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We propose a model of three-dimensional topological insulators consisting of weakly coupled electron-
and hole-gas layers with Rashba spin-orbit interaction stacked along a given axis. We show that in the
presence of strong electron-electron interactions the system realizes a fractional strong topological insulator,
where the rotational symmetry and condensation energy arguments still allow us to treat the problem as
quasi-one-dimensional with bosonization techniques. We also show that if Rashba and Dresselhaus spin-orbit
interaction terms are equally strong, by doping the system with magnetic impurities, one can bring it into the

Weyl semimetal phase.
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I. INTRODUCTION

Inrecent years, the study of topological phases of matter has
become one of the prominent subjects in condensed matter re-
search. Soon after the theoretical prediction and experimental
confirmation of topological band insulators (TIs) in two [1-5]
and three dimensions [6-9], it was theoretically shown that
the class of topologically nontrivial matter is much larger and
the corresponding phases even more exotic once interacting
systems are considered that can allow phases hosting gapless
excitations with fractional charges or spin quantum numbers
[10-12]. The realization of such unconventional phases in
Nature is not only of fundamental interest, but also promising
for applications, such as topological quantum computation,
where Fibonacci anyons can serve as qubits which allow
for universal quantum computation [13]. However, the basic
ingredients for obtaining a Fibonacci phase are parafermions,
also called fractional Majorana fermions, which emerge
only in the presence of electron-electron interactions. Many
proposals for experimental realizations of parafermions rely on
a combination of superconductivity and fractional TIs [14—19].
So far, fractional TIs still lack experimental realization, and
it is thus of great importance searching for models possibly
realizable in future experiments.

It is the purpose of this paper to introduce a model which
shows how, in principle, a three-dimensional (3D) fractional
TI can be engineered. We generalize the approach of weakly
coupled wires [20] to three dimensions by considering a stack
of weakly coupled two-dimensional electron gas (2DEG) lay-
ers. Although the coupled wires approach is a very successful
method for theoretically constructing two-dimensional (2D)
[12,20-30] and 3D [31-33] topological systems, the coupled
layers approach [34] is simpler to handle and is physically
more transparent when describing 3D systems. We consider
a stack of 2D layers with Rashba spin-orbit interaction (SOI)
weakly tunnel coupled to each other. Such a system could
be realized in a semiconductor superlattice where the 2DEGs
form at heterojunctions and the SOI can be controlled with
electrical gates [35,36]. Alternatively, one could realize our
setup in a van der Waals heterostructure, by stacking a carefully
chosen sequence of different atomically thin layers on top of
each other [37-42].

The paper is organized as follows. In Sec. II we introduce
the system composed of weakly coupled layers. In Sec. III, we
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study its properties in the noninteracting regime. We derive
the bulk spectrum, discuss the computation of the topological
invariant, and show the existence of gapless surface states
using analytical and numerical methods. We conclude that the
noninteracting model realizes a 3D TI. This sets the stage for
the main part of the work presented in Sec. [V—the fractional
topological phase. We identify the regime where the interacting
system forms a fractional strong 3D TI [32,33,43] in the
regime of strong electron-electron interactions. The main idea
of the analysis is to search for solutions minimizing the energy
of the system, which translates into maximizing the size of
the gap opened by backscattering-assisted tunneling processes
and should stabilize the system, similar to nesting conditions
discussed before in various systems [44—47]. Importantly, the
condensation energy gain is maximum for processes that do
not break the rotational and translation symmetries of the
system [48,49]. This helps us to reduce the problem effectively
to one dimension where we can then use bosonization and
Luttinger liquid techniques to show the existence of frac-
tionally charged surface states with a nondegenerate helical
Dirac cone spectrum in the topological phase. Additionally,
in Sec. V we discuss how an equal combination of Rashba
and Dresselhaus SOIs leads to a Weyl semimetal phase in
noninteracting systems. We summarize our results in Sec. VI.

II. MODEL

We consider a system of weakly coupled 2DEG layers
stacked along the z axis with the distance a, between layers.
The unit cell consists of four layers, two of which have an
electronlike dispersion and two have a holelike dispersion;
see Fig. 1. Each layer has a SOI of the Rashba type. The
strength of the SOI, «, is the same throughout the unit cell but
alternates its sign from layer to layer. We introduce two indices
to label the layers: n € {1,1} and T € {1,1}, which distinguish
between electron and hole layers as well as between layers
with positive and negative SOI, respectively. The kinetic part
of the Hamiltonian reads

N
HO = Z Z Z/dxdy \Ijjlr]rah(r);rag/\ym]r(r’v (1)

n=1 nt oo’

n? ,
h(r])wa’ = n(_%vz - /“L> —ita(019y — 020x)s0> (2)
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FIG. 1. Schematic representation of the system formed by tunnel-
coupled layers with charge carriers. The unit cell consists of two
electron (blue) and two hole (green) layers. The color brightness
encodes the two different signs of the SOI.

where the sum runs over N unit cells and W,,,.,(x,y) is the
annihilation operator of an electron in the (n7) layer of the
nth unit cell with spin-projection o = %1 at position (x,y).
The chemical potential p is measured from the SOI energy
Es, = ma?/2h? in each layer and has the same magnitude
in all layers. The dispersion of the (nt) layer is given by
E (k)= nﬁzz—r’:lz + tak with the eigenstates characterized by

spinor |n,7,0,0) = (1, — inroe"G)T/\/i where 6 is the angle
between the 2D momentum vector Kk and the &, axis.

In the following, we consider spin-conserving tunneling
between layers. For a tunneling process of amplitude #; (,)
between layers of the same (opposite) mass, the Hamiltonian
is given by

H,=t Z/dxdy(\lljlliolll(,,_lma + W W, + He),
no

3)
Hy=nY_ f dxdy(¥,,\,W,,1, + H.c.).

non

Without loss of generality, we assume that #,#, > 0.

III. THREE-DIMENSIONAL STRONG TOPOLOGICAL
INSULATOR

A. Bulk Spectrum and Symmetry Class

To begin with, we show that there is a bulk gap at © =0
and the symmetry class the Hamiltonian falls into is AIl
In order to do so, we first consider an infinite system and
introduce momenta (K, k;). The total Hamiltonian is given by
H = Hy + H,, + H,, [see Egs. (1)—(3) and (6)] with the exact
bulk spectrum

E%(k.k;) =€+ (k) + (1 +13)

+ 2\/ (ak)?€? + 12€2 + 1242 cos?(k.a./2), (4)

where €(k) = R2k2 /2m.If t; # t, and t, > 0, the bulk is fully
gapped. If t{ = 1, > 0, the bulk gap closes at (k,k;) = (0,0).
The system can be tuned into topological (¢; > f,) and trivial
(t, > t;) phases, as shown below.

In order to discuss the symmetry class of the Hamiltonian
we rewrite the total Hamiltonian in terms of Pauli matrices o;,
n;, and T; acting in spin and layer spaces, respectively. As a
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result, we obtain

H= / dkdk. W (k,k)h(k k)W (k k. ), )
R* (k2 + k2)
h(k,k;) = [T - Mi|773 +aw(orky, — o2ky) + 1T

+ t[cos*(k.a, /2)m T + sin*(k,a./2)nT
+ sin(k,a;)(n112 + n271)/2]. (6)

The Hamiltonian is invariant under the time reversal op-
eration ® = io,/C, where K is the complex conjugation
operator. In the Altland-Zirnbauer classification [50,51] there
are three symmetry classes with ®> = —1, two of which
have additional particle-hole symmetry. Under the particle-
hole transformation C, the Bloch Hamiltonian has to satisfy
ChT(—k,—k,)C~' = —h(k,k,). No such operator could be
found for h(k,k;) [see Eq. (5)] and it therefore belongs to
the AIl symmetry class [50,51]. In three dimensions, the
system is classified by a Z, invariant and can be a strong
topological insulator hosting single helical Dirac cones at each
surface [52].

We end this subsection by computing the topological
invariant explicitly following Ref. [52]. We derive an effective
Hamiltonian by identifying the low-energy bands that close
at the phase transition and the level crossing wave vector and
then expand the Hamiltonian around these points. From our
analysis we know that the topological phase transition takes
placeat#; = t, and the gap closes at (k,k;) = (0,0). Expanding
Eq. (6) around this momentum point and performing a unitary
transformation, the Hamiltonian can be brought into a form
consisting of two decoupled 4 x 4 blocks containing the
low-energy and high-energy bands. The low-energy bands
undergo the topological phase transition at #; = t,. Projecting
onto the subspace containing these low-energy bands that close
atthe critical point, one obtains the effective Hamiltonian given
by

a,t
heir(K.k.) = akyoy — akyoy — %kmm + Mnios, (7)

where we introduced the mass M =1t —f,. Using this
simplified Hamiltonian, one can calculate the Z, invariant vy
explicitly. We find that vy = 1 (vg = 0)if M > 0 (M < 0). We
note that the same Hamiltonian was studied before in Ref. [53],
where it was shown that h.g(K,k;) [Eq. (7)] corresponds to a
3D strong TI.

B. Existence of Surface States

The presence of one helical Dirac cone at any surface is
a central feature of a strong TI. In this subsection, we show
the existence of these surface states in the topological regime
t; > t, using analytical and numerical methods. First, we
prove the existence of surface states on the top and bottom
surface of the stack, i.e., at the boundaries orthogonal to the
stacking direction. To this end, we restrict the discussion
to the low-energy regime and perform a linearization of
the Hamiltonian by assuming f;,f, < Eg,. We represent the
momentum in polar coordinates to exploit the rotational
symmetry of the layers. Being functions of good quantum
numbers, the modulus £ and the polar angle 6 are constants
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for k; and k, fixed. The spectrum of each layer is isotropic
and, therefore, independent of 6, which means that there are
only fluctuations in the k direction. States with different 6
are decoupled from each other, and we can treat the problem
as effectively one-dimensional in the direction of propagation
r [34].

We linearize the spectrum and represent the field operators
around the Fermi surface (FS) in terms of slowly varying
fermionic field operators Sn@m(r) [34,54],

\Ijnﬁr)‘r(r (x,y) = Z Uspoyro Sj,e/f”emﬂkfr(x cosf+y sin9)’ (8)
5B

where § = e,i labels the exterior (¢ = 1) and interior (i = 1)
FS, with corresponding Fermi momenta k$ = 2ma/hi* and
k} = 0. Here, 8 = 1,1 refers to “right” (1) and “left” (1)
movers propagating into opposite r directions. In this represen-
tation the polar angle 9 is restricted to [0,7). The spin overlap
amplitude is given by asgg,re = (0|n,7,8,0 + (1 — nB)/2).
The linearized kinetic term [see Eq. (1)] becomes Hy =
[ dr Ho(r) with

——zthZZZﬂ ) @suh). O

n=1 Ont B

where vy = a/h is the Fermi velocity.

We next employ a two-step perturbation approach by
considering the regime #; > #, [29]. We first take into account
the #; tunnelings and obtain after linearization,

l =1 Z Z n0771 ;Gﬂnl +H.c. ] (10)

n=1 nB

Importantly, H,, couples fields of opposite velocities at k = 0
resulting in a partial gap [see also Fig. 2(a)]. In a next step,
we take into account the fields that are unaffected by the ¢
term and neglect the already gapped fields. Analogously, one
obtains

N
Hi, = IZZ |:Z n911 (n DOT1
] n

=2

+ Z n911

n=1

,,911+ch| (11

These terms gap out the remaining fields in the bulk but do

not affect the two fields at the top, sel/ ! and at the bottom,

1611 °
e,1/1 . .
Syei;» of the stack, since they do not appear in Eq. (11). These

surface states are gapless, have a linear dispersion, and the
spin of each state is locked to be orthogonal to its momentum;
in other words, they form a single helical Dirac cone at each
of the two surfaces. We remark that starting the perturbative
analysis in the opposite regime #, > t;, all fields at the top
and bottom surfaces are gapped and the system is in the trivial
insulating state. The result obtained in the perturbative regimes
smoothly connects to the region of the phase diagram where
| > 1, and due to their topological nature the gapless surface
states persist over the whole parameter range; see Fig. 3.

To access the spectrum of the, say, xz surface at y = 0, we
employ numerical diagonalization (see Appendix A for more
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FIG. 2. Dispersion relation of the layers for a fixed value of 6.
(a) The chemical potentials p (black lines) are tuned to the SOI
energy E;,. The colors blue/green encode positive/negative helicity.
The arrows represent the tunneling processes between fields allowed
by spin and momentum conservation laws. (b) The chemical potential
is tuned to E,,/9. In the presence of strong interactions, tunneling
processes assisted by backscattering dominate resulting in the bulk
gap. The orange and black arrows represent terms in O, and O,
respectively [see Egs. (12) and (13)].

details) and consider the system finite in the y direction with
N, lattice sites. The spectrum of the tight-binding Hamiltonian
[see Eq. (A1)] in the topological phase is shown in Fig. 3. It can
be seen that the bulk states are separated by an energy gap and
that there exist states with a Dirac spectrum. In Fig. 4, we show
the modulus squared of the wave function of a state on the Dirac
cone on the first hundred lattice sites. One can observe that,
indeed, the state is localized at the surface of the system and
therefore conclude that the Dirac cone corresponds to surface
states on the xz surface. The spin is locked to the momentum

AT
“VHV\‘“
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FIG. 3. The spectrum in the topological phase obtained numer-
ically for N, =300, t;/t =0.2, ,/t =0.1, and &/t =0.3; see
Appendix A. The bulk states (blue) are fully gapped with gap
Amin = 2(t; — 1). The dispersion of the surface states localized in
the xz plane (green) is represented by an anisotropic Dirac cone.
The inset shows the helical spin structure in the layer n =7 =1 at
v/a, = 1for E/t = 0.02 (dashed line), confirming the presence of a
single helical Dirac cone at the xz surface.
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FIG. 4. The probability density of the wave function |/, i 4 |2 in
the (1,1) layer for a state on the Dirac cone on the first one-hundred
sites (N, = 800) along the y direction. The figure was obtained for
t/t=02,6/t=0.1, @/t =0.3, and u = —4¢ for a state on the
Dirac cone with k,a, /7 = 0.05 and k,a, /7 = 0. The wave function
is localized at the xz surface decaying rapidly along y direction into
the bulk.

resulting in a helical texture (see the inset in Fig. 3). Since the
system has rotational symmetry around the z axis, it is clear that
the same conclusions could be drawn if we had imposed a hard
wall boundary condition at x = 0. In conclusion, we showed
the existence of a single helical Dirac cone on each boundary
and a fully gapped bulk spectrum in the regime #; > f,. We
emphasize that the gapless surface states were obtained in
a nonperturbative regime which proves that their existence
does not rely on the perturbative approach considered above,
underlining their topological nature.

For completeness we also show the spectrum in the region
t; < 1, which is separated by the gap closing line #; = #, from
the region where we found the Dirac cone. As can be seen in
Fig. 5 the spectrum is fully gapped and there are no surface
states. The system is a trivial insulator in the whole region
where #; < f,. This analysis confirms that for t; > 1, (1] < 1),

Eft,
0.2

0.0+

-0.2

1

20
00

/o .0
/ kpaq/m
2.0

-0.5

k.a./m

FIG. 5. The spectrum in the trivial phase obtained numerically
for N, =300, t,/t =0.1,1,/t = 0.2, and @/t = 0.3. The spectrum
is fully gapped and no surface states were found in the xz plane. The
same holds for all other surfaces, which shows that here the system
is in the trivial phase.
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B/t

FIG. 6. The spectrum of the topological phase in the presence
of disorder along the cut k.a,/m =0 with parameters N, = 300,
1n/t=02, 6/t =0.1, @/t =0.3, p = —4¢, and /(8u?) = 0.7¢,.
The two Dirac cones on two opposite surfaces (green and orange)
still exist and there is no gap opened by disorder. However, due to
slightly different disorder configurations at two surfaces, there is a
small shift of the position of the center of the Dirac cone in energy.

the strong topological Z, invariant vy is given by vy = 1 (v =
0), which is consistent with our analysis above.

To emphasize the topological origin of surface states, we
show their stability against nonmagnetic disorder. In order
to do so, we modified our tight-binding model to implement
detuning of the chemical potential in the (,7) layer at lattice
site i by du,.;. The perturbations were randomly generated
from a normal distribution centered at (§u) =0 and the
variance characterizing the disorder strength was chosen such
that \/(§u2) < r,. As can be seen from Fig. 6, the surface
states remain intact in the presence of nonmagnetic disorder.
There is no gap opening. Moreover, this analysis also confirms
that our initial assumption of the rotational and translational
symmetries is not crucial for the existence of the topological
phase.

IV. FRACTIONAL TOPOLOGICAL INSULATOR

Next, our goal is to identify the regime in which the system
is a fractional strong 3D TI. For this, we detune the chemical
potential in Hy [see Eq. (2)] to p1/3 = E,,/9. This particular
choice of u fixes the ratio between the radii of the interior and
exterior FS to Zk} = k% = 4moa/ 3h%. We, again, restrict the
discussion to the regime #; > , and treat the f; terms first.
The direct tunneling #; between layers of the same mass is for-
bidden by spin/momentum conservation and does not result in
a gap. Repulsive electron-electron interactions, however, open
the channel for backscattering assisted tunneling which has a
chance to open a gap. These processes consist of a tunneling
with nonzero momentum transfer which is accompanied by
two backscattering events (in leading order) ensuring overall
momentum conservation. If the tunneling occurs between two
states where the spins are misaligned, the tunneling amplitude
gets suppressed by a factor of the spin overlap (see Fig. 7).
Thus, we only take into account events where the tunneling
amplitude and correspondingly the size of the bulk gap
becomes maximal [44—47], which corresponds to processes
preserving the rotational and translational symmetries of the
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kky

FIG. 7. Schematics of a backscattering assisted tunneling process
between two neighboring electron layers. The two Fermi surfaces
are drawn on top of each other. For brevity, the spin polarizations
of the corresponding state at the Fermi surface for the first (green
arrows) and second layers (blue arrows) are indicated only for
k. <0 (k. > 0). The involved electrons residing in the respective
layers are shown by blue (green) dots. The momentum transfer g
(orange dotted arrows) during the tunneling event is compensated
by the two backscattering processes such that G + g + g, = 0.
Correspondingly, due to the spin structure of the Fermi surface,
the amplitude of the tunneling process with momentum transfer
g connecting two states with misaligned spins is reduced. The
backscattering assisted tunneling amplitude (and thus the resulting
bulk gap) is maximum if all involved spins are aligned, thus, § || g1 ..
In this case, the rotational symmetry of the system is preserved.

system and do not mix states characterized by different values
of 6 [48,49]; see Fig. 2(b). Such processes similar to nesting
conditions on Fermi surfaces [44—47] allow us to maximize
the condensation energy gain (also known as Peierls-type
energy gain) and stabilize the topological phase [44—47]. If
the chemical potential is detuned by du, the tunneling no
longer conserves momentum exactly. However, the gap is still
opened, although suppressed, if S < 11,1,.

The Hamiltonian density describing tunneling between
layers of the same mass becomes [see also Fig. 2(b)]

=81 Z n0171:

nont

+H.c],

ngm(Si,l )TSi,T _(Si,l )TSe,T

nont nont \Mnont nént

12)

with g; =1 g% and gp being the strength of the backscattering
term due to interactions. For the £, processes we distinguish the
cases where tunneling occurs between the interior (exterior)
FSs. The operator that commutes with the one in Eq. (12) is
given in leading order by

_—gzZ

gu1

e, 1 \T qi,1 el e,1 i1 \T el
+ (Sn,OIZ) Sn;GZ[(SmGlZ) SIiIOZl(SﬁIQ[Z) SﬁIOfI

e 1 \1 e, 1 i1 \T ge.1
n@H nGH(S;GH) Syoﬁ(sheﬁ) Sk@ﬁ

+H.c],
(13)
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with g» = t,g% and where tunneling occurs between the
exterior FSs. For brevity we use the index-dependent unit cell
labelsny =n— (1 —0/2anda; =n — (1 +1)/2.

For completeness we give the expression for the second
operator describing #, tunneling processes between the interior
FS of layers with opposite mass:

_ 11 i1 \T @i, T (qi,l \Tgel
=& Z nezz n@ll(SnHI_l) Snezz(Snerl) S0t
IE(I 1}

+ (S:;(;zz) Sn,elz(S:lali)zz) Sn,ezz(S:a,i)zz) S ;11 +Hel,
(14

with n; and 77; as above. While O,, and O,, commute, @tz does
not commute with O, and therefore these operators can not
be diagonalized simultaneously. Thus, they leave the system
gapless and, consequentially, do not result in an energy gain.
Such terms can therefore be dropped.

The terms O,, and O,, open a gap in the bulk spectrum
but in order to access the nature of the gapless surface states,
we employ the bosonization procedure for one-dimensional
(1D) systems. This is justified since in the limit of dominant
tunneling, fields with different angles 6 are not coupled [cf.
Egs. (12) and (13)]. Thus, for 6 fixed, the problem is equivalent
to tunnel-coupled infinite wires.

We next introduce chiral bosonic fields ¢>,(1%)nw(r) (Sngm ~

ei‘f’f*%)vf“), where (B determines the chirality and o the spin
projection [55]. The chiral fields satisfy the commutation
relation [¢nﬂnm(r),¢,(1%)nm(r/)] = imBsgn(r — r’) and all other
commutators vanish. In a more convenient basis defined
as nfleﬂ)m = 2¢f§3)nw — ¢(0) , the above interaction terms

npnto
become

%
|~

i)

n =82 Z |:ZCOS ’7n1111 ,(1

ls(l 1)

N
®) ©)
+ ZCOS Mouir — nn,llll)
n=2

©® ©
=& ZCOS Mainee — nnlnrr) 5

nont

We work in the limit where g; are large compared to the
quadratic part of the Hamiltonian, and the fields get pinned
to one of the minima of the cosines [55]. Using Eq. (15),
we infer that all the fields in the bulk get pinned pairwise and,
therefore, the bulk spectrum is fully gapped. However, as in the
previous section, two fields at the top surface and two fields
at the bottom surface do not appear in the tunneling terms,

©) ©®) ©) ©)
namely, M oaiip Moty Ty and UNSTTER These fields do

not get pmned and stay gapless [24]. We conclude that the
interacting system hosts gapless surface states that have their
spin locked orthogonal to their momentum. The quasiparticle
excitations on the surface are directly given by the exponential
of the gapless bosonic fields listed above. These excitations
have been shown [56] to carry fractional charge ¢ = e/3. This
procedure can be generalized to other odd integers n > 3 to
obtain fractional TIs with g = e/n.
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V. WEYL SEMIMETAL PHASE

Remarkably, if the SOl is no longer of the pure Rashba type
but given by an equal combination of Rashba and Dresselhaus
SOIs by gate tuning [35], such that the spin gets coupled only
to the momentum in one particular direction [36,57-63], a
Weyl semimetal phase (WSM) can be realized in the same
setup. The modified SOI term reads

Hsor = —icr Y ) / dxdy B}, . T(0)s0dy Yo (16)
nnt oo’

As a result, the Hamiltonian density for each nt layer is
given by

ﬂo(x’}’)

poplE
— nro m

v?— ,u) — iraalayi| |\ —_—
oo’

a7

In Refs. [36,57-62] it was shown that combining Rashba
and Dresselhaus SOIs in a 2DEG can lead to a partial
compensation of the two. The above term arises when Rashba
and Dresselhaus SOIs are of equal strength. The tunneling part
of the total Hamiltonian H;, + H,, remains the same. From the
above equation it is evident that the spin projection along the x
axis is a good quantum number o = =£1. The total 8 x 8 Bloch
Hamiltonian is block diagonal and can be written in terms of
Pauli matrices as

R2 (k% + k2
M’?s —akyo173 + 117
2m

+ ta[cos® (k.a, /2)ni 1 + sin®(k.a, /2)n. T2
+ sin(k a;)(mi 7o + n271)/2]. (18)

h(k) =

From now on k denotes the 3D momentum and k;; the in-plane
momentum. The energy spectrum of this Hamiltonian is found
to be

El =e€f +1f +15 + (aky)’

+£2,/€}[1? + (aky)?] + 1713 cos(k.a./2),  (19)

withe)| = hzkﬁ /2m.Ift; < t,,the spectrum has a bulk gap. For
t; > t, there are two doubly degenerate gapless bulk states at
+kp withkp = (k},0,0)and k} = /32 (1} — 13)"/*. These are
Dirac nodes hosting two Weyl nodes of opposite chirality at the
same point. The two Weyl nodes are not coupled in the absence
of disorder and, therefore, do not annihilate each other. Such
Dirac nodes can, however, be stable only if additional crystal
symmetries are present that stabilize these nodes [64].

Next, we would like to eliminate the twofold degeneracy of
the Dirac node by splitting it into two Weyl nodes. This can be
achieved if the time-reversal symmetry is broken, for example,
via magnetic impurities which order ferromagnetically (FM)
along a direction orthogonal to the SOI direction, say, in the
y direction [65-68]. The exchange interaction between the
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FIG. 8. The Weyl semimetal spectrum for the parameters
t1/Es, =03, /E;, = 0.19,and k, = 0. Left: Four Weyl nodes exist
for a weak exchange interaction (J/ E;, = 0.08). Right: In the regime
|J — t1] < t,, only two Weyl outer nodes remain (J/E;, = 0.17).

electron spins and the magnetic impurities reads
Hi= =3 25 [ 5 )@ Ve Q0)
nnt oo’

with J > 0. Gapless states only exist in the k, = 0 plane where
the spectrum is given by

Ey s (ke ky,0) = €f + (J £1)° + 13 + (aky)’

+ 2\/(eﬁ +2)(J 1) + eXak, 2. (21)

If |J —t]| > t, the bulk spectrum has four gapless states
at +ky with ke = (k7 ,,0,0) and kf , = \/22[(J +1,)” —

t22]1/4. This means that the initial twofold degeneracy gets
lifted and we end up with four distinct nodes (see Fig. 8). The
nodes at ki and —k. have opposite chirality (see Fig. 9). If
the exchange interaction strength is tuned to J = t; — t,, the
two inner nodes meet and annihilate. As long as |J — £ <
1y, only the nodes at +k, exist, while at J =t + 1, the
two inner nodes reappear and separate when J is increased
further.

In the Appendix B, we find explicitly spectrum and wave
functions of surface states in the WSM phase. Here, we present
the numerical spectrum obtained from a tight-binding model
defined in Appendix A with polarized magnetic impurities
in the regime J < t; —t;; see Fig. 10. We confirm the
existence of gapless bulk states and of surface states that are
dispersionless in the x direction. The surface states have a
linear dispersion in the z direction as expected. In order to

" k.a.|m
A 0.2 ~
AN < - I/ A3
R 4% 0.1 Iz %
T - ' B % kgagm
N 04 = Z-02 02% = 04 ==
= P -01 = X hp
<N W “ N =
L ¥ 102 il /
il :

FIG. 9. Spin structure of the states on the Weyl cones at an energy
of E/t =0.02 at y/a, = 260 (N, = 400). For clarity we projected
the spin onto the k,k, plane. The parameters used for the numerics
aret;/t = 02,5/t =0.1,a/t =04, and J/t = 0.07.
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FIG. 10. Spectrum in the Weyl semimetal phase in half of the
Brillouin zone (BZ) as a function of momenta (k,, k). The spectrum
of a semi-infinite system (y > 0) was obtained numerically [cf.
Eq. (A5)] for Ny = 800, &/t =045, t,/t = 0.3, t,/t = 0.19, and
J/t =0.08, i.e., in the regime J < t; —t, where we expect four
Weyl nodes from the analytical analysis. The bulk (surface) states are
colored in blue (green). The spectrum is cut in half along the line
connecting the gap closing points. The spectrum indeed features two
(since we show only one half) gapless points as well as the Fermi
arcs.

check the chirality of the Weyl nodes, we also access the spin
structure of the states on the Weyl cones; see Fig. 9. Indeed, the
overall chirality of four Weyl cones is zero. We note that the
Weyl phase is defined strictly at the absence of disorder. Strictly
speaking, any finite amount of disorder will scatter between
Weyl cones as discussed in the literature [65]. However, if
the typical disorder correlation length is much smaller than
the Fermi wavelength, the disorder effects will be averaged
out in leading order such that the Weyl cones still can be
observed.

VI. CONCLUSIONS

We considered a layered system that realizes a 3D fractional
strong TI. We constructed a simple model that solely consists
of weakly coupled 2D layers with the Rashba SOI. We also
show that if Dresselhaus and Rashba SOI terms are of the
same strength, the system can be brought into the Weyl
semimetal phase. The motivation for such setups is given by
the vast progress in fabricating superlattices and van der Waals
heterostructures. We believe that these engineered materials
provide a promising route towards realizing 3D (fractional)
TIs and Weyl semimetals as proposed in this work.
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APPENDIX A: TIGHT-BINDING MODELS

In Sec. III, we address the question of whether a helical
Dirac cone exists at any boundary numerically by implement-
ing a tight-binding model [34] for a system with N, lattice
sites. We impose a hard wall boundary at y = 0 and consider
the system to be infinitely extended along the x and z directions
such that we can introduce momenta k, and k,. The tight-
binding Hamiltonian H = Zk k. Hy i, for this setup reads

Z Hotie + Y Hikkes (AD)
i=12
HOkaan = - Z[n(t cos(kyay) — M/z)cnmgcnrna

no

+ ntcjrr(nJrl)a C'IT”U]

~ .t +
+Ta Z[’ (Cr;r(nﬂncnrni - Cnr(nfl)TC'I'mi)
n

+ 2i sin(kya)c) 1 Cpeny ] + Hee, (A2)

Hllk k, = 141 Z[Crindcllna + C]I:T,wcilna + H'C']’ (A3)

thk k, — =0h Z[e ik: azcnnaclina + C]1L1ngcﬁn¢7 + HC]
(A4)

Here, cyine = Cyprnok,k, is the annihilation operator for an
electron with spin o in the layer (n7) with momentum (k,,k;)
at position y = nay, where a,, is the lattice constant along the
y direction. The spin-flip hopping amplitude is related to the
SOI parameter by & = «/2a, (we take the lattice constants
a; = ay) [69].

To describe the Weyl phase in Sec. V, we use the same
Hamiltonian as in Eq. (Al) besides adding the exchange
interaction term and modifying the SOI term, such as

= Y G cos(kear) = 1£/2)¢} 5 Ceno

no

Hkakznr =

T
+ ntcnr(nJrl)a C’IT"U]

.~ T T
+ita Z[Cﬂf(ﬂle)TC']f”l - Cm:(nfl)TCn‘rni]
n

— il el yrcyeny +He., (A5)

with the magnetic impurities of the strength J polarized along
y direction.

APPENDIX B: ANALYTICAL CALCULATION OF
SURFACE STATES IN THE WEYL SEMIMETAL PHASE

In this Appendix we explicitly show the analytical calcu-
lation of the surface states that appear in the WSM phase.
We restrict the discussion to the regime where | — 1, <
J <t + 1, with #; > t,. Without loss of generality all three
parameters are considered to be positive. In this range of the
exchange interaction strength, there exist two Weyl nodes at
4k, (see above) and the associated Fermi arcs are located
on the xz and xy surface BZ. For simplicity we calculate
the surface states on the xz surface for y = 0. In order to
perform the linearization of the Hamiltonian [see Eq. (18)] we
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again assume f1,f, < Ej, (see also text above). The chemical
potential is tuned to the Weyl nodes.

We start with the full 3D bulk Hamiltonian ﬁ(kx,ky,kz).
Since the Fermi arc is the line connecting the projections of
the Weyl nodes on the corresponding surface BZ, it is clear that
the surface states occur with (k,,0) in the k,k, plane. Before

linearization the Hamiltonian reads
2

h(kx’kyyo) (k2 +k )T)3 - O(k 7303

+I1T1 + tmt + Jos. (B1)

For a clean surface, (k,,k,) are good quantum numbers and we
can solve Eq. (B1) for fixed k., k., i.e., the problem reduces
to a one-dimensional problem solving for the zero-energy
eigenstates of fzkx(ky — —idy) (k; is fixed to zero). Since
ky is fixed in Eq. (B1) we treat the term containing k, as a
detuning of the chemical potential from the spin-orbit energy.

This procedure is justified since k2 € [O,é—’?,/(] + 1) =t
4‘[mt1 This
yields Sy, = Ik 3 <42 2t) < Ej, in the perturbative regime

n,n < Ew
Linearizing the Hamiltonian in Eq. (B1) gives

h = veky; + ti(tiyr — ©y2)/2 + amun
+ J(oay1 + 01732) /2 + Sk, 13,

and therefore k2 is bounded from above by k2 <

(B2)

with k£ = —i/id, the momentum operator around the Fermi
points and y; act in left/right mover space. The effect of
spin-orbit coupling enters in two ways: first it determines the
Fermi velocity (since vy = «/hi) and second it prevents the
exchange interaction term from being diagonal in spin space,
which would otherwise just lead to an energy shift of the two
spin sub-bands and not produce any interesting effects. For
the eigenstate we make the ansatz vy (x,y,z) = ey (y) =
e'**ei™y ¢, . where ¢, is a 16-component vector. Acting with
the Hamiltonian in Eq. (B2) on vy , one ends up with the

matrix equation
h(ky, 8y — iM)¢r = Esr.

The surface states are the zero-energy eigenstates which
decay for y > O (this translates into the criterion Re(i1) < 0).

(B3)

PHYSICAL REVIEW B 96, 085422 (2017)

The zero-energy states can simply be found by solving
Det(h(k,,ir)) = 0.Intheregimet; — 1, < J < t; + £, we find
the following decaying solutions characterized by

ity £6u
Mg = (B4)
th

\/<J +pt)? — 87 Kty

hUF

)\2/)1(—10 ) (BS)

where p,x € {—1,1} and the corresponding eigenvectors
(suppressing the normalization factors) are given by

¢ = (0,0,0,0,0,0,0,0,i,0,0,0,0,0,0,1),
¢» =(0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0),

¢3 = (0,0,0,0,0,0,0,0,0,0,0,—i,1,0,0,0),

¢4 = (0,—1,0,0,0,0,1,0,0,0,0,0,0,0,0,0),

¢s = (ig*.,0,0,i,—1,0,0,¢*,0,—i,—ig*,0,0,—g*,1,0),

¢ = (ig—,0,0,i,—1,0,0,g_,0,—i,—ig_,0,0,—g_,1,0),

¢7 = (—ig+,0,0,i,1,0,0,84,0,i,—ig+,0,0,84,1,0),

¢s = (ig+,0,0,—1,1,0,0,84,0,—i,ig+,0,0,g4,1,0), (B6)
with g4 = LAY (Jit') i . Some of these solutions seem

to be ill defined at J = t1, but they actually have a finite limit
once they are normalized. However, the expressions are too
lengthy to be displayed here.

We write the general solution as a linear combination in
the basis (W14, W11y, Yits, Ying, Wity Wiy, Wity Wiy) and
impose a hard-wall boundary condition at y = 0. Dropping
rapidly oscillating terms, we write

8
1 o
— E cje" s,
VN S

with N as a normalization constant and ¢ an eight component
vector. We find a nontrivial zero-energy solution characterized
by coefficients (c5 = ¢ = cg = 0),

Y(y) = (B7)

cfc1 = —c7/c1 =1, c3/c1 = cq/c1 = g+ (B8)
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