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Sequential quantum-enhanced measurement with an atomic ensemble
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We propose a quantum-enhanced iterative (with K steps) measurement scheme based on an ensemble of
N two-level probes which asymptotically approaches the Heisenberg limit δK ∝ R−K/(K+1), where R is the
number of quantum resources. The protocol is inspired by Kitaev’s phase estimation algorithm and involves only
collective manipulation and measurement of the ensemble. The iterative procedure takes the shot-noise-limited
primary measurement with precision δ1 ∝ N−1/2 to increasingly precise results, δK ∝ N−K/2. We propose an
implementation of the algorithm for the measurement of a magnetic field using a two-component atomic cloud
of bosons.

DOI: 10.1103/PhysRevA.89.012118 PACS number(s): 03.65.Ta, 03.67.Ac, 06.20.−f

Introduction. Estimating an unknown parameter φ of a
quantum system usually involves a quantum probe prepared
in a known state ρ̂0 which, when brought into interaction with
the system, evolves to a new state ρ̂φ under the action of a
(so-called) quantum channel [1] Qφ , ρ̂0 → Qφ(ρ̂0) = ρ̂φ ; by
measuring a suitable observable of the probe in state ρ̂φ , one
can infer the value of φ. Given the fundamental uncertainty
of the quantum measurement, this information has a statistical
character. In order to improve the knowledge of φ, one needs to
repeat the measurement: using R � 1 independent quantum
probes ρ̂⊗R

0 → [Qφ(ρ̂0)]⊗R = ρ̂⊗R
φ leads to a

√
R increase in

the measurement precision δ0 → δ0/
√

R: this is the standard
quantum or shot-noise limit of measurement. Incidentally,
nature provides us with a better, albeit ultimate [2], Heisenberg
limit, δ0 →δ0/R, if one exploits some of the quantum resources
of the system under investigation. Exploiting such quantum
effects enhancing the measurement precision is the subject of
quantum metrology [1,3].

The quantum enhancement in the measurement precision
can be approached by using either parallel or sequential
strategies [4]. In a parallel strategy, the original ensemble
is divided into m subensembles with n probes, R = nm,
with each subensemble prepared in a (maximally) entangled
state, [ρ̂(n)

0 ]⊗m → [Qφ(ρ̂(n)
0 )]⊗m; this results (ideally) in a√

n enhancement of the precision compared to the standard
quantum limit, δ0 → δ0/

√
mn = δ0

√
m/R (see Refs. [5] for

the case of quantum interferometry and Refs. [6] for a general
quantum channel). Alternatively, in a sequential strategy,
instead of preparing entangled states, each of m separate
probes is passed n times through the same quantum channel,
ρ̂⊗m

0 → [Qn
φ(ρ̂0)]⊗m, resulting in the same enhancement in

precision [see Refs. [7]]. Roughly speaking, while parallel
strategies make use of entanglement, sequential strategies
exploit the coherent quantum dynamics as a resource in
order to enhance the measurement precision. While sequential
strategies do not require the creation of rather fragile entangled
states, they do demand longer (coherence) times to allow for
completion of the measurement.
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Recently, quantum measurement protocols were imple-
mented using two-component atomic ensembles with N

particles [8–10]. In Ref. [8], interatomic interactions were
used to create entangled, spin-squeezed states [11] of Bose-
Einstein condensates that allow one to go beyond the standard
quantum limit via a parallel strategy. Here, we suggest a
sequential strategy without entanglement, allowing us to reach
a given precision δ within K ∼ ln(δ1/δ)/ ln(

√
N ) steps, where

δ1 = δ0/
√

N is the uncertainty of the primary measurement
and N � 1 is the size of the ensemble. This requires an
∼√

N -fold longer evolution under the unknown external field
in each subsequent measurement step. Our approach resembles
Kitaev’s phase estimation algorithm [12] as well as algorithms
[13–15] based on the semiclassical Fourier transform [16];
such algorithms, making use of individual qubits, have been
successfully implemented recently [17]. Exploiting the large
ensemble of N individual probes, our scheme requires far
fewer steps to complete the measurement; furthermore, it
does not require separate access to the individual probes in
the ensemble and relies only on collective manipulations and
measurements.

Primary measurement. We wish to estimate the real
angle (or phase [18]) φ ∈ [−π,π ] in an unknown unitary
rotation Ûz[φ] = exp[−iσ̂zφ/2] given an ensemble (with
N � 1 probes) of spin-1/2 systems (qubits) and using
only collective unitary operations over the ensemble. We
use Ramsey interferometry as the primary measurement
and prepare all qubits in the σ̂x = 1 polarized state (|↑〉 +
|↓〉)/√2. Applying Ûz[φ] to the ensemble results in the
state [(e−iφ/2|↑〉 + e+iφ/2|↓〉)/√2]⊗N . A Ûy[−π/2] pulse
rotates the ensemble into the readout state [cos(φ/2)|↑〉 +
i sin(φ/2)|↓〉]⊗N , and measuring the total polarization Ŝz =
(1/N )

∑N
i=1 σ̂ (i)

z , one arrives at one of the possible outcomes
Sz = [N+ − N−]/N , with N+ ∈ {0, . . . ,N} and N− = N −
N+ the number of qubits observed in the σz = ±1 states. The
probability of observing a particular value S̃z (we denote by
X̃ a realized value of the random variable X) is given by the
Bernoulli distribution,

P(Sz = S̃z|φ) = N !

Ñ+!Ñ−!

(
cos2 φ

2

)Ñ+(
sin2 φ

2

)Ñ−
, (1)
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conditioned on the unknown value of φ. Starting with an
unbiased, homogeneous distribution P (φ) for the parameter φ

(no a priori knowledge of φ), the measurement of a particular
value of S̃z allows us to improve our statistical information
on φ. Changing variables φ → p = cos φ and making use
of Bayes’ theorem, the a posteriori probability distribution
P (p|S̃z) of p ∈ [−1,1] knowing the measured result S̃z is
enhanced by the factor P(Sz = S̃z|φ)/P(Sz); hence, after
proper normalization,

P (p|S̃z) = (N + 1)!

2Ñ+!Ñ−!

(
1 + p

2

)Ñ+(
1 − p

2

)Ñ−
. (2)

In the following, we consider the limit of large Ñ+,Ñ− �
1, where the distribution P (p|S̃z) has a sharp peak near S̃z;
expanding the exponent in exp[Ñ+ ln(1 + p) + Ñ−(1 − p)]
around the maximum, the distribution P (p|S̃z) then can be
replaced by the normal distribution

P (p|S̃z) = 1√
2πσ

exp

[
− (p − S̃z)2

2σ 2

]
, σ 2 = 1 − S̃2

z

N
, (3)

or, in another notation, p ∼ N (S̃z,σ
2). The overall result of the

above ensemble measurement is summarized in the following
statistical statement: Given the tolerance level β � 1, the
precision of the estimate p ≈ S̃z is given by

Prob[|p − S̃z| � g(β)σ ] = 1 − β, (4)

where g is determined by 1 − β = erf(g/
√

2) and erf(x) =
(1/

√
π )

∫ x

−x
dt e−t2

is the standard error function. Finally,
distribution (3) for p = cos φ provides us with the distribution
function for the angle φ:

P (φ|S̃z) = | sin φ|
2
√

2πσ
exp

[
− (cos φ − S̃z)2

2σ 2

]
. (5)

Complementary measurement. Since cos φ is even in φ, the
estimate for φ is distributed among two symmetric intervals,
|φ ± φ̃| � g/

√
N , with φ̃ = | arccos(S̃z)|. Expanding (5) near

φ ≈ ±φ̃, the distribution of φ is given by the sum of two
normal distributions,

φ ∼ 1

2

∑
α=±1

N
(
αφ̃,σ 2

1

)
, σ1 = 1√

N
, (6)

describing two equiprobable alternatives α = ±1 for the angle
φ to be located near αφ̃. In order to distinguish between the two
alternatives of the primary measurement, we perform a second
test by preparing the ensemble in the σy = +1 polarized state,
([|↑〉 + i|↓〉]/√2)⊗N ′

. Repeating the Ramsey measurement,
the second estimate for the parameter p′ = sin φ should result
in either +sinφ̃ or −sinφ̃, thus distinguishing the alternatives
+φ̃ and −φ̃ provided by the first measurement. Specifically,
given the probability of observing a qubit in the σz = ±1 state
conditioned on the result αφ̃ of the primary measurement,

P(σ̂z = ±1|αφ̃) = 1

2

∫
dφ

1 ± sin φ

2

∑
α=±1

N
(
αφ̃,σ 2

1

)

≈ [1 ± (α sin φ̃ − sin2 φ̃ /2N )]/2, (7)

we find that the total polarization of the complementary
ensemble is given by the sum of two normal distributions,

S ′
z ∼ ∑

α N (S ′
zα,σ ′2)/2, with mean and variance

S ′
zα ≈ α sin φ̃ − sin2 φ̃

2N
, σ ′2 ≈ cos2 φ̃

N ′ . (8)

To construct an unbiased classification rule we define the
regions E− = {S ′

z|S ′
z < S̄ ′

z} and E+ = {S ′
z|S ′

z > S̄ ′
z}, with the

boundary S̄ ′
z set by the condition

P(E−) ≡
∫ S̄ ′

z

−∞
dS ′

z P (S ′
z) = P(E+) = 1/2. (9)

In our symmetric situation, S̄ ′
z = (S ′

z− + S ′
z+)/2. Given a

measured S̃ ′
z we then assign the value α = 1 (α = −1)

whenever the event has been realized in E+ (E−). This
assignment is prone to a misclassification error, β ′ =
P(+|E−)P(E−) + P(−|E+)P(E+), where the conditional
probability P(+|E−) = P(E−|+)P(+)/P(E−) [and simi-
larly forP(−|E+)] follows from Bayes’ theorem; for our unbi-
ased classification rule, this reduces to P(α′|Eα) = P(Eα|α′).
The conditional probabilities P(Eα|α′) are easily obtained
from the distributions P(S ′

z|α) = N (S ′
zα,σ ′2), and we find that

β ′ = [1 − erf(| sin φ̃|/
√

2σ ′)]/2. (10)

Away from the immediate vicinity of φ̃ ≈ 0 (e.g., Ñ+ > 5)
and a typical number of probes N ∼ 103, choosing N ′ ∼ N

results in a negligible probability β ′ of misclassification.
n-fold rotation. Next, we analyze the sequential (n >

1-fold) application of the rotation Ûz[φ] in the Ramsey
measurement. Measuring the ensemble polarization Ŝz then
provides an estimate for the parameter φn = nφ. Given a
measured result S̃zn, the a posteriori distribution function for
the parameter φn is given by Eq. (5) with S̃z → S̃zn and φ →
φn, providing two Gaussian peaks at φ̃n = ±| arccos(S̃zn)|
of width ∝1/

√
N as a function of φn; the accompanying

complementary measurement again selects one alternative
α = ±1.

A further estimate of the angle φ is obtained by reading
the distribution function Eq. (5) with cos φ → cos(nφ) as a
function of φ. The periodicity of cos(nφ) provides n different
values of φ, all corresponding to the same value of cos(nφ).
The distribution function Pn(φ) for the angle φ then has
n peaks centered at φ̃nk ,

φ ∼ 1

n

n−1∑
k=0

N
(
φ̃nk,σ

2
n

)
, σn = σ1

n
, (11)

φ̃nk = φ̃n

n
+ 2π

k

n
, k = 0, . . . ,n − 1, (12)

each peak n times narrower than in the previous n = 1 case.
As a result, the n-fold measurement redistributes the original
uncertainty δ1 ∼ σ1 among n different equiprobable positions,
which we call the alternatives Ak . While this result does not
give us more a posteriori information on the position of φ

than the onefold measurement [as confirmed by the Shannon
entropy Hn = − ∫

dφ Pn(φ) ln Pn(φ) coinciding for all n], the
different distribution of the probability allows us to gain in
precision when combining the two measurements.

Beyond the shot-noise limit. In order to take advantage of the
n-fold measurement one has to identify the correct alternative
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FIG. 1. Intervals I1 and I<

1 centered around φ̃1. The peaks
belonging to alternatives Ak and Ak+1 are shown for the extreme
case where φ̃nk coincides with the left boundary and φ̃nk is on the
verge of leaving I<

1 as n decreases, 	n = 2π/n.

among the n equiprobable distributions [see Eq. (11)]. This
is done by combining the results of the 1- and n-fold
measurements. We define the interval I1 = {φ| |φ − φ̃1| �
g(β)σ1} centered around the result φ̃1 of the first measurement
(see Fig. 1), with β the tolerance level of the first measurement,
hence Prob[|φ − φ̃1| � g(β)σ1] = 1 − β [cf. Eq. (4)]. We call
the alternative Ak compatible with the first measurement if the
condition

Prob
[
φ ∈ I1|φ ∼ N

(
φ̃nk,σ

2
n

)]
� 1 − β (13)

is satisfied. In order to satisfy the original confidence level
in the second measurement, the maximum φ̃nk belonging to
Ak must be located within the reduced interval I<

1 = {φ| |φ −
φ̃1| � g(β)(σ1 − σn)} (see Fig. 1).

By construction, condition (13) is satisfied for at least one
k, irrespective of the value of n. Choosing a small n, the gain
in precision is small, hence we are interested in maximizing
the value of n. On the other hand, for large n, the number of
peaks compatible with Eq. (13) is greater than one and we
cannot select the proper alternative Ak . The optimal number
nopt can be determined by considering the situation where the
kth peak is located at the left boundary of I<

1 , φ̃nk = φ̃1 −
g(β)(σ1 − σn), while the next peak, φnk+1, is being pushed out
from I<

1 across the right boundary of I<

1 with decreasing n

(see Fig. 1). Obviously, when φ̃nk+1 = φ̃1 + g(β)(σ1 − σn) we
still have two equally probable alternatives generating a large
misclassification error β̃ = 1/2. The task, then, is to find the
largest possible n compatible with a prescribed error β̃ � 1.

After two measurements, a 1- and an n-fold, the a posteriori
distribution function for the angle φ is given by

P (φ|φ̃1,φ̃n) ∝
n−1∑
k=0

wk√
2π σ1,n

exp

[
− (φ − φ̃1,nk)2

2σ 2
1,n

]
, (14)

with φ̃1,nk = (φ̃1σ
2
n + φ̃nkσ

2
1 )/(σ 2

1 + σ 2
n ) ≈ φ̃nk , σ1,n =

σ1σn/

√
σ 2

1 + σ 2
n ≈ σn, and wk is the a posteriori probability

that the kth alternative has been realized,

wk = exp

[
− (φ̃1 − φ̃nk)2

2
(
σ 2

1 + σ 2
n

)
]
. (15)

For our arrangement φ̃nk = φ̃1 − g(β)(σ1 − σn) and φ̃nk+1 =
φ̃1 − g(β)(σ1 − σn) + 	n. Considering only these two peaks,
the misclassification error of the kth alternative is given
by β̃ = wk+1/(wk + wk+1). Solving for 	n, we obtain the
optimal number of rotations compatible with β̃, n � nopt =

�ν(β,β̃)/σ1� ≡ n2, with

ν = πg(β)

√
1 + 2 ln[(1 − β̃)/β̃]/g2(β) − 1

ln[(1 − β̃)/β̃]
. (16)

In the end, the precision estimate of two measurements with a
1-fold and an n2-fold rotation is given by

Prob[|φ − φ̃2| � g(β)σ2] = (1−β)(1−β̃), (17)

where φ̃2 is the measured and selected value of the pa-
rameter φ in the second step and the error bar is given
by σ2 ≡ σn2 = σ1/n2. Thus the second measurement im-
proves the precision by the large factor

√
Nν(β,β̃) � 1,

with ν(β,β̃) ≈ 0.96 for β = β̃ = 0.01 (for small β, β̃ � 1,
ν ≈ (π

√
2| ln β|)/| ln β̃|)[(1 + ln β̃/ ln β)1/2 − 1]. The K-fold

iteration of this procedure will further improve the precision
of the measurement.

The above measurement protocol involves two sources of
error: the estimation error β, for the angle φ to lie outside
the interval |φ − φ̃2| � g(β)σ2; and the classification error
β̃, for an incorrect choice of the alternative Ak . While an
estimation error can be ruled out in a subsequent step, this
is not the case for a classification error. Indeed, for K = 2
and assuming that we have correctly identified the peak
φ̃nk = φ̃2, let us suppose that |φ − φ̃2| > g(β)σ2, hence the
true value φ is outside the allowed range. Applying n3 = ν/σ2

rotations in the next step, none of the peaks φ̃n3k will belong
to the interval Ĩ2 defined through |φ − φ̃2| � g(β)(σ2 − σ3)
with probability 1 − β, signaling the error in one of the
previous steps. The classification error cannot be caught in
subsequent steps: Consider two alternative angles φ localized
either near (a) the kth peak, |φ − φ̃n2k| � g(β)σ2, or (b) the
next peak, |φ − (φ̃n2k + 2π/n2)| � g(β)σ2. Then applying
an n3-fold rotation, the random parameter φ3 = n3φ will
be localized within (a) |φ3 − n3φn2k| � g(β)ν or (b) |φ3 −
n3φn2k − 2πν

√
N | � g(β)ν. Since these intervals are largely

overlapping, hypotheses (a) and (b) cannot be distinguished.
Iterating the process K times, our measurement protocol

satisfies the confidence criterion

Prob[|φ − φ̃K | � g(β)σK ] = (1−β)(1−β̃)K−1, (18)

with σK = σ1[σ1/ν]K−1 ∼ N−K/2. To reach a given precision
δ one then needs to perform Kδ ∼ 1 + ln(σ1g/δ)/ ln(ν

√
N )

steps; at the same time, the overall confidence level decreases
exponentially, ∝exp(−β̃Kδ), with the number Kδ of steps.
Moreover, an estimation error, i.e., none of the peaks belongs
to the prescribed estimation interval, forces one to repeat the
entire procedure. However, in practice,

√
N ∼ 30 − 40 and

thus just a few steps are required to reach a good precision δ.
In counting the number of resources needed to reach

the estimate, (18), we choose as our basic unit the oper-
ation Ûz[φ] applied to a single qubit. The ith step in the
above procedure requires (for N qubits in the ensemble)
Ri = Nni = N (ν/σ1)i−1 = νi−1 N (i+1)/2 elementary opera-
tions. For ν/σ1 � 1, the entire K-step process then involves
R = ∑K

i=1 Ri ≈ RK operations. Expressing the prescribed
precision δK (≈gσK = gσ1[σ1/ν]K−1) through the number R
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of resources, we arrive at the scaling

δK = g(β)

[ν(β,β̃)]
K−1
K+1

1

R
K

K+1

∼ δ0

NK/2
, (19)

telling us that the Heisenberg limit is reached asymptotically at
large values of K . In an actual implementation with ultracold
atoms, the time needed to prepare the atomic ensemble is
typically a few seconds [8], and increasing the number of
rotations n does not significantly increase the overall duration
of the measurement. The standard statistical measurement
requires Kstd ∼ (δ0/

√
Nδ)2 preparations to reach a precision δ,

which is exponentially larger than the Kδ preparations required
with the present protocol, Kstd ∼ NKδ−2.

Dephasing. In addition to the unitary rotation Ûz[φ],
the qubits may experience a stochastic field ϕ(t), e.g.,
due to uncontrolled interactions between qubits generating
a different phase shift φ → φ + ∫

dt ϕ(t) for each qubit.
Averaging the single-qubit density matrix over ϕ(t), the of-
diagonal amplitudes ε exp(±iφ) are reduced by the factor ε =
exp(−
τ1/2) < 1, where we have assumed a Gaussian random
field 〈ϕ(t)ϕ(t ′)〉 = 
δ(t − t ′) and τ1 is the exposure time of
the primary measurement; the reduction in these amplitudes
after an n-fold rotation is given by εn. Measurement of the
ensemble polarization involves the parameter p = εn cos(nφ),
and the width in the a posteriori distribution function is
σn → σ1/(nεn). The smallest attainable width, σ1e ln(1/ε), is
reached after nc = −1/ ln ε = τc/τ1 steps, with τc = 2/
 the
coherence time.

Application. We analyze the use of our protocol to measure
a constant magnetic field B with an atomic ensemble, consid-
ering a transition with differential magnetic moment of order
μB, the Bohr magneton. Assuming the prior knowledge that
B < B+, we choose the interrogation time of the first Ramsey
sequence τ1 ∼ 2π�/μBB+ such that the accumulated phase
φ = μBBτ1/� does not exceed 2π . This primary measurement
results in a phase uncertainty of [δφ]1 = 1/

√
N , translating

to a precision of [	B]1 = �/μBτ1

√
N in the field. In the

following steps, the Ramsey time is increased as described
above. The longest Ramsey sequence of duration τc = ncτ1

provides us with a precision of [δφ]min = 1/nc

√
N for the

phase estimation and, thus, a field precision of [	B]min =
�/μBτc

√
N using K ∼ 1 + ln(τc/τ1)/ ln(

√
N ) steps.

In a realistic situation the above procedure is feasible for
small magnetic fields, since the duration τ1 of the first Ramsey
sequence cannot be arbitrarily small: A typical τ1 ∼ 10−6 s
corresponds to a field B+ ∼ 1 G. With a typical coherence
time τc ∼ 1 s and N ∼ 1000 atoms one arrives, after K = 5
steps, at a precision 	B ∼ 3 × 10−9 G. In order to measure
higher fields one can exploit the phase periodicity and subtract
an offset field. This requires prior knowledge that the field
lies in an interval [B−,B+]. In this case, given a minimal

time τ1, we choose some field B0 ∈ [B−,B+] that satisfies
the matching relation μBB0τ1/� = 2πM , with M the largest
possible integer. The procedure described above is then used
to measure the remaining small field b = B − B0. In an
experimental implementation, instead of applying an offset
field B0, the same effect can also be obtained by adjusting the
frequency of the local oscillator that drives the π/2 pulses of
the Ramsey sequence.

Conclusion. It is interesting to compare our ensemble-based
algorithm with Kitaev’s original phase estimation algorithm
involving individual qubits. In order to reach a prescribed
precision δ, the latter necessitates K ∼ ln(1/δ)/ ln 2 steps, a
factor (ln

√
N )/ ln 2 larger than the ensemble-based protocol.

For the Kitaev algorithm, the resources scale as δ ∼ ln R/R

(accounting for the fact that a final error probability β

necessitates a smaller value β/K for the individual step [12]),
which is better than our algebraic relation δ ∼ R−K/(K+1).
Still, it appears quite attractive to trade this slightly inferior
performance against the improved practicality of our algorithm
as compared to Kitaev’s original scheme: while the latter
requires the precise and individual control of qubits over many
steps, our ensemble-based algorithm necessitates fewer steps
and only collective manipulations and measurements on the
entire qubit ensemble.

The sequential strategy discussed here is particularly useful
in scanning probe measurements of a spatially varying field
[9]. If the field distribution is a priori unknown, the duration
of the initial Ramsey sequence has to be very short at each
pixel of the image. Our scheme allows us to optimally
adapt the sequence at each pixel to reach a fast reduction
in the measurement uncertainty. This dramatically reduces
the overall time required to record a picture with a given
precision. Finally, our ensemble-based sequential strategy
could also be combined with a parallel strategy using squeezed
Bose-Einstein condensates.

It is instructive to analyze the origin of the quantum
resources [4] exploited in the present measuring protocol.
Replacing the total spin observable Ŝz with a classical rotating
arrow, the same algorithm can be carried out. However, during
the dynamical evolution, the rotation angle of the classical
arrow will pick up a noise component growing with time ∝√

τ

due to the environmental coupling, resulting in the shot-noise
scaling δ ∝ 1/

√
τ . Cooling and isolating the system will lead

to a quantum arrow with unitary evolution; the error appears
only at the end of the measurement process and is independent
of the duration τ of the measurement itself. It is this coherent
evolution over increasingly longer time scales that is exploited
as a quantum resource in our protocol.
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