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Abstract

Motivation: Several molecular events are known to be cancer-related, including genomic aberrations,
hypermethylation of gene promoter regions, and differential expression of microRNAs. These aberration
events are very heterogeneous across tumors and it is poorly understood how they affect the molecular
makeup of the cell, including the transcriptome and proteome. Protein interaction networks can help decode
the functional relationship between aberration events and changes in gene and protein expression.
Results: We developed NetICS (Network-based Integration of Multi-omics Data), a new graph diffusion-
based method for prioritizing cancer genes by integrating diverse molecular data types on a directed
functional interaction network. NetICS prioritizes genes by their mediator effect, defined as the proximity
of the gene to upstream aberration events and to downstream differentially expressed genes and proteins in
an interaction network. Genes are prioritized for individual samples separately and integrated using a robust
rank aggregation technique. NetICS provides a comprehensive computational framework that can aid in
explaining the heterogeneity of aberration events by their functional convergence to common differentially
expressed genes and proteins. We demonstrate NetICS’ competitive performance in predicting known
cancer genes and in generating robust gene lists using TCGA data from five cancer types.
Availability: NetICS is available at https://github.com/cbg-ethz/netics
Contact: niko.beerenwinkel@bsse.ethz.ch
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Large-scale genomic studies have identified many aberrations in cancer
genomes. However, in most cases it is not understood how the genetic
aberrations contribute to cancer progression. There are many different
types of genetic aberrations, including single-nucleotide variants, small
and large insertions and deletions, as well as more complex genomic
rearrangements (Holland and Cleveland, 2012). Genetic aberrations can
be highly diverse among tumors of the same cancer type, and even among
subclones of the same tumor (Burrell et al., 2013). It is assumed that
only approximately 0.1% of the genetic aberrations in a tumor cell are
actually driving cancer progression (Vogelstein et al., 2013), such that

their detection among the large number of neutral passenger mutations
is challenging. Moreover, it is difficult to detect cancer genes that are
mutated only in a small number of samples by using tools that are based
only on the population frequency of genetic aberrations (Lawrence et al.,
2013). A promising way to address this challenge is the integration of
different omics data types (Bersanelli et al., 2016) and the detection of
combinatorial patterns of mutations such as mutual exclusivity and co-
occurrence (Dimitrakopoulos and Beerenwinkel, 2016). Besides genetic
aberrations, other events such as epigenetic changes or miRNA differential
expression can also contribute to cancer progression. For example, tumor
suppressor genes can be silenced and inactivated by hypermethylation
of their promoter region (Jones and Baylin, 2002). It is also known that
miRNA can control the expression of their target mRNA to facilitate
invasion, angiogenesis, tumor growth, and immune invasion (Choudhury
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et al., 2012; Stahlhut and Slack, 2013). The up- or downregulation of
miRNA can lead to the upregulation or silencing of their mRNA targets.

Several studies have focused on detecting cancer genome alterations
and understanding how they affect the expression of the genes they hit
(Gatza et al., 2014), but only few investigated the changes that the genetic
aberrations and epigenetic changes can provoke in other genes due to
gene interactions. DriverNet (Bashashati et al., 2012) captures the effects
of genetic aberrations on transcription, but takes into account only direct
interactions between genetically aberrant genes and their mRNA products.
HotNet2 (Leiserson et al., 2015) uses a network diffusion approach that
captures the global topology of the network and detects subnetworks that
are significantly mutated. However, it uses only genetic aberrations and
thus does not integrate other data types. TieDIE (Paull et al., 2013) uses
a network diffusion algorithm that detects how genetic aberrations affect
the expression of genes. Although TieDIE is able to perform this analysis
per patient, it is not capable of deriving conclusions about cancer driver
genes on a patient population. None of the above-mentioned methods has
studied the effects of epigenetic changes or miRNA in the progression of
cancer.

Here, we present NetICS (Network-based Integration of Multi-omics
Data), a cancer gene prioritization method that provides a general
computational framework for integrating diverse data types on a directed
functional interaction network. NetICS is able to integrate different
types of aberration events with differential expression data on the
transcriptome and proteome level. It predicts how the aberration events
evoke expression changes through gene interactions and predicts cancer
genes that orchestrate a large number of these changes. NetICS uses a
per-sample bidirectional network diffusion process and derives a robust
population-level gene ranking by aggregating individual sample rankings
(Figure 1).

We tested NetICS on five cancer types using TCGA data. We
demonstrate that it is superior in prioritizing cancer genes and generates
more robust gene lists when compared to network-based methods that
perform network diffusion on the pooled set of aberrations across samples,
such as, for example, TieDIE. We identified genes that are functionally
homogeneous and participate in similar cancer-related pathways. NetICS
provides a comprehensive framework that assists in understanding how
sample-specific aberration events can affect the same gene targets in
different ways and in explaining inter-patient mutational heterogeneity.

2 Materials and Methods

2.1 Interaction Network

We downloaded functional interactions from three different sources in
order to construct a directed functional interaction network. The three
sources included the databases Signor (Perfetto et al., 2016), Signalink
(Fazekas et al., 2013), and the functional directed interaction network
defined by Wu et al. (2010), who combined interactions reported in various
databases, including Kegg (Kanehisa et al., 2016), Panther (Mi et al.,
2016), NCI (Schaefer et al., 2009), and others, offering a large coverage
of validated functional interactions. We also downloaded miRNA-gene
interactions from miRTarBase (Chou et al., 2016), a database that contains
experimentally validated interactions between miRNA and target genes.
In order to ensure the creation of a highly confident interaction network,
we only used interactions supported by experimental evidence. If an
interaction was present in any of the four databases, we subsequently
included the interaction in the final network.

The directionality of the interactions is essential for our method as
it can help in explaining how aberration events in one gene lead to
expression changes in other genes in the network. The network edges

Fig. 1. Overview of NetICS. NetICS predicts how aberrant genes or miRNAs (orange/red
vertices) affect the expression of other genes (blue vertices) due to gene interactions (solid
directed edges). Aberrant genes are affected by events which lead to the acquisition of
cancer-related properties by the tumor cells such as uncontrolled cell proliferation. These
events may include genetic aberrations, hypermethylation of the gene promoter region,
and interaction with differentially expressed miRNAs. A bidirectional network diffusion
process that can capture the directionality of interactions (dashed lines) is used. The method
attempts to detect mediator genes (green vertices) that orchestrate the expression changes
downstream and are located between aberrant and differentially expressed genes. A ranked
list of genes is generated for each sample separately based on the scores they acquire through
network diffusion. These sample-specific lists are then fused into an overall ranked gene
list representative of all samples.

cover a variety of interaction types at different cellular levels, including
(de)phosphorylation, expression/repression and activation/inhibition. By
using only the interactions supported by experimental evidence, we
covered 13,110 genes in total. In order for network diffusion to converge
to a unique solution (steady state), we only used the largest connected
component of the network, which contains 9,260 genes and 351,724
interactions. We excluded self-interactions.

2.2 NetICS

NetICS predicts mediator genes, i.e., genes that are affected by
proximal upstream-located aberrant genes or miRNA and affect proximal
downstream-located differentially expressed genes. In the first step,
aberration scores are diffused from the aberrant genes of the sample
following the directionality of the network interactions. In the second
step, differential expression scores are diffused from the differentially
expressed genes of the sample in the opposite direction of the network
edges (Figure 1). Aberration and differential expression scores are defined
as the normalized vector of aberration events or differential expression
indicator variables (see below). An aberration event can disrupt a gene
in different ways. It can be (a) a genetic aberration (somatic mutation or
copy number variation), (b) differential methylation in the gene’s promoter
region, or (c) a differentially expressed miRNA that interacts with the
corresponding gene and changes its mRNA expression significantly. We
include these events only if both the miRNA and the target gene are
significantly differentially expressed between tumor and normal tissue.
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For network diffusion, we used the insulated heat diffusion as described
in (Leiserson et al., 2015). We define the normalized adjacency matrixW
of the adjacency matrix A of the interaction network as

W = AD−1 (1)

whereD is the diagonal matrix of the out-degrees of nodes, andAij = 1

if there is a directed edge from gene j to gene i and Aij = 0 otherwise.
We define the diffusion matrix

F = β [I − (1 − β)W ]−1 (2)

which represents the connectivity between nodes j and i in entry Fij for a
given restart probability β. For β, the degree of diffusion in the network,
we do not know its optimal value for the network in advance. Hence, we
assessed the performance of the methods for different values of β ranging
from 0.001 to 1 and subsequently averaged over all the estimates. The
value in Fij reflects the network proximity between nodes i and j (local
topology) and the way that it is embedded in the entire network (global
topology). The connectivity scores between the aberrant genes and all
network genes of a sample are

EM = FSM (3)

where SM is the initial state vector of aberration scores. In order to find
the influence scores of differential expression, we calculate

ED = F ′SD (4)

where
F ′ = β

[
I − (1 − β)W ′out

]−1 (5)

W ′out = AT
outD

′−1
out (6)

and D′out is the diagonal matrix with the out-degrees of the nodes
of AT

out in the diagonal, and SD is the initial state vector of differential
expression scores.

The vectorsSM andSD are initialized with uniform scores 1
M

and 1
D

respectively, where M is the number of the aberrant genes of the sample
andD the number of the differentially expressed genes of the sample. The
way the vectors SM and SD are defined we do not favor differentially
expressed genes versus aberrant genes even if the number of the former is
much higher compared to the number of the latter.

The final scores for all genes are computed as the Hadamard product

E = EM ◦ ED (7)

The vector E determines the mediator effect for each gene. A large entry
in EM at position i means that gene i is proximal to many upstream-
located aberrant genes or miRNA, and a large entry in ED at position i
means that gene i is proximal to many downstream-located differentially
expressed genes. The diffused matrixF is asymmetric and is able to capture
the directionality of the network interactions. The directionality of the
interactions is important in order to capture the situation where an upstream
aberrant gene or miRNA leads to an expression change of its direct or
indirect downstream interaction partners.

For each sample, a ranked list of all genes is generated according
to the entries in the vector E. The sample-specific ranks of each gene
are combined into a global ranking reflecting the importance of the gene
across all samples. We expect a cancer gene to be highly ranked across
many samples as this would indicate that it is functioning as a mediator
gene. We model this by computing the area under the curve that connects
the ranks of specific genes across different samples. To rank the genes,

we used the sum of the per-sample ranks, which is proportional to the
area under this curve (supplementary figure 5). A small area implies a
high number of low ranks. When more than one source of differential
expression measurements are available, we use Fishers method (Mosteller
and Fisher, 1948) to combine the p-values as

X = −2
k∑

i=1

log pi (8)

where pi is the p-value computed from the ith experiment and k the total
number of independent experiments. The random variable X follows a
chi-square distribution with 2k degrees of freedom. In our application of
NetICS, the different data sources are RNA-seq-based gene expression
measurements and protein abundance measured with the reverse phase
protein array (RPPA) technique.

2.3 Evaluating performance in predicting known cancer
genes

We defined the sets of known cancer genes for each cancer type by
using two publicly available databases (supplementary section 1.1). In our
classification problem, positives are the known cancer genes and negatives
are all other network genes not in the positive set. For evaluating and
comparing the performance of NetICS, we used the partial ROC measure,
which accounts for the number of true positives that score higher than the
n-th highest scoring negative, measured for all values from 1 to n. It is
defined as

AUCn =
1

nT

n∑
i=1

Ti (9)

whereT is the total number of known cancer genes andTi is the number of
positives that score higher than the i-th highest scoring negative (Scott and
Barton, 2007). We use the partial ROC measure, because we are interested
in comparing methods at low false positive rates (i.e., small n).

2.4 Pathway enrichment

For computing the enrichment of a given pathway in mediator, aberrant,
or differentially expressed genes, we used the hypergeometric distribution
to compute the p-value

p = 1 −
x−1∑
i=0

(K
i

)(M−K
N−i

)(M
N

) (10)

where M is the number of all network genes except the genes tested, K
the number of genes in a known pathway, N the number of genes tested,
and x the number of common genes between the genes of the known
pathway and the tested genes. P-values were adjusted for multiple testing
by the Benjamini-Hochberg method (Yekutieli and Benjamini, 1999). We
downloaded nine signaling pathways from the Reactome database (Croft
et al., 2010), whose connection has been previously studied in cancer, such
as Wnt and PI3K/AKT signaling.

2.5 Aberration events and RNA differential expression

We tested NetICS on five TCGA datasets, including uterine corpus
endometrial carcinoma, liver hepatocellular carcinoma, bladder urothelial
carcinoma, breast invasive carcinoma, and lung squamous cell carcinoma.
We downloaded the genetic aberrations (somatic mutations and copy
number variations) from . The ultramutator samples reported in
syn1729383 as well as synonymous mutations were excluded. For mRNA
and miRNA differential expression, we downloaded RNA-seq data from
the same source. For the miRNA expression, we downloaded the Illumina
HiSeq miRNA sequencing data. We performed differential gene expression
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analysis by using DESeq2 (Love et al., 2014). We compared each tumor
sample against all normal samples and pooled genes being differentially
expressed for each sample. We considered as significant the genes detected
with an adjusted p-value lower than 0.05.

For the invasive breast carcinoma dataset, both RNA-seq and RPPA
data for tumor and normal samples were available. For the RNA-seq data,
we used DESeq2 to generate a p-value for the difference between the
expression of tumor and normal samples. We modeled the RPPA data of
each sample as a normal distribution and then computed a p-value for the
tumor sample as

2 Φ

(
−
∣∣∣∣ t−m

s

∣∣∣∣) (11)

where Φ is the cumulative distribution function of the standard normal
distribution, m is the mean and s the standard deviation of the RPPA
data, and t the RPPA value for the specific tumor sample. We used the
Kolmogorov-Smirnov test to assess if the RPPA data of each sample
follows a normal distribution. We combined the p-values for RNA and
RPPA by using Fisher’s method. After FDR correction (Yekutieli and
Benjamini, 1999), we kept only those genes with a p-value of less than
0.05.

For the methylation data, we first downloaded the infinium
HumanMethylation450 Manifest file from the Illumina website. The file
contains information on 486,428 methylation sites, each named with a
unique cg-number ID and provides several informative features such as
the original gene name and the gene region. We only used methylation
sites in the 5’ untranslated region, where the promoter binds and which is
often differentially methylated in tumor samples (Jones and Baylin, 2002).
A total of 65,535 methylation sites were located in this region. For each
cancer type, we used the Human Methylation 450 dataset that is available
at . For each gene, we performed a Wilcoxon test between the beta values
of the methylation sites located in the 5’ untranslated region between
the tumor and the matched normal sample. We only used significantly
differentially methylated genes that exhibited an adjusted p-value below
0.05. To adjust the p-values we used a false discovery rate of 0.05.

3 Results
We have developed NetICS, a network-based method for prioritizing
cancer genes by integrating multi-omics data (Figure 1), including genetic
aberrations, mRNA and miRNA expression, as well as differential
methylation at the gene promoter region. NetICS performs a per-
sample bidirectional network diffusion on a directed functional interaction
network and creates a ranked gene list for each sample. It then integrates
the sample-specific ranked gene lists to generate a global ranking for all
samples by using a robust rank aggregation technique (supplementary
figure 4).

3.1 Prediction of known cancer genes

NetICS ranks genes according to their predicted involvement in cancer
progression. To assess the rankings, we predicted known cancer genes
(supplementary section 1.1). As negative examples in the prediction task,
we used all other network genes that are not in the positive set of known
cancer genes.

We compared NetICS to two other methods that perform network
diffusion by using gene scores pooled over all samples. By Pool1dir
we denote the method that pools aberrant genes across all samples
by initializing the gene scores with their population frequencies before
propagating them through the network. Pool1dir is the network diffusion
process used in HotNet2 (Leiserson et al., 2015). By Pool2dir, we denote
the method that pools both the aberrant and the differentially expressed
genes across all samples. In Pool2dir, the gene scores are initialized with

their aberration or differential expression frequencies, before bidirectional
diffusion propagates them through the network, by diffusing the aberration
scores towards the directionality of the network’s interactions and the
differential expression scores opposite of the directionality of the network’s
interactions. After that, these two scores are integrated by computing their
minimum as suggested by Paull et al. (2013) for TieDIE. For network
diffusion, we used insulated heat diffusion as implemented in HotNet2
(Leiserson et al., 2015) for all the methods. We also tested two simple
prioritization schemes that prioritize the genes based on their aberration
frequency (Aber. Fr.) and their differential expression frequency (RNA DE
Fr.) in the population without using any network information.

For computing performance as the partial AUC measure AUCn, we
executed every method 10 times by bootstrapping the available samples.
The same 10 datasets of the samples derived from bootstrapping were
used in each method. We computed AUCn for n = 50, 100, and 150.
With these performance estimates, we focus on the highest ranked genes
because those are the genes that one would consider for further biological
interpretation or experimental validation.

We observed that NetICS has a better performance than the other
methods for all datasets meaning that it is able to rank the known cancer
genes higher (Figure 2, supplementary figure 9). We also observed that
NetICS exhibits on average a higher performance for any individual value
of the restart probability, as compared to the pooling-based network
diffusion methods (supplementary figure 3). The restart probability
determines the degree of diffusion, namely how far the random walker can
move in the network. Pool2dir exhibited the worst performance indicating
that using mRNA data by pooling all samples is less efficient in predicting
cancer genes than using each sample individually for diffusion. Pool1dir
exhibited in general a lower performance compared to NetICS and reached
its highest AUC for restart probabilities lower than 0.5, for all cancer types
(Figure 2). This is because a random walker starting at an aberrant gene
needs a restart probability of more than 1/2 in order to weight the neighbors
of the aberrant gene more than the gene itself at the equilibrium state
(Eq. 2). Depending on the average distance of the mediator genes from
their upstream aberrant genes, Pool1dir reaches its optimal performance
for a relatively low value of the restart probability in all cancer types
(supplementary figure 3). This fact does not hold for NetICS where we
observe that the maximum performance is achieved on average for a
low value of the restart probability but there is a wider range of restart
probabilities for which a performance close to the maximum is reached.
Thus, NetICS is more robust to changes of the restart probability due to the
transformation of the diffusion scores into ranks, and most often a value
between 0.2 and 0.6 gives close to optimal performance for any cancer type.
The ranking also accounts for differences in the scale of diffusion scores
among samples. NetICS’ robustness to changes in the restart probability is
illustrated in a small example of 4 samples and 13 genes in supplementary
figures 1 & 2.

Overall, NetICS’ performance was statistically higher than all other
methods. In specific, NetICS’ AUC50 was statistically higher than the
next highest performing method which was Pool1dir (Wilcoxon ranksum,
p = 1.08 ∗ 10−5) in the uterine corpus endometrial carcinoma dataset.
Similarly, NetICS’ AUC50 was statistically higher than the next highest
performing method which was Pool2dir (Wilcoxon ranksum p = 1.82 ∗
10−4) in the liver hepatocellular carcinoma dataset.

The two simple prioritization schemes that prioritize the genes based
on their aberration (Aber. Fr.) or differential expression frequency
(RNA DE Fr.) in the population without using any network information
exhibited the worst performance, indicating the importance of using
network interactions in the task of cancer gene prioritization (Figure 2
and supplementary figure 9). The main difference between the network-
based methods is that Pool1dir and Pool2dir perform network diffusion by
first pooling all aberration events and therefore prioritization is performed
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Fig. 2. Comparison of gene prioritization methods. We compared the performance of
NetICS to four methods including pooling aberrant genes from all samples before diffusion
(Pool1dir), pooling both aberrant and differentially expressed genes from all samples before
bidirectional diffusion (Pool2dir), ranking by frequency of aberrant genes across all samples
(Aber. Fr.), and ranking by frequency of differentially expressed genes across all samples
(RNA DE Fr.). By bootstrapping the available samples 10 times, we computed the partial
AUC for n = 50, 100, 150 (x-axis). The performance was tested on the TCGA datasets of
uterine corpus endometrial carcinoma (top) and liver hepatocellular carcinoma (bottom).

by taking into account the network distance between aberrant genes or
miRNA across all samples. By contrast, NetICS performs a per-sample
network diffusion and is able to capture the sample-specific causes of the
same gene expression changes.

3.2 Stability of cancer gene predictions

We tested the stability of rankings obtained by the different methods
using bootstrapping. We assessed stability by computing the Spearman
correlation between the 10 ranked gene lists that resulted from the
bootstrapping repeats. For each method, we computed the Spearman
correlation between all the possible pairs of the 10 ranked lists. We found
that NetICS is more stable compared to the other methods exhibiting on
average a close to 100% correlation between the ranked gene lists that
resulted from bootstrapping, whereas Pool1dir and Pool2dir exhibited
correlation ranging from 92% to 99% (Figure 3 and supplementary figure
10). The higher stability of NetICS can be attributed to aggregating the
per-sample ranks. Pool2dir is less stable than Pool1dir, because there are
more differences in the initial gene scores for network diffusion in the
different bootstrap repeats, because Pool2dir initializes genes based on
their frequency for both aberrations and differential expression.

We also tested the stability of the methods when the network was
perturbed by randomly deleting, adding or reversing edges. We tested
different percentages of deleted, added and reversed edges ranging from
10% to 90% with respect to the total number of network’s edges. We
computed the Spearman correlation between the ranked gene list when
methods were used with the original network and the ranked gene lists
when methods were used with the perturbed networks. We observed that
all methods are robust to changes in the edges of the network, with NetICS
and Pool1dir being more robust than Pool2dir (supplementary figures 11-
13). Specifically, NetICS exhibited on average 84% correlation with the
gene ranks from the original network when as much as 90% of the total
edges were removed. Pool2dir exhibited on average 65% correlation for
the same experiment. All methods were more robust to the addition of

random edges compared to the random deletion of existing edges. NetICS
exhibited on average 92% correlation with the gene ranks on the original
network when 90% random edges of the initial number of network edges
were added. Pool2dir exhibited on average 70% correlation for the same
experiment.

3.3 Pathway enrichment

We used the highest ranked mediator genes for each cancer type to
perform pathway enrichment analysis and compared the findings to those
obtained from ranked genes based on aberration or differential expression
frequency across the samples (supplementary figure 6). We downloaded
the genes of 9 signaling pathways from the Reactome database. These
are signaling pathways whose properties have been previously studied in
cancer, such as the Wnt and the PI3K/AKT signaling pathways. We found
that the highest ranked mediator genes are more enriched in the signaling
pathways compared to genes ranked based on aberration and differential
expression frequency. This trend was observed in all tested cancer types.
Hence, the mediator genes detected by NetICS are more functionally
homogeneous with respect to the specific signaling pathways. The fact that
mediator genes are more functionally homogeneous than aberrant genes
is in line with the assumption of NetICS that heterogeneity in aberration
events across samples can be explained by convergence in the network to
functionally homogeneous mediator genes (Figure 1).

3.4 Specific examples of mediator genes

As a proof of concept, we analyzed two mediators that NetICS predicted
for breast cancer, namely EP300 and TP53, in more detail and examined
their upstream aberrant and downstream differentially expressed genes
(supplementary figures 7 and 8). Both EP300 (Gayther et al., 2000) and
TP53 are well-characterized tumor suppressors.

EP300 protein is a histone acetyltransferase for all four-core histones
in nucleosomes. Breast carcinomas express extremely low levels of EP300.
However, mutations in EP300 are not very common (< 1% breast cancer
samples with EP300 mutations in Cosmic). NetICS predicted that EP300
is a mediator gene for breast cancer. Specifically, it identified five direct
upstream aberrant genes or miRNAs in 50% of the tumor samples,
namely ARNT, MED13, MED24, CITED1 and HSA-MIR-429, and three
direct downstream differentially expressed genes which are known to be
cancer-related, namely TP53, AKT1, and MYC (supplementary figure 7a).
ARNT (or HIF-1β) is a gene that acts in complex with EP300 and was
found mutated in 7% of the tumor samples. Specifically, HIF-1α or

Fig. 3. Stability of ranked gene lists. Shown are box plots demonstrating the stability
between the ranked gene lists of each method among 10 bootstrap repeats. The boxes
represent the average Spearman correlation (y-axis) between all possible pairs of the 10
ranked gene lists produced from the 10 bootstrap repeats. We compared three methods (x-
axis) including NetICS, Pool1dir and Pool2dir. Stability was tested on the TCGA datasets
of uterine corpus endometrial carcinoma (left) and liver hepatocellular carcinoma (right).
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HIF-2α dimerize with HIF-1β to form the HIF-1 or HIF-2 transcription
factor, respectively. HIF1/2 transcription factors bind to the HRE (HIF1/2
response element) in the presence of EP300 coactivator, to regulate the
transcription of target genes like VEGFA, which is an oncogene. Although
ARNT was downregulated in most samples, in the samples where it is
amplified, it was found to be upregulated. Hence, when amplified, ARNT
appears to lead to upregulation of the oncogene VEGFA with the help of
EP300 as a mediator.

Moreover, MED13 and MED24 are proteins that act in complex with
EP300 and are less explored in the context of tumorigenesis. Our method
suggests that MED13 and MED24 should be further investigated for their
role in downregulating EP300 in tumorigenesis. CITED1 is a gene that
is hypermethylated at the promoter region and therefore, downregulated
at its mRNA level. Its downregulation is a possible cause for EP300’s
down regulation. Reports suggest that miR-429 expression is up-regulated
in human colorectal cancer (Li et al., 2013) and serous ovarian carcinoma
tissues (Nam et al., 2008), and this high expression is associated with
increased tumor size and poor prognosis. NetICS has classified miR-429
as an upstream regulator of EP300 (Mees et al., 2009). Thus, an increase
in miR-429 levels could reduce EP300 expression. EP300 controls the
stability of TP53, an important tumor suppressor. Reduced expression
of EP300 can lead to a lower expression of TP53. In addition, EP300
in complex with other proteins induce acetylation and inactivation of
AKT. The lower expression of EP300 could be the cause of increased
AKT1 stability that aids tumorigenesis. Further, EP300 is able to maintain
genomic integrity by negatively regulating MYC (Sankar et al., 2009). Loss
of EP300 expression could be a potential cause of MYC upregulation,
a known oncogene in breast cancer. We detected a mutually exclusive
mutation pattern in the samples among ARNT, TP53, MYC and AKT1,
further enhancing the idea that aberrations in these four genes might
be alternative ways to disrupt the same cellular pathway (supplementary
figure 7b).

The tumor suppressor TP53 is crucial to sense and respond to a variety
of cellular stresses and induce cell cycle arrest or senescence. NetICS
predicted that TP53 is a mediator gene for breast cancer and has five
direct upstream genes, namely AKT1, BDNF, MYC, CREBBP and miR-
425, which together exhibit aberrations in about 50% of the available breast
cancer samples. Directly downstream, TP53 interacts with 4 other genes,
namely BAI, TSC1, DDB2 and GADD45A, which are significantly down-
regulated in tumor samples as compared to normal samples (supplementary
figure 8a). AKT1 is a member of AKT signaling and it is known that
active AKT signaling mediates degradation of the tumor suppressor TP53
(Abraham and O’Neill, 2014). Hence, overexpression of AKT1 could be
the cause of TP53 downregulation. Somatic mutations detected in AKT1
(E17K) are known to exhibit oncogenic properties and activate downstream
signaling by localizing AKT to the plasma membrane (Carpten et al., 2007).

Interestingly, TP53 has been suggested to be indirectly regulated
by MYC with the help of MDM2 (Phesse et al., 2014), and it
would be interesting to examine how aberrations in MYC affect the
expression of TP53. More precisely, MYC overexpression leads to MDM2
overexpression which is known to inhibit TP53 via binding to its N-
terminal domain and leading to its proteolytic digestion (Zhou et al., 2016).
Finally, CREBBP is an important coactivator of TP53 responsible for
its transcriptional activity (Roeder et al., 1997). Thus, loss of CREBBP
function by mutations mimics and abolishes TP53 function. Some of
the upstream genes, for example, TP53, AKT1, MYC and CREBBP,
follow a mutually exclusive mutation pattern (supplementary figure 8b),
implying that they might be alternative hits to disrupt the expression of
TP53. Downstream of TP53, there are several genes whose expression
is controlled by TP53. Upon downregulation of TP53, the expression of
these genes is also downregulated. Some of them have tumor suppressive

properties. For example, TSC1 is a strong tumor suppressor and BAI1 is
an angiogenesis inhibitor.

Apart from well-studied cancer genes, NetICS was able to detect
less known, recently discovered cancer genes. In lung cancer dataset,
XPO1, a recently discovered oncogene, was recovered in top 1% of
the ranked gene list. Inhibitors for XPO1 are a promising therapeutic
strategy for lung (Kim et al., 2016) and ovarian (Chen et al., 2016) cancer.
Another oncogene, PLCG1, recovered in top 1% of the ranked gene list
in hepatocellular carcinoma, was recently also shown to exhibit recurrent
activating mutations in angiosarcoma (Behjati et al., 2014) and somatic
mutations in cutaneous T-cell lymphomas (Vaqué et al., 2014) that lead
to increased cell proliferative mechanisms. Finally, GNG2, a gene shown
recently to inhibit metastasis in human melanoma cells with decreased FAK
activity (Yajima et al., 2014), was predicted as mediator gene (top 1%) in
the uterine corpus endometrial carcinoma dataset and found downregulated
in 31% of the tumor samples (supplementary figure 14).

4 Discussion
We have developed NetICS, a new method for prioritizing cancer genes
based on the integration of multi-omics data on a directed functional
interaction network. NetICS provides a flexible computational framework
for per-sample network-based integration of a variety of data sources
that include causal (genetic aberrations, differential methylation of the
promoter region and miRNA differential expression) and consequential
cancer events (gene and protein expression measurements). In our
applications of NetICS, we have integrated different types of genetic
aberrations, namely somatic mutations and copy number variations as
well as methylation and miRNA expression data. In the future, one
may integrate additional types of more complex mutational patterns.
For example, most cancer types exhibit changes in chromosome number
(aneuploidy), and more complex rearrangements, such as kataegis (Nik-
Zainal et al., 2012) and chromothripsis (Stephens et al., 2011), have
been described. NetICS is capable of fusing different types of differential
expression measurements, for example, transcriptomics and proteomics.
We have used Fisher’s method to combine p-values of differential gene
expression obtained from RNA-seq count data and protein expression
derived from RPPA experiments (Spurrier et al., 2008). The same approach
will also allow to fuse other types of differential expression measurements,
for example, at the phosphoproteome level. There are several ongoing
efforts for characterizing the TCGA tumors in terms of their proteome and
phosphoproteome such as (Koboldt et al., 2012), (Coscia et al., 2016). In
the future, it will be interesting to incorporate these data at the level of
differentially expressed genes (blue-colored nodes at Figure 1).

We demonstrated that NetICS was able to detect both frequently (e.g.,
TP53) and infrequently (e.g., EP300) aberrant genes. A gene that is
aberrant in several samples will, in general, be ranked higher than non-
aberrant genes, because of the restart probability of the random walker
during network diffusion. A high ranking score in the rest of the samples
will imply a mediator effect for the gene, when it is not aberrant. This is
the main reason why NetICS was successful in ranking high genes that
are silent, i.e., not affected by mutation. Another gene detected by NetICS
that exhibits low mutational frequency in breast cancer is AKT1, which is
aberrant in less than 1% of the samples, while other genes exhibit high
mutational frequencies, such as KRAS in lung squamous cell carcinoma
which is aberrant in 26% of the sample. In the TCGA breast cancer
dataset, NetICS identified in the top 5% of the list genes related to breast
cancer, such as PTEN, TP53, CDH1, and ERBB2. Similarly, in the lung
cancer dataset, NetICS identified known lung cancer genes such as AKT1,
EGFR, KRAS, NRAS and PIK3CA among the top 5% of the ranked genes
(supplementary tables S6-10).
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NetICS provides insight on how aberration events that are very
different between samples of the same cancer type can lead to the same
expression changes in other genes due to gene interactions. The aberration
events include aberrations in the genome, differential methylation and
significantly differentially expressed miRNA between tumor and normal
tissue. This fact can aid in distinguishing driver from passenger aberration
events. For example, the driver mutations will possibly be the ones
affecting the same downstream targets, i.e., the mediator genes. In the
same way, NetICS can help in the detection of cancer driver genes that are
aberrant in a small part of the tumor samples and are difficult to detect with a
frequency-based method. However, we acknowledge that NetICS can only
examine the effects of genes that are present in the interaction network.
Moreover, the results may be biased towards highly connected genes as
these have a higher chance of having aberrant or differentially expressed
genes in their network neighborhood. However, as already shown in
(Leiserson et al., 2015), the asymmetric diffusion function that NetICS
uses (Eq.2) is less biased towards hubs than previously used symmetric
diffusion techniques.

NetICS is a general and flexible computational method for processing
various cancer-related events on the network level. It can help identify
new cancer genes that act either silently or explicitly in promoting cancer
progression. A tumor suppressor can be mutated in one sample leading
to its loss of function, whereas in another sample, the same tumor
suppressor might not be mutated but still downregulated because of a
nearby interacting gene which is genetically altered. By identifying the
heterogeneous causal cancer events that converge to functionally related
mediator genes, NetICS can elucidate the different ways in which the same
pathways are affected in different samples. Eventually, new personalized
diagnostic and therapeutic opportunities across cancer types may arise in
this manner, for example, by drug repositioning.
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