New jou r“al Of PhYSics Deutsche Physikalische Gesellschaft @ DPG I0P Institute of PhySiCS

The open access journal at the forefront of physics

PAPER « OPEN ACCESS Related content

- Opto-nanomechanics strongly coupled to

Long distance coupling of a quantum mechanical  Rydbera superatom: conerent versus

incoherent dynamics

oscillator to the internal states of an atomic Alexander Carmele, Berit Vogell, Kai

Stannigel et al.

ensem ble - Topical review: spins and mechanics in
diamond
Donghun Lee, Kenneth W Lee, Jeffrey V
To cite this article: B Vogell et al 2015 New J. Phys. 17 043044 Cady et al.

- Coherent control and feedback cooling in
a remotely coupled hybrid
atom-—optomechanical system
James S Bennett, Lars S Madsen, Mark
View the article online for updates and enhancements. Baker et al.

Recent citations

- Nonegquilibrium Quantum Phase Transition

in a Hybrid Atom-Optomechanical System
Niklas Mann et al

- Antibunching in an optomechanical
oscillator

H. Seok and E. M. Wright

- A millikelvin all-fiber cavity optomechanical
apparatus for merging with ultra-cold
atoms in a hybrid quantum system
H. Zhong et al

This content was downloaded from IP address 131.152.211.59 on 05/04/2018 at 09:45


https://doi.org/10.1088/1367-2630/17/4/043044
http://iopscience.iop.org/article/10.1088/1367-2630/16/6/063042
http://iopscience.iop.org/article/10.1088/1367-2630/16/6/063042
http://iopscience.iop.org/article/10.1088/1367-2630/16/6/063042
http://iopscience.iop.org/article/10.1088/2040-8986/aa52cd
http://iopscience.iop.org/article/10.1088/2040-8986/aa52cd
http://iopscience.iop.org/article/10.1088/1367-2630/16/8/083036
http://iopscience.iop.org/article/10.1088/1367-2630/16/8/083036
http://iopscience.iop.org/article/10.1088/1367-2630/16/8/083036
http://dx.doi.org/10.1103/PhysRevLett.120.063605
http://dx.doi.org/10.1103/PhysRevLett.120.063605
http://dx.doi.org/10.1103/PhysRevA.95.053844
http://dx.doi.org/10.1103/PhysRevA.95.053844
http://dx.doi.org/10.1063/1.4976497
http://dx.doi.org/10.1063/1.4976497
http://dx.doi.org/10.1063/1.4976497

10P Publishing

@ CrossMark

OPENACCESS

RECEIVED
17 December 2014

REVISED
25 February 2015

ACCEPTED FOR PUBLICATION
19 March 2015

PUBLISHED
22 April 2015

Content from this work
may be used under the
terms of the Creative
Commons Attribution 3.0
licence.

NewJ. Phys. 17 (2015) 043044 doi:10.1088/1367-2630/17/4/043044

H eutsche Physikalische Gesellscha Published in partnership
New journal Of PhYSlCS st hn(I)DPG with: Deutsche Physikalische
IOP Institute of Physics | Gesellschaft and the Institute

The open access journal at the forefront of physics _
of Physics

PAPER

Long distance coupling of a quantum mechanical oscillator to the
internal states of an atomic ensemble

B Vogell*, T Kampschulte’, M T Rakher’, A Faber’, P Treutlein’, K Hammerer* and P Zoller'~

! Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Technikerstrasse 21a, A-6020 Innsbruck,

Austria

Institute for Theoretical Physics, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria

Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland

Institute for Theoretical Physics and Institute for Gravitational Physics, Leibniz University Hannover, Callinstrasse 38, D-30167
Hannover, Germany

2

E-mail: berit.vogell@uibk.ac.at

Keywords: optomechanics, hybrid quantum system, atomic ensemble, internal state coupling

Any further distribution of Ab stract

this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

We propose and investigate a hybrid optomechanical system consisting of a micro-mechanical
oscillator coupled to the internal states of a distant ensemble of atoms. The interaction between the
systems is mediated by a light field which allows the coupling of the two systems in a modular way over
long distances. Coupling to internal degrees of freedom of atoms opens up the possibility to employ
high-frequency mechanical resonators in the MHz to GHz regime, such as optomechanical crystal
structures, and to benefit from the rich toolbox of quantum control over internal atomic states.
Previous schemes involving atomic motional states are rather limited in both of these aspects. We
derive a full quantum model for the effective coupling including the main sources of decoherence. As
an application we show that sympathetic ground-state cooling and strong coupling between the two
systems is possible.

1. Introduction

In this paper we describe an optical interface which provides a coherent quantum mechanical coupling between
anano-mechanical oscillator and the internal states of an atomic ensemble. The motivation for considering such
ahybrid quantum device should be seen in the context of the effort to build composite quantum systems, where
complementary advantages of the components are combined in a single, experimentally compatible setup. In
recent years various hybrid systems involving nano-mechanical oscillators have been investigated, including
mechanical oscillators coupled to solid-state spin systems [ 1-5], semiconductor quantum dots [6, 7],
superconducting devices [8, 9], as well as cold atoms [10—13]. In the context of nano-mechanics such hybrid
devices provide novel opportunities for cooling, detection and quantum control of vibrations in engineered
mechanical structures, with applications in precision sensing and fundamental tests of quantum physics
[14-17]. The nano-mechanics—atomic ensemble hybrid system developed in the present work takes advantage
of the well-developed atomic toolbox to manipulate atomic systems with lasers [18]. At the same time light as the
mediator of interactions provides the unique opportunity for coupling distant quantum systems, in the present
example a nano-mechanical oscillator in a cryogenic environment and an atomic ensemble in an cold atom
chamber.

Previous work on coupling nano-mechanical oscillators to atoms has focused mainly on coupling to the
motional degrees of freedom of the atoms, where the atoms act as a microscopic mechanical oscillator deep in the
quantum regime. In this context, various coupling mechanisms have been proposed [15, 19-21], and recently
first experimental implementations have been reported [10—13]. In particular, substantial sympathetic cooling
of amechanical oscillator by coupling it to the laser-cooled motion of an ensemble of ultracold atoms has been
observed [ 13] with an exciting prospect to achieve ground-state cooling [20]. In the quest to establish more
advanced levels of quantum control in such a hybrid system the coupling to the center-of-mass motion of atoms
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is challenged through two limitations: firstly, the requirement of resonant coupling limits the frequency of the
mechanical oscillator to the maximal trap frequency achievable in optical lattices, that is, to the sub-MHz
regime. Secondly, while motional states of individual atoms in optical lattices are under complete control, a
similar level of quantum control over the center-of-mass motion of atomic ensembles has yet to be established.

In the present work we will consider the coupling of a nano-mechanical oscillator to the internal states of the
atomic ensemble. Coupling to Zeeman or hyperfine ground states with frequencies in the MHz regime opens up
the possibility to use high-frequency mechanical oscillators, such as optomechanical crystal structures [22, 23],
which generically exhibit much larger radiation pressure coupling to light. Coupling to internal degrees of
freedom also benefits from the rich toolbox available for the manipulation, initialization and measurement of
the electronic atomic states with laser light. Moreover, internal states of atomic ensembles can realize effective
mechanical oscillators with unusual properties such as negative mass [24] or reduced quantum uncertainty
through spin-squeezing [25]. Alternatively, manipulation and state-selective detection on the level of single
quanta is possible using techniques of Rydberg blockade [26].

Here we show that long-distance coupling of a mechanical oscillator to the internal states of an atomic
ensemble is possible. We derive a full quantum mechanical theory for a specific experimentally relevant
geometry, including the derivation of the coherent coupling, the discussion of quantum noise and the complete
dynamics resulting from the quantum stochastic Schrédinger treatment. A quantized many-body treatment is
essential as the coupling and dissipation channels may be modified by collective effects that cannot be obtained
in semi-classical or single-particle theories. The dynamics of our coupled mechanical-atomic ensemble system
are exactly solvable, which allows an estimate of a parameter regime for sympathetic cooling and strong
coupling. Considering a photonic crystal ‘zipper cavity’ as the optomechanical device [22, 23], we obtain
significantly faster dynamics and better performance than in previous motional-state coupling schemes [20].
Related work suggesting long-distance coupling to internal levels has been reported in [27, 28]. Reference [27]
considers a cascaded coupling scheme, where the light propagates in a uni-directional fashion from the
mechanical system to the atomic ensemble, which allows to create entanglement between the systems
conditioned on a measurement. In contrast, we consider bi-directional, Hamiltonian coupling generated by
light propagating back and forth between the two systems. Reference [28] considers a coupling scheme based on
electromagnetically induced transparency, where the light is resonantly interacting with the atomic ensemble. In
our system, the light is detuned from atomic resonance, giving rise to an off-resonant two-photon interaction.
Moreover, we develop a fully quantum many body theory that also includes collective effects in the atom-light
interaction as well as in the dissipation channels. The paper is structured as follows: in section 2 we present the
full quantum model of the light-mediated coupling and the main decoherence processes. In section 3 we
propose different applications such as sympathetic cooling of the mechanical oscillator and strong atom-
oscillator coupling, while experimental parameters are discussed in section 3.5.

2.Model

We consider a system as shown in figure 1(a), where a micro-mechanical resonator (left) is coupled via the light
field to the internal states of a distant atomic ensemble. The atomic ensemble is trapped in an external optical
lattice and consists of N three-level atoms with a A-type level scheme as depicted in the inset of figure 1(a), where
the two ground states (|g), |s)) are separated by w,,, and the corresponding transitions to the excited state |e) are
polarization-dependent. Initially, the dominant population of the atoms is prepared in state |g). At the position
of the atoms the light field is, on average o _-polarized, since it is pumped by a o_-polarized laser at frequency w;
from the right with amplitude a. The latter is related to the running wave power P = Awy a*/2x of the laser,
which drives the transition |s) < |e) off-resonantly with detuning A = @ — w.

In a Michelson interferometer-like setup, a polarizing beamsplitter (PBS) splits the circularly polarized light
into linearly polarized light onarm A (z,) and B (). In arm A, the mechanical resonator is taken to be a perfect
mirror with effective mass M and resonance at frequency wy,, such that its zero-point fluctuations are given by
lm = J1/2Mwy, . The second arm of the Michelson interferometer-like setup, arm B in figure 1(a), is bounded
by a fixed mirror at position x = / and has equal length to arm A aslong as the mechanical resonator is in its
equilibrium position. This also ensures that the outgoing light has predominantly the same polarization as the
incoming light. Note, while we describe in the following the simple minded setup of a moving end-mirror as
depicted in figure 1(a), it is straight forward to use more sophisticated setups like a ‘membrane-in-the-middle’
configuration as displayed in figure 1 (b), or even a fully one-dimensional (1D) setup without the Michelson
interferometer, by making use of the birefringence of an optical cavity placed around the mechanical oscillator.

The coupling of the mechanical resonator to the atoms works via translating the phase shift caused by a
displacement of the mechanical resonator into a polarization rotation using the PBS. In case of resonance
Oy R W, the emergent o, -polarized light on arm Cat the blue sideband frequency w, = oy + wy, canthen
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Figure 1. (a) Micro-mechanical mirror coupled to the internal states of a distant atomic ensemble mediated by the light field (red).
The system is pumped by a o_-polarized laser at frequency ; and amplitude a. The Michelson-interferometer like setup with the
PBS is needed to translate the motion of the mechanical resonator into a polarization rotation at the position of the atoms. In the other
direction, transitions between the groundstates (|s), |g)) change the radiation pressure on the movable mirror. Inset: atomic level
scheme: |s) and |g) are separated by w,;. All atoms are initially prepared in |g), while the incoming laser coherently pumps the

|s) < |e) transition with a detuning A. (b) Extension of the setup: ‘membrane-in-the-middle’-setup [29], where the mechanical
resonator is placed inside a cavity to increase the coupling by its finesse 7. Similarly, any other optomechanical system with a single
sided cavity can be implemented.

induce a two-photon transition on the side of the atoms, i.e. |s) <> |g). Inreturn, if the atoms make a transition
between the two ground states, the radiation pressure on the mirror changes due to the additional emitted
photons of o, -polarization which have 50% chance to enter arm A.

In the following we derive a quantum-mechanical description for the coupling of the mechanical resonator
to the internal states of the atomic ensemble.

2.1.Mode functions
We start the quantum mechanical treatment by quantizing the field modes for the case where the mirror is in its
equilibrium position, such that the two arms A and B of the Michelson interferometer-like setup have equal
length. There are two sets of field modes representing the two possible polarizations incident from the right on
arm C. We choose the basis of circular o, -polarized light with the associated destruction operators being c,, (6_)
and d,, (o), that obey the commutation relations [c,, ¢;] = [d,, d};] = 6 (@ — @'). The PBS then
decomposes these circularly polarized modes into linearly polarized ones on arm A (z,) and B (7,.).

Taking into account the boundary conditions at both mirrors, the positive frequency parts of the electric
field are given by

onA: EW(z) = e, /da) 6},,%(6,,) + d,,,)sin(kz), (1)
onB: ED()) = e, /dw Sw%(cw — do)sin(ky), 2)
onC: EF(z) = e+E§f) (z) + e_ES(2), (3)
EM(z) = f dw &,c, sin(k2), (4)

EP () = [do £,d, sintke), (5)

where k = w/c, €, = \Jhw/mcey A . The beam cross-sectional area A is in principle a function of the position
and can therefore be different at the position of the atoms and the mechanical oscillator. We will use the same
letter A for the two cases as it is clear from the context what we refer to. Further, e; with i € {x, y} are the
polarization unit vectors for linear polarized light,and e, = F (e, +ie,)/ V2 the associated ones for circular
polarized light.
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2.2.Hamiltonian
The full system in a 1D model is described by the Hamiltonian

H=Hy+ Hyn_t + Hy—s, (6)

where Hy,_¢ describes the interaction between the light field and the mechanical oscillator and H,;_y is the
interaction of the atomic ensemble with the light field. H, contains the free evolution of the mechanics, the
energy of the atomic ground states and the field modes:

Hy = fza)ma;',am + fza)atZGS’s + Hgeds (7)
j

where the field mode Hamiltonian reads Hgeqg = 7 / dw w(c)c, + df d,,). Further, we set the energy of ground
state |¢) to zero and the splitting of the two ground states is given by w,, see inset of figure 1(a).

The interaction between the mirror and the light-field H,;,_¢ is modeled by the familiar radiation pressure
Hamiltonian, which can be derived from the Maxwell stress tensor. For reasons of simplicity, here we evaluate
the Maxwell stress tensor for an ideal metallic mirror. However, we note that a physical equivalent interaction
can also be derived for other mechanical systems such as a ‘membrane-in-the-middle’-configuration as depicted

in figure 1(b), cfsection 3.1 and [20]. The interaction Hamiltonian for the ideal metallic mirror reads

H, = ﬁBg—)(o)Bgﬂ(o)azm, (8)

Ho
where the displacement of the mirror is dz,,, = &, (ap, + ar‘; ) with mechanical annihilation (creation) operator
a'". The positive frequency part of the magnetic field on arm A is given by

BH(2) = e, f do %(c + do)cos(k2). 9)

On the side of the atoms we assume a level scheme as shown in the inset of figure 1(a), where each
polarization (o) couples to one arm of the A-transition. Considering the Hamiltonian for the A-system
interacting with the light field, we first eliminate the excited state |e) that is detuned by A with respect to the laser.
Here, the condition £2 = uaé&,, /h < |A|enters, where a denotes the laser amplitude which will be introduced
in equation (11). Subsequently, we obtain the effective interaction of the two ground states (|g), |s)) with the
light field

Hop b

Hy ¢ = nA

YIEL @ES (z))0d + ES () B (2)) 04 |
j

2
u _ .
SR 2 B 20
j

2
)7 _ .
+ EZE((J)(Z]-)E((L N(zj)el, (10)
j

where i, are the atomic dipole matrix elements for both transitions, z;is the position of the jth atom, and
oap = |a) (b|is the atomic transition operator. In equation (10) the firstline provides the relevant interaction,
whereas the last two lines denote the ac-Stark shifts for both ground states.

2.3. Linearization around the laser

We now introduce the 6 _-polarized laser displayed in figure 1(a), which mediates the coupling between the
mechanical resonator and the atoms. The o_-polarized light field then contains a coherent part plus
fluctuations. To include this, we move to a displaced picture by applying the following replacement for the field
modes,

Co = Cop+ ad(w — wp) et (11)

with the amplitude o and laser frequency w; . Assuming || > 1allows us to linearize the interactions Hy—¢
and H,,_¢ by only keeping contributions enhanced by a.

2.3.1. Mirror—field interaction

We start with the mirror—field interaction in equation (8) by inserting the magnetic field in equation (9), and
apply the above replacement to the associated field mode operators. The contribution & a? is taken care of by
redefining the equilibrium position of the mirror, since it yields only a constant force. The zeroth order in a is
neglected, while the linear order provides the relevant interaction, which is in an interaction picture with respect
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to (w.r.t.) Hgeq
HIR = hg, [e(0) +d(0) + ¢ (1) + dF (1) [ X (12

where we defined the mechanical quadrature as X,,, = (a, + aIL )//2 and the mirror-light coupling element

for &, = &,, reads
ki ém
g = = (13)
NE
Further, we defined the field mode operators as
wL+0 dw .
c(t) = / C,p e e—mL)t 14
( ) o—0 27 ( )
wr+0 dw .
A1) = / 22 4, e-ilw-anr, 15
w1—0 AV, 2 ( )

The associated commutation relations are given by
[c(n, )] =[d®), d') ] =60t = 1), (16)

where 8y (¢) is a representation of the 5-function of width o« 1/60. Here, we assume that all photons mediating the
relevant interaction processes have a frequency in a bandwidth 26 around the laser frequency @y, such that the
frequency scales satisfy the condition @y, 0, < 0 < @y.

2.3.2. Atom—field interaction

In order to linearize the atom—field interaction H,,_¢ we insert the electric field in equations (4) and (5) into
equation (10) and apply the displacement of the o_-field mode given in equation (11). The classical
contribution that is quadratic in a yields an optical lattice for atoms in the |s)-state given by

Htrap =n QOLZ Sil’l2<kLZj) US]; (17)
J

with frequency

ﬂz
QoL = ﬁoﬂeﬁn. (18)

Since this optical lattice traps only the |s)-state and the majority of population is in the |g)-state, an external
optical lattice that traps both states is necessary. In section 2.3.3 we specify the conditions for the external optical
lattice.

The relevant contribution linear in a provides us with the interaction between atoms and light field.
Therefore, we first transform into an interaction picture w.r.t. Hgeg and approximate &, &~ &,, aswellas
7 = 7j = zj/c, theretardation time due to the propagation of light between atoms and mechanical oscillator. The
latter approximation means the retardations across the atomic ensemble are neglected in the following. With
this, we can write’

H;irif — hgatZ[ {d*(t _ r)(l _ e—ziksz) +df(t + r)(l _ eZikLzJ')}agjs + h.c.], (19)
j

where we used equation (15) and introduced the atom—field coupling

_ /’l+/’t— 2 T
8at = A acy g . (20)

Interpreting equation (19) we see that every spin flip requires a two photon process of either absorbing a
o _-polarized laser photon at frequency w; and emitting a .. -polarized sideband photon at frequency w; + @y, or
vice versa. From equation (19) we see, that these two processes can either result in forwards scattering or in
backwards scattering and can occur at different times ¢ + 7 as displayed in figure 2.

We are interested in a description of the interaction between the light field and the collective spin excitation
of the atomic ensemble, i.e. a spin wave. In order to obtain such an interaction, we rewrite equation (19) in the
collective atomic excitation states given by

Note, that linearizing the last line in equation (10) also yields a contribution linear in a that is not resonant with the interaction. Further,
this contribution couples to the population of the |s)-state, which is weak in this case, and therefore we have neglected this contribution in
equation (19).
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Figure 2. Interactions between the atomic ensemble and the light field are given by Stokes scattering processes, i.e. conversion between
laser photons and sideband photons. Forward scattering processes (left column) are associated with the unmodulated spin wave Sy in
equation (21). On the other side, backward scattering processes (right column) result in the two modulated spin waves S.; in
equation (21).

1 . 1 S
So= =20k Sa=—= Dok, 21)
N £ N £

where S, corresponds to an unmodulated spin wave resulting from forwards scattering of the photon. Backwards
scattering of the photon leads to a space-dependent phase and therefore results in modulated collective spin
waves Sy1.

By using equation (21) the atom—field Hamiltonian reads

Hin = h«/ﬁgat[dT(t —0)(So = 521) + d'(r + ) (S0 — S4) + h.c.]. (22)

Although the collective modes in equation (21) are intuitive as they correspond to forward and backward
scattering, it is sufficient to describe the interaction with just two spin waves. Therefore, we introduce the
collective basis

Ssin = % ; sin(Zksz)agjs,
Sl—cos = % Z]: { 1-— cos(Zksz) }agjs. (23)

Equation (22) can then be expressed as

Hi =1 \/g 2 [Xd(t + D Sicos + Sleon +i(Sdn = Sin )}
+ Py(t+ 1) {i(Sf_COS - Sl—cos) = Ssin — SS];n}
+ Xa(t = D {Simcos + Sileos = 1[I = San )}
+ Pl = D {i(Slaas = Sieos) + Sn + 85} | (24)
where we introduced the light field quadratures
Xa={d(n) + &'} /V2
Py(1)=i{d'(r) — d(n)} /2. (25)
Note, equations (25) represents canonical operators fulfilling the associated commutation relations, i.e.

[Xa(8), i ()] =16 (t — t).

2.3.3. Positioning of the atoms
So far no assumptions on the trapping of the atomic ensemble were made. In contrast to previous proposals
[20], where the coupling laser also provided the optical lattice that traps the atomic ensemble, here we have only
aspace-dependent Stark shift of the |s)-state due to the coupling laser, cf equation (17).

In the following, we want to simplify the atom-light field interaction in equation (24), which couples to the
two spin waves of the atomic ensemble from equation (23), such that both spin waves reduce to the same
unmodulated spin wave Sy in equation (21). In order to do so, we introduce an optical lattice that traps both
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ground states of the atomic ensemble. This can be obtained by choosing an appropriate optical lattice localizing
the atoms at positions zjsuch that sin (2k; z;) = 1. This lattice can be generated with an additional laser that does
not take part in the coupling.

Since the Stark shift of the |s)-state in equation (17) has the same spatial dependence, it reduces to a constant
shift that can easily be compensated and is equal for all atoms.

By introducing the positioning as above only the unmodulated spin wave S, is relevant, since both
modulated spin waves S.; reduce to Sy. The quadratures of the unmodulated spin wave are given by

Xs0= (S() + SJ)/\/E)
Ro=i(S] - $) /2. (26)

Under the conditions that the dominant population of the atoms is occupying the ground state |g) and by
applying the Holstein—Primakoff approximation [30], the quadratures in equation (26) fulfil the canonical
commutation relations [X; o, Bo] ~ i.

2.4. Linearized Hamiltonian

Finally, we can summarize the resulting linearized Hamiltonian that contains both the coupling of the light field
to the mechanical resonator and the atomic ensemble, respectively. Including the statements of positioning the
atoms in section 2.3.3, the complete linearized Hamiltonian in an interaction picture w.r.t. Hgeq is given by

Hiin = Hojin + 123, [Xc(t) + Xd(t)]Xm
+ 1INg, [ Xa(t + 0 {Xoo + o} + Palt + 0 {Ro - X}
+ Xa(t = D Xo0 = Ro} + Palt = ) {Bo + Xoo} | (27)

where the o_-polarized light field quadrature X, (¢) is defined in analogy to equation (25).
The Hamiltonian Hy j;,, in equation (27) includes the free evolution of the mechanical and atomic system as
well as the optical lattice potential induced by the driving laser on the |s)-state

Q .
Hojin = ha)maﬂ;am + h(a)at + %)ZGSJS. (28)
j

From equation (27) we see that only the o, -field can mediate the interaction between the two systems. The
o_-field associated to the driving laser just couples to the mechanical oscillator and can therefore not mediate
interactions. However, after eliminating the light field the coupling of the mechanical oscillator to the o _-field
will result in a mechanical diffusion rate, as we will show in section 2.6.2. Moreover, spontaneous photon
scattering from the o_-field will lead to atomic diffusion (in a three-dimensional picture), see also section 2.6.2.

2.5. Phase shift of quantum field
The interaction part of the linearized Hamiltonian in equation (27) can be rewritten as

Hyjp = hﬁgm[xcm +—={Xa - Fd(ﬁ}]xm

1
7z
AN [{Rite -1 = B+

+ {Katt+9) + Pt = D}Ro], (29)

where we changed the basis for the o, -polarized quantum light field to
Xa(t) = {Xa(0) + Pa®)} /2, (30)
Py(t) = {=Xa(t) + Pa(0)} /2, (31)

with the commutator [X,; (¢), B; ()] = [X;(¢), Bi(t)] =16 (t = ).

From equation (29) we can derive an effective interaction between mechanical resonator and the Sy spin
mode of the atomic ensemble. However, the resulting Hamiltonian contains in addition to the coupling between
the ensemble and the mechanical resonator an undesirable contribution resulting from the backaction of the
atomic ensemble on itself, cf appendix A. Since we are interested in a coherent interaction between ensemble and
mechanical oscillator, we have to modify the setup slightly in order to remove this backaction term.

In the following, we describe in detail a method to get rid of the back action term. From equation (29) one
can clearly see, that the atoms (here for X; o) couple at different times ¢ + 7 to different quadratures of the light

7
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Figure 3. Modified setup with a phase shift on the o, -light. Below: change of quadrature basis due to the phase shift on o -light field at
different times t + 7 and t.

field. However, to obtain a resonant interaction between atoms and mechanics mediated by the light field, we
need a slightly different coupling. In particular, the cascaded interaction we consider here has three time steps,
i.e.t + 7,tand t — 7. Ateach time step a different subsystem interacts with the light field by coupling to one of
its quadratures. In our case we have the following sequence of subsystems: atoms, mechanical oscillator, atoms.
We aim to achieve a situation, where in the first time step the atoms couple to (for instance) B; (¢ + 7). Then, in
the next time step, the mechanical oscillator has to couple to the canonical conjugated quadrature X, () to ‘read
out’ the information of the previous interaction. Finally in the last time step, the atoms again have to couple to
the Py (t — t)-quadrature of the light field to obtain the informations about the interaction in the previous time
step. From this argument it is also clear, that the atoms can not exchange information via the light field with
themselves, since the both subsystems (i.e. atoms at times ¢ + 7) couple to the same light field quadrature.

To obtain the kind of interaction described above, we have to introduce a phase shift on the light quadratures
of the o -polarized light. In particular, we need a clockwise rotation of z/4. Physically, this correspondsto a
time retardation of 7/4 of the standing o -polarized wave on arm C, cf figure 3. Thus, when the amplitude of the
o _-polarized standing wave is maximal, the amplitude of the o, -polarized standing wave vanishes.

As displayed in figure 3 we therefore introduce a phase shift on the light quadratures of the o, -polarized
light. The classical o_-polarized light field is not affected by the phase shift and hence the basis stays the same for
all time. Experimentally one could realize this phase shift by using a Faraday rotator, which puts both, a spatial
and a time retardation onto the o, -polarized field. However, the corresponding spatial shift of the o, -field can
be absorbed into the definition of the collective spin wave modes, and is not discussed here further.

In order to incorporate the time retardation phase shift into our formalism, we have to consider that at the
different positions of the subsystems in our setup the basis of the quantum light field got rotated and therefore
we couple to different bases in the Hamiltonian. Interactions with spatially separated subsystems can directly be
translated into retardations in the Hamiltonian, which is a feature of the 1 D-treatment. Hence, we have that
different times in the Hamiltonians correspond to different subsystems and thus a different basis.

In particular we assume the following, cf figure 3. First, we start from the atomic ensemble at time ¢ + 7,
where the Hamiltonian is not altered so far. At the position of the mirror we passed once through the Faraday
rotator, and thereby the quadratures of the o, -field got rotated by 7/4, such that we couple at time tat the mirror
to the new quadratures X; and P as defined in figure 3. In the second step, at time t — 7 another z/4-rotation is
applied to the quantum field and therefore the interaction between light field and atomic ensemble couples to a
third quadrature basis X and P}, cffigure 3. The complete linearized Hamiltonian in an interaction picture w.
r.t. Hgepg associated with the modified setup is then given by the modified interaction and the free evolution
Hyjin as defined in equation (28)
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Hmod = HO,lin + hﬁgm[xc (t) + Xd(t)]Xm
+ h\/ZNgat[—Fd(t + T)XS,() + Yd(t + T)PS,()
+ Pyt = 9)X50 = Xalt = D)Ryo]. (32)

Here, we expressed the primed bases (X}, P;) and (XJ, P;) in the original basis (X, ;) by using the
transformations displayed in figure 3. As we will show in the following section, after eliminating the light field
Hi,0q provides an effective interaction between the mechanical mode and the collective spin excitation without a
backaction of the atoms on themselves.

2.6. Effective dynamics

We are interested in deriving the effective dynamics of the coupling between the micro-mechanical resonator
and the collective excitation of the atomic ensemble. Therefore, we make an adiabatic elimination of the field
modes in a Born—-Markov approximation that accounts for the cascaded character of the system and is done in
the framework of quantum stochastic Schrodinger equation (QSSE) by using similar methods asin [19]. In
particular, we consider the hierarchy of times scales

1 1 1 1
— < - < —, —, (33)
[ 0 Wm  Wat
which implies that phase shifts due to the propagation of the light between atoms and mechanical system are
small. The main results are presented in the following section and details of the calculation can be found in
appendix B.

2.6.1. Effective master equation
Whereas the detailed calculations can be found in appendix B, we provide the resulting effective master
equation:

p = [ Hat. 0] + 37 D[ X o (34

where the Lindblad contribution is defined by D [x]p = xpx — % {x'x, p}and the mechanical diffusion rate by

;/Iiiff = Zgé. (35)

The effective Hamiltonian reads
Het = hwma,, h Qo J — hg  XmX 36
off = NOmayam + Wat + T Zo'ss — NG AmAs0- (36)

j
with effective coupling rate
[N 2,Q_

geff = 2\/Ngatgm = ? +A kam- (37)

where we introduced the Rabi frequencies £, = a&,, . /h.

2.6.2. Decoherence

In the previous section we concluded with a master equation for the effectively coupled mechanical oscillator-
atomic ensemble system. As a result of the adiabatic elimination of the light field we already obtained the light-
induced diffusion of the mechanical resonator yrfliff due to the coupling to the field in form of the Lindblad term
in equation (34).

The light-induced diffusion of the atomic ensemble drops out due to the 1 D-treatment as well as the phase
shifts that we introduced in section 2.5, and therefore we have to add the proper diffusion of the atomic
ensemble.

The atomic decoherence rate ya‘iiff is the decoherence rate of a single collective excitation in the ensemble, i.e.
ifone atom is in the |s) state. This is equivalent to the single-atom photon scattering rate

diff @’

T B9
where I is the spontaneous emission rate and €2 is the Rabi frequency of the strong ¢ _-drive which can induce
off-resonant scattering on transitions between |s) and the excited state |e), while |¢) is a dark state.

In addition to the light-induced diffusion, the system also faces thermal decoherence due to the mechanical
oscillator coupling to its support, which is given by the coupling to a thermal bath at finite temperature Ty:

9
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p= _%[Hefb p|+ 73 D[ X |p + 137 D[ Ss0 ]
+ym(Nm+ I)D[am]p +ymNmD[a,L]p, (39)

. To+ To) . .
where the thermal decoherence rate is given by y, N, = % with Boltzmann constant kg, mechanical

quality factor Qn = @n/¥,,, and effective temperature Tef of the mechanical system due to laser heating [20].

3. Discussion and applications

In the previous sections, we reduced the description of our cascaded quantum system to an effective master
equation in equation (39) that describes the coherent coupling between mechanical resonator and atomic
ensemble. However, as discussed in section 2.6.2 these coherent dynamics are accompanied by several noise
sources, such as thermal or light-induced diffusion. Our goal is to investigate regimes that yield interesting
applications. In the following, we first discuss the possibility to extend the calculations to various
optomechanical systems. Further, we present estimates on the coherent dynamics as well as sympathetic cooling.
Then, we compare the coupling to internal states and the coupling to the motional atomic states, see [20], and
finally we present experimental parameters and realizations we have in mind.

3.1. Generic optomechanical system
As we have already shown in previous work [20], the scaling with the mechanical-light coupling g _ is rather
generic and also applies to optomechanical configurations with e.g. high finesse cavities. In fact we can apply the
presented theoretical model to any single-sided optomechanical system by choosing the corresponding
mechanical-light coupling g from which one can infer the mechanical diffusion rate ynfiff in equation (35) and
the effective coupling rate g in equation (37).

The most general mechanical-light coupling rate in equation (13) for a single-sided optomechanical cavity

system is given by

o 20 %

= , 40
gm ﬁ K ( )

where g, is the general optomechanical single-photon coupling strength and « the cavity line-width. With this
one could for instance calculate the mechanical-light coupling for a photonic-crystal optomechanical cavity
(‘zipper cavity’) [22, 23], see section 3.5.

In the lines of our previous work in [20] another interesting optomechanical system is the extension of the
above derivations for the ideal metallic mirror onto a ‘membrane-in-the-middle’-setup as visualized in
figure 1(b). The resulting membrane-light coupling is then enhanced by the finesse F of the cavity

k14
Lo g 1ol 22, (41)
V3

g:im - N2

where t,, is the reflectivity of the membrane®.

3.2. Coherent dynamics

As afirst application we consider the observation of coherent dynamics between the mechanical oscillator and
the spin wave excitation in the atomic ensemble. The coherent dynamics are induced by the interaction term
equation (36). In particular, we are interested in a regime, where the splitting of the two atomic ground states is
resonant with the mechanical frequency, i.e. @, + Q01/2 % @, aswell as wy, > g . In that case we can apply a
rotating wave approximation to equation (36) such that we obtain a beamsplitter-type interaction Hamiltonian

Her = —hg 4 (a,LSs,o + Sgoam). (42)

This interaction allows for coherent transfer of single excitations between the spin wave and the mechanical
mode. However, as discussed in section 2.6.2 the system suffers from various dissipation and diffusion processes.
Hence for coherent transfer of single excitations it is required that the coupling rate exceeds all decoherence
rates, which is expressed by the strong coupling conditions

diff diff h
it > Vot > T > Yo (43)

where 7™ = 5, Nj,. Further, we define the total mechanical decoherence rate ' = y + 4,

6 Equation (41) differs by a factor of 2 from equation (27) in [20] due to a typo in equation (20) in [20]. Note also that we use a different
definition of the zero-point fluctuations compared to [20].

10



10P Publishing

NewJ. Phys. 17 (2015) 043044 B Vogell et al

Atomic area density p, (1/m?)

0 1.2x10"%4.9%x10"° 1.1x10"® 2.x10"® 3.1x10"6 4.4x 1016
4T T T T T T T
10

Co m—

100 yeﬁ'/'}’;ltiﬁ.

tot
g Geft/ Yin
\
o

Strong Coupling Parameter

0 1x107  2x107  3x107  4x10” 5x107  6x107
Effective Coupling g, (H2)

Figure 4. Strong coupling conditions: we plot the ratios g, / 7otand g g / yﬂ‘:iff as functions of the effective coupling g . by varying the

atomic area density p, (upper axis) as a benchmark for the strong coupling conditions for both, the mechanical and atomic

decoherence. Further, the cooperativity Cy for coherent dynamics is displayed as a function of the effective coupling. Parameters are
taken from table 1.

By examining equation (37) we find that for a given optomechanical system coupled to the atomic ensemble
the coupling rate can be optimized by varying the detuning, the laser power or the beam waist of the laser.
However, all of these parameters also alter the decoherence rates ' and ya‘:iff significantly. Thus, identifying
optimal values for beam waist, detuning and laser power results in a tradeoff between optimization of the strong
coupling conditions on one side, and fulfilling the conditions for adiabatically eliminating the excited state |e) as
well as keeping the Stark shift of the |s) as low as possible.

In order to show the fulfilment of the strong coupling conditions and therefore the ability to observe
coherent dynamics, we display in figure 4 the ratios g, / 7o aswellas g ¢ / y;t“ff as functions of the effective
coupling, where all other parameters are fixed by the optimized values in table 1.

We can clearly see that the larger the effective coupling the better the fulfilment of the strong coupling
conditions. The upper bound for increasing the effective coupling is given by the rotating wave approximation
that was made to obtain the Hamiltonian in equation (42), which is only valid in the limit where g,;; < @p,.
Note, since we fixed the values for beam waist, laser power and detuning to the parameters in table 1, increasing
the effective coupling g in figure 4 corresponds in principle to varying the density of the atomic ensemble.
From figure 4 we therefore conclude that the atomic density should be as large as possible with the limit that the
rotating wave approximation is still valid. In table 1 we assume a reasonable high atomic density.

As asecond figure of merit for strong coupling we define the cooperativity of the system as

2
A8y

0= )
tot, diff
Tm Yat

(44)

and plot it as a function of the effective coupling in figure 4. We observe that for a wide range of values of the
effective coupling g, the cooperativity is much larger than one for fixed values of beam waist, laser power and
detuning. Interestingly, there is a range where Cy > 1but the strong coupling condition g / 7 < 1.The
cooperativity as defined in equation (44) is only a figure of merit for the coherent dynamics, where for the case of
cooling the mechanical oscillator we have to define a modified cooperativity as we will discuss in the following
section.

Concluding we find that the strong coupling conditions in equation (43) are fulfilled in a wide range of
parameters. In table 2 we summarize the coupling and decoherence rates as well as the cooperativity for a set of
optimized parameters given in table 1. These resulting strong coupling conditions are an improvement
considering the coupling to the atomic motion, where the effective coupling and the decoherence rates were on
the same order [20].

3.3. Sympathetic cooling

The sophisticated atomic toolbox allows among other features to engineer dissipation. In particular we can
prepare the atomic ensemble near to the ground state by repumping its population. Together with coherent
interactions between atomic ensemble and membrane we obtain a sympathetic cooling effect on the membrane
as was recently shown for coupling to the motional atomic degrees of freedom [13].

11
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Table 1. Set of optimized parameters based on the considerations in sections 3 and 3.5. The first half
of the table describes the mechanical parameters for the optomechanical system of a zipper-cavity
[22,23], where ATy/P describes the absorption heating due to the laser. The second half of the table
displays the atomic and laser parameters, where y is the transition dipole matrix element of the
D1-line of 8’Rb. The values for the detuning 4, the laser power Pand the beam waist w, are optimized
within the given boundary conditions, and further details are given in section 3.5.

W 27 X 10 MHz
M 4x 107 kg
Qum 10°

8o 27 X 1.83 MHz
Ty 4K

ATy/P 12KmW™!

K 27 X 4 GHz
oL 27 X 378 THz
A 27 X 15 MHz
N 8.5 x 10°

wo 30 ym

u 2.54 x 107% Cm
r 27 X 5.75 MHz
P 25%x 1077 W

Table 2. Resulting coupling and decoherence rates as well as cooperativity after choosing optimal
values for beam waist, laser power and detuning.

Lot 27 X 2.5 MHz
Co 124.4

yo 27 x 541 kHz
y 27 X 143 kHz
A 27 X 844 kHz

In section 2.6.2 we discussed the decoherence processes of the system. In particular we introduced the
atomic dissipation due to the strong coupling laser, which results already in a cooling or better re-pumping
process of the ensemble, cf equation (39). As a solid blue curve in figure 5(a) we display the mechanical steady
state occupation resulting from the solution of the master equation in equation (39). Here, only the intrinsic re-
pumping rate y;t“ff accounts for pumping the atomic ensemble to ground state |g). Thus we observe that for no
external re-pumping laser the mechanical steady state occupation is already cooled down below ten quanta of
excitation.

However, to obtain ground state cooling of the mechanical oscillator we need to introduce an additional re-
pumping laser on the side of the atomic ensemble, that impinges perpendicular to the quantization axis of the
setup onto the ensemble. Incorporating this additional re-pumping laser into the master equation in

equation (39) is done by introducing an amplitude decay with rate }/acto"l on the side of the atoms

p= _%[Heff» ]+ 72 D[ X |o + (13" + 72 ) D[S0 Jp
+ 7/m(Nm + I)D lamlp + ymNmD[a,L]p. (45)

In order derive the mechanical occupation number for the sympathetic cooling scheme we have to solve the
full master equation in equation (45) with the Hamiltonian in equation (36). In doing so we find that the system
(for small y, ) is only stable in the limit

; 2
(yﬁ‘ff + yact""l) + 4wy > 45, (46)

which provides a cutoff for higher effective coupling rates in figure 5(a). Whereas in the case of strong coupling
as discussed in the previous section this inequality is automatically fulfilled, we have to include it when deriving
the mechanical occupation. In principal this results in a cutoff for the effective coupling.

In figure 5(a) we present the steady state occupation of the mechanical oscillator as a function of the effective
coupling for three different external re-pumping rates y:t""l. Again we clearly see that without external re-
pumping (blue, solid) the mechanical oscillator can not be cooled to the ground state.

12
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Figure 5. Sympathetic cooling of the mechanical oscillator by externally re-pumping the atomic ensemble with rate yact""l. (a) Steady
state occupation of the mechanical oscillator as a function of the effective coupling by varying the atomic area density p, (upper axis)
is shown. The different curves correspond to different external re-pumping rates. Parameters are taken from table 1. (b) Cooperativity
for sympathetic cooling setup as a function of the effective coupling by varying the atomic area density p, (upper axis) is well above

one for the optimized coupling in table 2. Here, an external cooling rate of yacl""l = 2 X 107 Hzis chosen.

In the previous section we introduced the optimized parameters in table 1 for which the effective coupling
takes the value g .. = 27 X 2.5 MHz. Using this, we find that a re-pumping rate ya°t°°l = 2 X 107 Hz (purple,
dotted) would allow for ground state cooling of the mechanical oscillator. Choosing a smaller re-pumping rate

of yact‘)‘)l = 5 x 10° Hz (green, dashed) results in a mechanical steady state occupation exactly at the edge of the
ground state.

Further, by adding a re-pumping laser on the side of the atoms we have a modified atomic dissipation and
therefore we have to redefine the cooperativity in equation (44). For the sympathetic cooling setup we define the
cooperativity as

2
A8 oir
tot, tot’
Kn at

C= (47)

with the total atomic decoherence rate 3> = a‘iiff + yact"o'. In figure 5(b) we show the cooperativity for
sympathetic cooling as defined in equation (47) as a function of the effective coupling rate. For small values of
8¢ We clearly find that ground state cooling is not possible, which agrees with the numerical derivation of the
mechanical steady state occupation in figure 5(a). Hence, we finally conclude that ground state cooling is

possible for reasonable parameter regimes.

3.4. Internal versus motional states
Previously, systems that coupled the motion of the mechanical oscillator to the center-of-mass motion of the
atomic ensemble [12, 19, 20] have been investigated. In this manuscript we discussed a possible realization of
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coupling the internal degrees of freedom to the motion of the mechanical oscillator. In the following we discuss
the important differences between the two different coupling schemes.

The coupling to the motional state of a harmonic oscillator leads to a Lamb—Dicke factor = ki zpr < 1in
the coupling. Since this factor is in general small, we profit in the case of internal state coupling from not having a
Lamb-Dicke factor on the side of the atoms. We can demonstrate this by comparing the effective coupling rate
for the internal states in the case of a ‘membrane-in-the-middle’ setup, equation (41) to the coupling of the
center-of-mass mode to the mechanical oscillator from equation (27) in [20]. The latter is given by

‘m

8ecom = 2\/T]ga,tgm & wat7 ‘tm| VNT, (48)
at

where g is defined by equation (22) in [20] divided by VN and 4, = \/h/2maw, are the atomic zero point

fluctuations. Calculating the quotient of both coupling rates yields

8eff 8at Q.09 Oy 1 1
—=— ki = —

’

gcom gat A Wat B kaat Nat

, (49)

where we used the definition of the optical lattice in [20], i.e. V} ki = my a)azt/ 2 with lattice depth V = hQ,.Q_/A.

In addition, note that the atomic-light diffusion y4ft

. inthe motional coupling is proportional to the atom-

field coupling gazt and thereby suppressed by a Lamb—Dicke factor squared. In the case of internal state coupling
we lose this suppression of the diffusion rate by the Lamb—Dicke factor, and thereby we have a much higher
atomic diffusion rate. Nevertheless this is not necessarily a drawback since the yiiff in equation (39) corresponds
to a cooling rate rather than a diffusion process as in the motional coupling, see [20].

Further, from the experimental point of view coupling to the internal atomic states has certain advantages
compared to the motional coupling. In the motional coupling, there is a resonance condition between the
frequencies of mechanical mode and atomic center-of-mass mode. Optical lattice potentials are limited to trap
frequencies of several hundred kHz. This restriction no longer holds for internal states, since the resonance
condition depends on the splitting of the two ground states |s) and |g). In general, the atomic levels offer a large
range of energy splittings that could be addressed, e.g. Zeeman-sublevels split by magnetic fields in the MHz
range or hyperfine ground states with splittings in the GHz range. Thereby, the constraints on the mechanical
frequency range are much more relaxed. Finally, the internal state of the atoms can also be prepared and detected
with a much higher fidelity than the center-of-mass motion.

3.5. Experimental parameters

In the following, we give more details on possible experimental realizations. On the atomic side, we consider a
cloud of cold ¥ Rb atoms, which is routinely being prepared in numerous cold atom experiments. To calculate
the number N of atoms that effectively couple to the optomechanical system we assume a homogeneous density
of 3 - 10" m~2, which is one order of magnitude below the limit which can be reached with Raman sideband
cooling [31]. A realistic length of the atomic cloud of 1 cm yields an atomic area density of p, ~ 3 x 10> m™>.
Assuming the beam has a circular shape with radius wy, the atom number is given by N = p, zwy.

We consider the mechanical mode to be coupled to Zeeman-split sublevels of a long-lived atomic hyperfine
state. More specifically, we choose the two sublevels |¢) = |F = 2, mp = —2)and|s) = |F = 2, mp = 0) of the
5°S 1/2 ground state. Using an external magnetic field, the splitting between |g) and |s) can be tuned into
resonance with the mechanical frequency wy,. The levels are coupled by a weak o, -sideband and a strong
o_-driveviathe |F’ = 1, 2, m; = —1) sublevels of the 52P 1/, excited state (D, transition: w; /27 = 378 THz,

A = 795 nm). If no sideband photons are present, the atoms will be optically pumped to the energetically lower
|g)-state.

Concerning the optomechanical system, we first consider a photonic-crystal optomechanical cavity (‘zipper
cavity’) which was developed in the group of Painter [22, 23]. These fibre-coupled nano-structured devices
combine low effective masses on the picogram scale with strong field gradients on the wavelength scale to obtain
huge single-photon coupling strengths g,. As realistic parameters for a zipper cavity we assume a mechanical
mode with frequency wy,,/27 = 10 MHzand g /27 = 1.83 MHz, cavity linewidth /27 = 4 GHz,

M =4 x 107 kg, Q,, = 10°, see table 1. We further assume a *“He cryogenic environment with Ty = 4 K to
minimize thermal dissipation. In order to model the heating due to the laser drive as discussed in section 2.6.2
we assume an absorption heating of ATy/P = 12K mW ™! (estimation based on measurements in [23]).

As optimization parameters to observe coherent dynamics (see section 3.2), we vary the beam power P, the
detuning A from the excited F' = 2 state and the beam radius wy. We find an effective coupling rate

&g = 2 X 2.5 MHz which is significantly higher than the atomic, mechanical and thermal diffusion rates

(ya‘iiff, yrfliff, yrflff) = 2z X (143, 541, 844) kHz, cftable 2. These optimum values are achieved by tuning the laser

almost on resonance with the atoms (A/2z = 15 MHz) and making the beam as small as possible (wy = 30 ym),
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Table 3. Properties of the ‘membrane-in-the-middle’ system.

[ 27 X 276 kHz
M 4x 1070 kg
Qm 1.9 x 10°

Tm 0.4

F 700

£ 27 X 175 Hz
T, 4K
ATy/P 22KmwW!

K 27 X 232 MHz

i.e. keeping the Rayleigh range longer than the atomic ensemble. The power P = 2.5 X 1077 W isjust below
atomic saturation but far below the range where we expect significant heating of the zipper cavity.

Second, we consider a ‘membrane-in-the-middle’ setup similar to that described in [13]. While the
membrane properties are very similar to the ones in [13], we assume a more compact cavity with a length of
about 1 mm and a higher finesse of F = 700 which is placed in a cryogenic environment at T = 4 K, see table 3.
Heating by absorption of laser light ATjy/P is modeled as described in [20].

Analogous to the zipper cavity, we find optimum parameters to observe coherent dynamics using the MIM
setup, see table 4. Here, compared to the zipper cavity, we are less limited by the mechanical diffusion rates,
which allows us to use a much higher laser power. However, in order to keep the atomic excitation small, we
need a much larger detuning and/or alarger beam radius. Finally, the coherent coupling rate is one order of
magnitude smaller than for the zipper cavity and it is only slightly larger than the decoherence rates, placing the
system at the edge of strong coupling.

4, Conclusion

In summary, in this paper we have discussed the full quantum model for a hybrid quantum system consisting of
amechanical resonator coupled to the internal states of an atomic ensemble. Coupling in particular to the
internal states of the atoms rather than the motional states offers many advantages like tunability of frequencies
and full access to the atomic toolbox. We exploit these features of the internal state coupling and present, in
addition to the coherent dynamics, that the pre-cooled mechanical oscillator can be cooled to its ground state by
sympathetic cooling via the atomic ensemble. Further, the quantum model is not limited to a specific
mechanical system, but can be generalized onto various mechanical resonators such as membranes or photonic
crystal cavities. We conclude our derivations by comparing the proposal to previous work on motional state
coupling [20].
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Appendix A. Hamiltonian without phase shift

From equation (29) we can derive an effective interaction between mechanical resonator and the S, spin mode of
the atomic ensemble by eliminating the light field. In doing so, we eliminate the mediating light fields of o..
-polarized light using the formalism described in appendix B. Finally, the resulting Hamiltonian then reads

HY = —n2Ng, g, XmXs0 — hNg2 (X2 + PL). (A.1)

In addition to the coupling of the ensemble to the mechanical resonator the effective atom—mechanics
interaction Hamiltonian in equation (A.1) has a second contribution from the backaction of the atomic
ensemble on itself. This atom—atom interaction is enhanced by the number of atoms and thereby much stronger
than the atom—mechanics interaction term. Hence, for the purpose of coherent interaction between atomic
ensemble and mechanical resonator, it is undesirable to have this contribution. Modifying the setup slightly by

15



IOP Publishing NewJ. Phys. 17 (2015) 043044 B Vogell et al

Table 4. The first four lines are an optimized set of parameters to observe coherent dynamics in the
‘membrane-in-the-middle’ setup. Further, the coherent coupling rate and cooperativity as well as all
decoherence rates are given for the case of a ‘membrane-in-the-middle’ setup.

A 27 x 1.1 GHz
Wo 50 ym

P 25 mW

N 24 x 107

8eff 27 X 150 kHz
Co 6.5

pe 27 X 15 kHz
T 27 x 113 kHz
s 27 x 105 kHz

introducing phase shifts on the quadratures of the quantum field is one way to resolve this problem and remove
the atom—atom backaction term.

Appendix B. Adiabatic elimination

In the following, we summarize the calculations leading to an effective description of the mechanical oscillator
coupled to the atomic ensemble.

Therefore, we start with the fully linearized Hamiltonian in equation (32) thatis in a rotating frame with
respect to Heg. The Hamiltonian includes the interaction between the mechanical resonator as well as the
atomic ensemble with the light field. The system is then governed by the Schoredinger equation

d i
. |¥) = 7 Himod (D1¥). (B.1)

Note that all optical frequencies are removed from H,q (¢) and further that we assumed all photons mediating
the relevant interactions have frequencies in a band width 20 around the laser frequency wy .

We are interested in a situation, where § — oo such that the field operators in equation (16) become
d-correlated. In this so-called white noise limit we can interpret equation (B.1) as a QSSE of Stratonovich type
with time delays [32]. By integrating equation (B.1) in small time steps At up to second order in the interaction
Hamiltonian, we obtain an effective interaction between atomic ensemble and mechanical resonator, thatis
mediated by the photons. This is basically a Born—Markov approximation in the coupling between subsystems
(atomic/mechanical) and field. We further assume that the field is initially in the vacuum state. By taking the
time ordering of the interactions into account and further taking the limit At — 0, we end up with a QSSE of
Ito-type without time delays. This result can then be used to derive an effective master equation for the coupling
between mechanical and atomic subsystem.

Summarizing the complete hierarchy of timescales we find

1 1 1 1 1
— <K =« |t At —5 3 , (B.2)
oL 0 m S Pmat

where we have wy, > 6 > w,, ,, from the definition of the bandwidth @ in equations (14) and (15). Further, the
time interval At of the integration is much longer than the propagation times 7 between the systems, but much
shorter than the system timescales. Finally, 1/6 < |7 |is needed to be able to distinguish the temporal order of
photon emission and reabsorption events in the interaction.

B.1. Solving QSSE (Stratonovich type) with time delays
From the Schrodinger equation in equation (B.1) we obtain the time evolution of the state |'¥ () ) for some
initial time #, by

“P(to+At)>=U(t0,At)‘Y’(t0)> (B.3)
with time evolution operator for the time internval At

. t0+At
U(to, At) —eh -/r'oo 45 Haoa (5) (B.4)

We assume that the time interval At is much longer than the time delays 7; and much shorter than the system
evolution, i.e. coupling strength and decays, cf equation (B.2). We expand the right-hand side of equation (B.3)
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in the time interval At up to second order in the Hamiltonian:

U (10 41)|# (1)) {1 L e i 9

1 to+At

-/, ds Hpoq (5) [: ds’ Hmod (s/)}“l’(to) >, (B.5)

where the bounds of the second integral in the third term account for the time ordering. We expand the above
expression up to first order in At. Further, we assume that the field is initially in a vacuum state such that the
initial wave function reads | ¥ (t5) ) = ¥ (t0) )oys @0)fie1d- As a result, we neglect all terms with annihilation
operators acting directly on the initial state as well as terms with two consecutive creation operators, because
they are of higher order [19]. Evaluating the second term in equation (B.5) yields:

—i{%m + 8 X[ ACT (10, 0) + 4D (15, 0) |
+ix/ﬁgatX5,0 I:ADT (to, - 1) — ADY (to, 1)]
+VNg, B[ AD' (1o, 7) — AD' (10, - r)]”’}’ (1))- (B.6)

Here, we introduced the noise-increment operators

to+At
AD' (1o, + 7) = / ds di(s + 7) (B.7)
to
to+At
AC! (10, £ 7) = / ds cf (s + 7) (B.8)
to
with commutation relations
[AD(to, %), AD' (1, 72)] — At — (1 — ) ~ At, (B.9)

and same for AC (). In the last step of equation (B.9), we assumed that the time delays 7; of the system are much
smaller than the considered time interval At.

The third term in equation (B.5) has four contributions from evaluating the product of the two
Hamiltonians Hy,.q4. Since we only keep contributions up to first order in A¢, we can directly drop three of these
terms, which leaves us with

~[g2X2 - i2VNg, g, Xm X0 At |# (10) ), (B.10)

where we used that the field is initially in the vacuum state, such that
d(Od ()I¥ (1)) = [d(e), d'(¢) |I1¥ (10)).

In the end we want to have a differential form of equation (B.3), which is achieved by sending At — 0.In
order to do so, we have to maintain the hierarchy of timescales in equation (B.2). Since the first two timescales
(I/wy, 1/0) already disappeared from the problem, we start by sending ¢ — 0. Thelatter is equivalent to
neglecting the retardations, which leads to AD" (ty, + 7) = AD (¢, 0) = AD" (¢,). Finally, we take the limit
At — 0 such that we can rewrite equation (B.3) in differential form. The result then gives us the time evolution
for an interval dz. We assume that each time interval does not depend on the previous one (Markov
approximation), and therefore the above result is valid for all t, such that we can write

d|¥)=|¥(t+dt)) - |¥(1))

H in
=—i{( ;;' —igixé—zﬁgatgmxmxs,o)dt

+[gaXa[dc @ + ap' @] hiv o), (B.11)

where dD (¢t) = lim AD (¢) and similar for dC (). These noise-increment operators dD (¢) fulfill the Ito table
At—0
for fields in vacuum, i.e. dDdD = dDdD' = 0and dDAD' = dr [32].

B.2. Effective master equation

In order to obtain the master equation from equation (B.11), we consider the evolution of the full density matrix
and subsequently trace over the light field. According to the Ito calculus, we have

dp = d(|P)F]) = [d )|+ )] + (d|¥))(d(¥]), where p is the density matrix of the full

17



10P Publishing

NewJ. Phys. 17 (2015) 043044 B Vogell et al

system. We insert equation (B.11) in this expression and neglect all contributions of the order higher than dr.
Subsequently, we trace over the field degrees of freedom with

Trg(dC"p) = Trs(dCp) = Tra(dD') = Trs(dDp) = 0
Trg(dCTHdC) = Trg(dD'pdD) » pdt, (B.12)

where we used the Ito table for vacuum field and defined p = Trg(p) as the reduced density matrix for the atom—
mechanics system. This results in the master equation in equation (34) with effective Hamiltonian in
equation (36).
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