfied for a wide range of experimental parameters
in our system, the EPR entanglement being, however, more
demanding than simple entanglement because of its sensitivity
to the choice of quadratures. Finally, we proved that the best
achievable squeezing in each BEC is limited to a finite value
by the nonlocal entanglement between a and b.

We expect that the macroscopic superpositions that we
predict at long times will be very sensitive to decoherence,
while the nonlocal entanglement at short times might be more
accessible, as it is the case for spin squeezing in a single
ensemble [38]. Further studies including, in particular, the
spatial dynamics of the condensate wave functions [11] will
be done in order to confirm the conclusion of the present work
and to allow a detailed comparison with future experiments.
During the preparation of the present manuscript we became
aware of a preprint discussing ideas closely related to Sec. IV
of our paper [39].
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APPENDIX A: WHY log(q)?

Here we show how to decompose the operator
exp(i2πm/q Ŝa

z Ŝb
z ) into a sum of simple rotations in systems

a and b [see Eq. (A6)]. We will use this result to calculate the
global state and the entropy of entanglement at special times
χabt = 2πm/q.

We consider N even [40] and we introduce the notation

x ≡ exp (i2πm/q) . (A1)

First, we will prove the identity

q−1∑
p,r=0

x−(Ŝa
z −p)(Ŝb

z −r) = q. (A2)

It is sufficient to check that (A2) holds in the eigenbasis of
operators Ŝa

z and Ŝb
z . For N even, both Ŝa

z and Ŝb
z have integer

eigenvalues, which we denote δna and δnb, respectively. For
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each pair of eigenvalues δna , δnb we obtain

q−1∑
p,r=0

x−(δna−p)(δnb−r) =
q−1∑

p′,r ′=0

x−p′r ′
, (A3)

where we redefined the summation indices p′ ≡ (p − δna)
mod q and r ′ ≡ (r − δnb) mod q. However, from the properties
of the roots (of degree q) of unity, we know that

∑q−1
r ′=0 x−p′r ′ =

q δp′,0, where δi,j is the Kronecker δ. Hence, we have∑q−1
p′,r ′=0 x−p′r ′ = q, which proves the equation (A2).

To decompose exp(i2πm/qŜa
z Ŝb

z ) we additionally use the
relation

x−prxpŜb
z +rŜa

z = xŜa
z Ŝb

z x−(Ŝa
z −p)(Ŝb

z −r). (A4)

After summing both sides of Eq. (A4) over p,r =
0,1,2, . . . ,q − 1 we get

q−1∑
p,r=0

x−prxpŜb
z +rŜa

z = xŜa
z Ŝb

z

q−1∑
p,r=0

x−(Ŝa
z −p)(Ŝb

z −r)

(A.2)= xŜa
z Ŝb

z q. (A5)

Finally, dividing Eq. (A5) by q we obtain the desired
decomposition

e
i 2πm

q
Ŝa

z Ŝb
z = 1

q

q−1∑
p,r=0

x−pr e
i 2πm

q
p Ŝb

z e
i 2πm

q
rŜa

z . (A6)

The entangling rotation in a and b is thus rewritten as a
sum of simultaneous rotations by all multiples of an angle
2π/q in the a and b systems with coefficients 1

q
x−pr =

1
q

exp (−i2πm p r /q). Acting with this operator on a product
state |�a,�b〉 we get

e
i 2πm

q
Ŝa

z Ŝb
z |�a,�b〉 = 1

q

q−1∑
p,r=0

x−pre
i 2πm

q
(pŜa

z +rŜb
z )|�a,�b〉

= 1√
q

q−1∑
p=0

e
i 2πm

q
pŜa

z

∣∣�a,�
(p)
b

〉
,

where |�(p)
b 〉 = 1√

q

∑q−1
r=0 x−pre

i 2πm
q

rŜb
z |�b〉.

From now on we focus on “long” evolution times, where the
angle 1/q > 1/

√
N . Under this condition any phase state |φ〉ph

is almost orthogonal to its rotated version exp(i 2π
q

rŜb
z )|φ〉ph.

This is also the case for the evolved state |�b〉 = e−iχt(Ŝb
z )2 |0〉ph

considered in the main text:

〈�b|e−i 2π
q

rŜb
z |�b〉 = ph〈0|eiχt(Ŝb

z )2
e
−i 2π

q
rŜb

z e−iχt(Ŝb
z )2 |0〉ph

= ph〈0|e−i 2π
q

rŜb
z |0〉ph � δr,0. (A7)

From (A7) we see that states |�(p)
b 〉 form an almost orthonor-

mal basis:〈
�

(p′)
b

∣∣�(p)
b

〉 = 1

q
〈�b|

∑
r,r ′

xp′r ′−pre
i 2πm

q
(r−r ′)Ŝb

z |�b〉

= 1

q

∑
r

x−r(p−p′) = δp,p′ . (A8)

With this we can compute the reduced density matrix for
system a:

ρa = Trbρ =
∑

p

〈
�

(p)
b

∣∣ρ∣∣�(p)
b

〉

= 1

q

q−1∑
p=0

e
i 2π

q
pŜa

z |�a〉〈�a|e−i 2π
q

pŜa
z . (A9)

This mixed state indeed leads us to the value of the entropy

close to log(q) due to the orthogonality of states e
i 2π

q
pŜa

z |�a〉
for different p.

An important example is the case q = 2, which corresponds
to tπ = π

χab
. According to (A6) we can write

eiπŜa
z Ŝb

z = 1
2

(
1 + eiπŜa

z + eiπŜb
z − eiπ(Ŝb

z +Ŝa
z )
)
. (A10)

In the case χ = χab the state |�a,�b〉 is equal to |ππ〉ph. Thus
according to (A10) and (19) the global state of the system is

|�(tπ )〉 = eiπŜa
z Ŝb

z |ππ〉ph

= 1
2 (|ππ〉ph + |0π〉ph + |π0〉ph − |00〉ph).

In such a way one can reconstruct all the states shown in insets
of the Fig. 3, corresponding to different q and ratios χ/χab.

APPENDIX B: QUANTUM AVERAGES

The quantum averages used to compute the EPR criterion
are listed below:〈

Ŝa
x

〉 = N

2
cosN−1 (χt) cosN (χabt/2) ,〈

Ŝa
y

〉 = 0,
〈
Ŝa

z

〉 = 0,


2Ŝa
y = N

4

+ N (N − 1)

8
[1 − cosN (χabt) cosN−2(2χt)],


2Ŝa
z = N

4
,〈

Ŝa
z Ŝb

z

〉 = 0,

〈
Ŝa

y Ŝb
y

〉 = N2

8
{cos2N−2[(χ + χab/2t)]

− cos2N−2[(χ − χab/2)t]},〈
Ŝa

y Ŝb
z

〉 = −N2

4
sin(χabt/2) cosN−1(χabt/2) cosN−1(χt),

〈{
Ŝa

y ,Ŝa
z

}〉 = N (N − 1)

2
sin(χt) cosN (χabt/2) cosN−2(χt).

The variances and covariances of the generic quadratures
(31) are


2Ŝa
α = cos2 α
2Ŝa

y + sin2 α
2Ŝa
z

+ sin α cos α
〈{

Ŝa
y ,Ŝa

z

}〉
,


2Ŝb
β = cos2 β
2Ŝb

y + sin2 β
2Ŝb
z

+ sin β cos β
〈{

Ŝb
y ,Ŝ

b
z

}〉
,

covar
(
Ŝa

α,Ŝb
β

) = cos α cos β
〈
Ŝa

y Ŝb
y

〉
+ sin α cos β

〈
Ŝb

y Ŝ
a
z

〉 + sin β cos α
〈
Ŝa

y Ŝb
z

〉
.
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[1] M. Riedel, P. Böhi, Y. Li, T. Hänsch, A. Sinatra, and P. Treutlein,
Nature (London) 464, 1170 (2010).

[2] C. Gross, T. Zibold, E. Nicklas, J. Esteve, and M. Oberthaler,
Nature (London) 464, 1165 (2010).

[3] C. D. Hamley, C. S. Gerving, T. M. Hoang, E. M. Bookjans, and
M. S. Chapman, Nat. Phys. 8, 305 (2012).

[4] C. Gross, H. Strobel, E. Nicklas, T. Zibold, N. Bar-Gill,
G. Kurizki, and M. K. Oberthaler, Nature (London) 480, 219
(2011).
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z )2 + χabŜ
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z �→ Ŝa
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